mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
Add RNNLM for rescoring.
This commit is contained in:
parent
774f6643cd
commit
8792dae99e
@ -38,6 +38,7 @@ from icefall.decode import (
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_rnn_lm,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
@ -94,7 +95,9 @@ def get_parser():
|
||||
is the decoding result.
|
||||
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||
lattice, the path with the highest score is the decoding result.
|
||||
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
- (6) rnn-lm. Rescoring with attention-decoder and RNN LM. We assume
|
||||
you have trained an RNN LM using ./rnn_lm/train.py
|
||||
- (7) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
@ -106,7 +109,7 @@ def get_parser():
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
@ -117,7 +120,7 @@ def get_parser():
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
@ -151,14 +154,55 @@ def get_parser():
|
||||
"--lm-dir",
|
||||
type=str,
|
||||
default="data/lm",
|
||||
help="""The LM dir.
|
||||
help="""The n-gram LM dir.
|
||||
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_rnn_lm_model(params: AttributeDict):
|
||||
from rnn_lm.model import RnnLmModel
|
||||
|
||||
# TODO: Pass the following options from command-line
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.num_classes,
|
||||
embedding_dim=1024,
|
||||
hidden_dim=1024,
|
||||
num_layers=2,
|
||||
tie_weights=False,
|
||||
)
|
||||
return rnn_lm_model
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
@ -185,6 +229,7 @@ def get_params() -> AttributeDict:
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: nn.Module,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
@ -217,6 +262,8 @@ def decode_one_batch(
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
@ -342,6 +389,7 @@ def decode_one_batch(
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
@ -369,8 +417,6 @@ def decode_one_batch(
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
# TODO: pass `lattice` instead of `rescored_lattice` to
|
||||
# `rescore_with_attention_decoder`
|
||||
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
@ -382,6 +428,26 @@ def decode_one_batch(
|
||||
eos_id=eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.method == "rnn-lm":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
|
||||
best_path_dict = rescore_with_rnn_lm(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
blank_id=0,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
else:
|
||||
assert False, f"Unsupported decoding method: {params.method}"
|
||||
|
||||
@ -400,6 +466,7 @@ def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: Optional[nn.Module],
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
@ -417,6 +484,8 @@ def decode_dataset(
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
@ -456,6 +525,7 @@ def decode_dataset(
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
@ -504,7 +574,7 @@ def save_results(
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
if params.method == "attention-decoder":
|
||||
if params.method in ("attention-decoder", "rnn-lm"):
|
||||
# Set it to False since there are too many logs.
|
||||
enable_log = False
|
||||
else:
|
||||
@ -580,6 +650,10 @@ def main():
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
params.num_classes = num_classes
|
||||
params.sos_id = sos_id
|
||||
params.eos_id = eos_id
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
@ -604,6 +678,7 @@ def main():
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
):
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
@ -635,7 +710,11 @@ def main():
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
|
||||
G = k2.Fsa.from_dict(d)
|
||||
|
||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]:
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
@ -683,6 +762,27 @@ def main():
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
if params.method == "rnn-lm":
|
||||
rnn_lm_model = get_rnn_lm_model(params)
|
||||
if params.rnn_lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
else:
|
||||
start = params.rnn_lm_epoch - params.rnn_lm_avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.rnn_lm_epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.rnn_lm_exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device)
|
||||
)
|
||||
else:
|
||||
rnn_lm_model = None
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
# CAUTION: `test_sets` is for displaying only.
|
||||
# If you want to skip test-clean, you have to skip
|
||||
@ -696,6 +796,7 @@ def main():
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
|
0
egs/librispeech/ASR/rnn_lm/__init__.py
Normal file
0
egs/librispeech/ASR/rnn_lm/__init__.py
Normal file
228
egs/librispeech/ASR/rnn_lm/compute_perplexity.py
Executable file
228
egs/librispeech/ASR/rnn_lm/compute_perplexity.py
Executable file
@ -0,0 +1,228 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./rnn_lm/compute_perplexity.py \
|
||||
--epoch 4 \
|
||||
--avg 2 \
|
||||
--lm-data ./data/bpe_500/sorted_lm_data-test.pt
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from rnn_lm.dataset import get_dataloader
|
||||
from rnn_lm.model import RnnLmModel
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.utils import AttributeDict, setup_logger
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=49,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
help="Path to the LM test data for computing perplexity",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sent-len",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="SOS ID",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--eos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="EOS ID",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-id",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Blank ID",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lm_data = Path(args.lm_data)
|
||||
|
||||
params = AttributeDict(vars(args))
|
||||
print(params)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-ppl/")
|
||||
logging.info("Computing perplexity started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
num_param_requires_grad = sum(
|
||||
[p.numel() for p in model.parameters() if p.requires_grad]
|
||||
)
|
||||
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
logging.info(
|
||||
f"Number of model parameters (requires_grad): "
|
||||
f"{num_param_requires_grad} "
|
||||
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM test data from {params.lm_data}")
|
||||
test_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=False,
|
||||
params=params,
|
||||
)
|
||||
|
||||
tot_loss = 0.0
|
||||
num_tokens = 0
|
||||
num_sentences = 0
|
||||
for batch_idx, batch in enumerate(test_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum().cpu().item()
|
||||
|
||||
tot_loss += loss
|
||||
num_tokens += sentence_lengths.sum().cpu().item()
|
||||
num_sentences += x.size(0)
|
||||
|
||||
ppl = math.exp(tot_loss / num_tokens)
|
||||
logging.info(
|
||||
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
||||
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
||||
)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
317
egs/librispeech/ASR/rnn_lm/dataset.py
Normal file
317
egs/librispeech/ASR/rnn_lm/dataset.py
Normal file
@ -0,0 +1,317 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
class LmDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
sentences: k2.RaggedTensor,
|
||||
words: k2.RaggedTensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
max_sent_len: int,
|
||||
batch_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
sentences:
|
||||
A ragged tensor of dtype torch.int32 with 2 axes [sentence][word].
|
||||
words:
|
||||
A ragged tensor of dtype torch.int32 with 2 axes [word][token].
|
||||
sentence_lengths:
|
||||
A 1-D tensor of dtype torch.int32 containing number of tokens
|
||||
of each sentence.
|
||||
max_sent_len:
|
||||
Maximum sentence length. It is used to change the batch size
|
||||
dynamically. In general, we try to keep the product of
|
||||
"max_sent_len in a batch" and "num_of_sent in a batch" being
|
||||
a constant.
|
||||
batch_size:
|
||||
The expected batch size. It is changed dynamically according
|
||||
to the "max_sent_len".
|
||||
|
||||
See `../local/prepare_lm_training_data.py` for how `sentences` and
|
||||
`words` are generated. We assume that `sentences` are sorted by length.
|
||||
See `../local/sort_lm_training_data.py`.
|
||||
"""
|
||||
super().__init__()
|
||||
self.sentences = sentences
|
||||
self.words = words
|
||||
|
||||
sentence_lengths = sentence_lengths.tolist()
|
||||
|
||||
assert batch_size > 0, batch_size
|
||||
assert max_sent_len > 1, max_sent_len
|
||||
batch_indexes = []
|
||||
num_sentences = sentences.dim0
|
||||
cur = 0
|
||||
while cur < num_sentences:
|
||||
sz = sentence_lengths[cur] // max_sent_len + 1
|
||||
# Assume the current sentence has 3 * max_sent_len tokens,
|
||||
# in the worst case, the subsequent sentences also have
|
||||
# this number of tokens, we should reduce the batch size
|
||||
# so that this batch will not contain too many tokens
|
||||
actucal_batch_size = batch_size // sz + 1
|
||||
actucal_batch_size = min(actucal_batch_size, batch_size)
|
||||
end = cur + actucal_batch_size
|
||||
end = min(end, num_sentences)
|
||||
this_batch_indexes = torch.arange(cur, end).tolist()
|
||||
batch_indexes.append(this_batch_indexes)
|
||||
cur = end
|
||||
assert batch_indexes[-1][-1] == num_sentences - 1
|
||||
|
||||
self.batch_indexes = k2.RaggedTensor(batch_indexes)
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return number of batches in this dataset"""
|
||||
return self.batch_indexes.dim0
|
||||
|
||||
def __getitem__(self, i: int) -> k2.RaggedTensor:
|
||||
"""Get the i'th batch in this dataset
|
||||
Return a ragged tensor with 2 axes [sentence][token].
|
||||
"""
|
||||
assert 0 <= i < len(self), i
|
||||
|
||||
# indexes is a 1-D tensor containing sentence indexes
|
||||
indexes = self.batch_indexes[i]
|
||||
|
||||
# sentence_words is a ragged tensor with 2 axes
|
||||
# [sentence][word]
|
||||
sentence_words = self.sentences[indexes]
|
||||
|
||||
# in case indexes contains only 1 entry, the returned
|
||||
# sentence_words is a 1-D tensor, we have to convert
|
||||
# it to a ragged tensor
|
||||
if isinstance(sentence_words, torch.Tensor):
|
||||
sentence_words = k2.RaggedTensor(sentence_words.unsqueeze(0))
|
||||
|
||||
# sentence_word_tokens is a ragged tensor with 3 axes
|
||||
# [sentence][word][token]
|
||||
sentence_word_tokens = self.words.index(sentence_words)
|
||||
assert sentence_word_tokens.num_axes == 3
|
||||
|
||||
sentence_tokens = sentence_word_tokens.remove_axis(1)
|
||||
return sentence_tokens
|
||||
|
||||
|
||||
def concat(
|
||||
ragged: k2.RaggedTensor, value: int, direction: str
|
||||
) -> k2.RaggedTensor:
|
||||
"""Prepend a value to the beginning of each sublist or append a value.
|
||||
to the end of each sublist.
|
||||
|
||||
Args:
|
||||
ragged:
|
||||
A ragged tensor with two axes.
|
||||
value:
|
||||
The value to prepend or append.
|
||||
direction:
|
||||
It can be either "left" or "right". If it is "left", we
|
||||
prepend the value to the beginning of each sublist;
|
||||
if it is "right", we append the value to the end of each
|
||||
sublist.
|
||||
|
||||
Returns:
|
||||
Return a new ragged tensor, whose sublists either start with
|
||||
or end with the given value.
|
||||
|
||||
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||
>>> a
|
||||
[ [ 1 3 ] [ 5 ] ]
|
||||
>>> concat(a, value=0, direction="left")
|
||||
[ [ 0 1 3 ] [ 0 5 ] ]
|
||||
>>> concat(a, value=0, direction="right")
|
||||
[ [ 1 3 0 ] [ 5 0 ] ]
|
||||
|
||||
"""
|
||||
dtype = ragged.dtype
|
||||
device = ragged.device
|
||||
|
||||
assert ragged.num_axes == 2, f"num_axes: {ragged.num_axes}"
|
||||
pad_values = torch.full(
|
||||
size=(ragged.tot_size(0), 1),
|
||||
fill_value=value,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
pad = k2.RaggedTensor(pad_values)
|
||||
|
||||
if direction == "left":
|
||||
ans = k2.ragged.cat([pad, ragged], axis=1)
|
||||
elif direction == "right":
|
||||
ans = k2.ragged.cat([ragged, pad], axis=1)
|
||||
else:
|
||||
raise ValueError(
|
||||
f'Unsupported direction: {direction}. " \
|
||||
"Expect either "left" or "right"'
|
||||
)
|
||||
return ans
|
||||
|
||||
|
||||
def add_sos(ragged: k2.RaggedTensor, sos_id: int) -> k2.RaggedTensor:
|
||||
"""Add SOS to each sublist.
|
||||
|
||||
Args:
|
||||
ragged:
|
||||
A ragged tensor with two axes.
|
||||
sos_id:
|
||||
The ID of the SOS symbol.
|
||||
|
||||
Returns:
|
||||
Return a new ragged tensor, where each sublist starts with SOS.
|
||||
|
||||
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||
>>> a
|
||||
[ [ 1 3 ] [ 5 ] ]
|
||||
>>> add_sos(a, sos_id=0)
|
||||
[ [ 0 1 3 ] [ 0 5 ] ]
|
||||
|
||||
"""
|
||||
return concat(ragged, sos_id, direction="left")
|
||||
|
||||
|
||||
def add_eos(ragged: k2.RaggedTensor, eos_id: int) -> k2.RaggedTensor:
|
||||
"""Add EOS to each sublist.
|
||||
|
||||
Args:
|
||||
ragged:
|
||||
A ragged tensor with two axes.
|
||||
eos_id:
|
||||
The ID of the EOS symbol.
|
||||
|
||||
Returns:
|
||||
Return a new ragged tensor, where each sublist ends with EOS.
|
||||
|
||||
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||
>>> a
|
||||
[ [ 1 3 ] [ 5 ] ]
|
||||
>>> add_eos(a, eos_id=0)
|
||||
[ [ 1 3 0 ] [ 5 0 ] ]
|
||||
|
||||
"""
|
||||
return concat(ragged, eos_id, direction="right")
|
||||
|
||||
|
||||
class LmDatasetCollate:
|
||||
def __init__(self, sos_id: int, eos_id: int, blank_id: int):
|
||||
"""
|
||||
Args:
|
||||
sos_id:
|
||||
Token ID of the SOS symbol.
|
||||
eos_id:
|
||||
Token ID of the EOS symbol.
|
||||
blank_id:
|
||||
Token ID of the blank symbol.
|
||||
"""
|
||||
self.sos_id = sos_id
|
||||
self.eos_id = eos_id
|
||||
self.blank_id = blank_id
|
||||
|
||||
def __call__(
|
||||
self, batch: List[k2.RaggedTensor]
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Return a tuple containing 3 tensors:
|
||||
|
||||
- x, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||
for a sentence starting with `self.sos_id`. It is padded to
|
||||
the max sentence length with `self.blank_id`.
|
||||
|
||||
- y, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||
for a sentence ending with `self.eos_id` before padding.
|
||||
Then it is padded to the max sentence length with
|
||||
`self.blank_id`.
|
||||
|
||||
- lengths, a 2-D tensor of dtype torch.int32, containing the number of
|
||||
tokens of each sentence before padding.
|
||||
"""
|
||||
# The batching stuff has already been done in LmDataset
|
||||
assert len(batch) == 1
|
||||
sentence_tokens = batch[0]
|
||||
row_splits = sentence_tokens.shape.row_splits(1)
|
||||
sentence_token_lengths = row_splits[1:] - row_splits[:-1]
|
||||
sentence_tokens_with_sos = add_sos(sentence_tokens, self.sos_id)
|
||||
sentence_tokens_with_eos = add_eos(sentence_tokens, self.eos_id)
|
||||
|
||||
x = sentence_tokens_with_sos.pad(
|
||||
mode="constant", padding_value=self.blank_id
|
||||
)
|
||||
y = sentence_tokens_with_eos.pad(
|
||||
mode="constant", padding_value=self.blank_id
|
||||
)
|
||||
sentence_token_lengths += 1 # plus 1 since we added a SOS
|
||||
|
||||
return x.to(torch.int64), y.to(torch.int64), sentence_token_lengths
|
||||
|
||||
|
||||
def get_dataloader(
|
||||
filename: str,
|
||||
is_distributed: bool,
|
||||
params: AttributeDict,
|
||||
) -> torch.utils.data.DataLoader:
|
||||
"""Get dataloader for LM training.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Path to the file containing LM data. The file is assumed to
|
||||
be generated by `../local/sort_lm_training_data.py`.
|
||||
is_distributed:
|
||||
True if using DDP training. False otherwise.
|
||||
params:
|
||||
Set `get_params()` from `rnn_lm/train.py`
|
||||
Returns:
|
||||
Return a dataloader containing the LM data.
|
||||
"""
|
||||
lm_data = torch.load(filename)
|
||||
|
||||
words = lm_data["words"]
|
||||
sentences = lm_data["sentences"]
|
||||
sentence_lengths = lm_data["sentence_lengths"]
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=params.max_sent_len,
|
||||
batch_size=params.batch_size,
|
||||
)
|
||||
if is_distributed:
|
||||
sampler = torch.utils.data.distributed.DistributedSampler(
|
||||
dataset, shuffle=True, drop_last=False
|
||||
)
|
||||
else:
|
||||
sampler = None
|
||||
|
||||
collate_fn = LmDatasetCollate(
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
blank_id=params.blank_id,
|
||||
)
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=1,
|
||||
collate_fn=collate_fn,
|
||||
sampler=sampler,
|
||||
shuffle=sampler is None,
|
||||
num_workers=2,
|
||||
)
|
||||
return dataloader
|
120
egs/librispeech/ASR/rnn_lm/model.py
Normal file
120
egs/librispeech/ASR/rnn_lm/model.py
Normal file
@ -0,0 +1,120 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from icefall.utils import make_pad_mask
|
||||
|
||||
|
||||
class RnnLmModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
hidden_dim: int,
|
||||
num_layers: int,
|
||||
tie_weights: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Vocabulary size of BPE model.
|
||||
embedding_dim:
|
||||
Input embedding dimension.
|
||||
hidden_dim:
|
||||
Hidden dimension of RNN layers.
|
||||
num_layers:
|
||||
Number of RNN layers.
|
||||
tie_weights:
|
||||
True to share the weights between the input embedding layer and the
|
||||
last output linear layer. See https://arxiv.org/abs/1608.05859
|
||||
and https://arxiv.org/abs/1611.01462
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.input_embedding = torch.nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
)
|
||||
|
||||
self.rnn = torch.nn.LSTM(
|
||||
input_size=embedding_dim,
|
||||
hidden_size=hidden_dim,
|
||||
num_layers=num_layers,
|
||||
batch_first=True,
|
||||
)
|
||||
|
||||
self.output_linear = torch.nn.Linear(
|
||||
in_features=hidden_dim, out_features=vocab_size
|
||||
)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
if tie_weights:
|
||||
logging.info("Tying weights")
|
||||
assert embedding_dim == hidden_dim, (embedding_dim, hidden_dim)
|
||||
self.output_linear.weight = self.input_embedding.weight
|
||||
else:
|
||||
logging.info("Not tying weights")
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, y: torch.Tensor, lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 2-D tensor with shape (N, L). Each row
|
||||
contains token IDs for a sentence and starts with the SOS token.
|
||||
y:
|
||||
A shifted version of `x` and with EOS appended.
|
||||
lengths:
|
||||
A 1-D tensor of shape (N,). It contains the sentence lengths
|
||||
before padding.
|
||||
Returns:
|
||||
Return a 2-D tensor of shape (N, L) containing negative log-likelihood
|
||||
loss values. Note: Loss values for padding positions are set to 0.
|
||||
"""
|
||||
assert x.ndim == y.ndim == 2, (x.ndim, y.ndim)
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
assert x.shape == y.shape, (x.shape, y.shape)
|
||||
|
||||
batch_size = x.size(0)
|
||||
assert lengths.size(0) == batch_size, (lengths.size(0), batch_size)
|
||||
|
||||
# embedding is of shape (N, L, embedding_dim)
|
||||
embedding = self.input_embedding(x)
|
||||
|
||||
# Note: We use batch_first==True
|
||||
rnn_out, _ = self.rnn(embedding)
|
||||
logits = self.output_linear(rnn_out)
|
||||
|
||||
# Note: No need to use `log_softmax()` here
|
||||
# since F.cross_entropy() expects unnormalized probabilities
|
||||
|
||||
# nll_loss is of shape (N*L,)
|
||||
# nll -> negative log-likelihood
|
||||
nll_loss = F.cross_entropy(
|
||||
logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
|
||||
)
|
||||
# Set loss values for padding positions to 0
|
||||
mask = make_pad_mask(lengths).reshape(-1)
|
||||
nll_loss.masked_fill_(mask, 0)
|
||||
|
||||
nll_loss = nll_loss.reshape(batch_size, -1)
|
||||
|
||||
return nll_loss
|
74
egs/librispeech/ASR/rnn_lm/test_dataset.py
Executable file
74
egs/librispeech/ASR/rnn_lm/test_dataset.py
Executable file
@ -0,0 +1,74 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from rnn_lm.dataset import LmDataset, LmDatasetCollate
|
||||
|
||||
|
||||
def main():
|
||||
sentences = k2.RaggedTensor(
|
||||
[[0, 1, 2], [1, 0, 1], [0, 1], [1, 3, 0, 2, 0], [3], [0, 2, 1]]
|
||||
)
|
||||
words = k2.RaggedTensor([[3, 6], [2, 8, 9, 3], [5], [5, 6, 7, 8, 9]])
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
sentence_lengths = torch.tensor(sentence_lengths, dtype=torch.int32)
|
||||
|
||||
indices = torch.argsort(sentence_lengths, descending=True)
|
||||
sentences = sentences[indices.to(torch.int32)]
|
||||
sentence_lengths = sentence_lengths[indices]
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=3,
|
||||
batch_size=4,
|
||||
)
|
||||
print(dataset.sentences)
|
||||
print(dataset.words)
|
||||
print(dataset.batch_indexes)
|
||||
print(len(dataset))
|
||||
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset, batch_size=1, collate_fn=collate_fn
|
||||
)
|
||||
|
||||
for i in dataloader:
|
||||
print(i)
|
||||
# I've checked the output manually; the output is as expected.
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
103
egs/librispeech/ASR/rnn_lm/test_dataset_ddp.py
Executable file
103
egs/librispeech/ASR/rnn_lm/test_dataset_ddp.py
Executable file
@ -0,0 +1,103 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from rnn_lm.dataset import LmDataset, LmDatasetCollate
|
||||
from torch import distributed as dist
|
||||
|
||||
|
||||
def generate_data():
|
||||
sentences = k2.RaggedTensor(
|
||||
[[0, 1, 2], [1, 0, 1], [0, 1], [1, 3, 0, 2, 0], [3], [0, 2, 1]]
|
||||
)
|
||||
words = k2.RaggedTensor([[3, 6], [2, 8, 9, 3], [5], [5, 6, 7, 8, 9]])
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
sentence_lengths = torch.tensor(sentence_lengths, dtype=torch.int32)
|
||||
|
||||
indices = torch.argsort(sentence_lengths, descending=True)
|
||||
sentences = sentences[indices.to(torch.int32)]
|
||||
sentence_lengths = sentence_lengths[indices]
|
||||
|
||||
return sentences, words, sentence_lengths
|
||||
|
||||
|
||||
def run(rank, world_size):
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = "12352"
|
||||
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
sentences, words, sentence_lengths = generate_data()
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=3,
|
||||
batch_size=4,
|
||||
)
|
||||
sampler = torch.utils.data.distributed.DistributedSampler(
|
||||
dataset, shuffle=True, drop_last=False
|
||||
)
|
||||
|
||||
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=1,
|
||||
collate_fn=collate_fn,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
for i in dataloader:
|
||||
print(f"rank: {rank}", i)
|
||||
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
def main():
|
||||
world_size = 2
|
||||
mp.spawn(run, args=(world_size,), nprocs=world_size, join=True)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
69
egs/librispeech/ASR/rnn_lm/test_model.py
Executable file
69
egs/librispeech/ASR/rnn_lm/test_model.py
Executable file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from rnn_lm.model import RnnLmModel
|
||||
|
||||
|
||||
def test_rnn_lm_model():
|
||||
vocab_size = 4
|
||||
model = RnnLmModel(
|
||||
vocab_size=vocab_size, embedding_dim=10, hidden_dim=10, num_layers=2
|
||||
)
|
||||
x = torch.tensor(
|
||||
[
|
||||
[1, 3, 2, 2],
|
||||
[1, 2, 2, 0],
|
||||
[1, 2, 0, 0],
|
||||
]
|
||||
)
|
||||
y = torch.tensor(
|
||||
[
|
||||
[3, 2, 2, 1],
|
||||
[2, 2, 1, 0],
|
||||
[2, 1, 0, 0],
|
||||
]
|
||||
)
|
||||
lengths = torch.tensor([4, 3, 2])
|
||||
nll_loss = model(x, y, lengths)
|
||||
print(nll_loss)
|
||||
"""
|
||||
tensor([[1.1180, 1.3059, 1.2426, 1.7773],
|
||||
[1.4231, 1.2783, 1.7321, 0.0000],
|
||||
[1.4231, 1.6752, 0.0000, 0.0000]], grad_fn=<ViewBackward>)
|
||||
"""
|
||||
|
||||
|
||||
def test_rnn_lm_model_tie_weights():
|
||||
model = RnnLmModel(
|
||||
vocab_size=10,
|
||||
embedding_dim=10,
|
||||
hidden_dim=10,
|
||||
num_layers=2,
|
||||
tie_weights=True,
|
||||
)
|
||||
assert model.input_embedding.weight is model.output_linear.weight
|
||||
|
||||
|
||||
def main():
|
||||
test_rnn_lm_model()
|
||||
test_rnn_lm_model_tie_weights()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20211122)
|
||||
main()
|
607
egs/librispeech/ASR/rnn_lm/train-small.py
Executable file
607
egs/librispeech/ASR/rnn_lm/train-small.py
Executable file
@ -0,0 +1,607 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./rnn_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--num-epochs 20 \
|
||||
--batch-size 200 \
|
||||
|
||||
If you want to use DDP training, e.g., a single node with 4 GPUs,
|
||||
use:
|
||||
|
||||
python -m torch.distributed.launch \
|
||||
--use_env \
|
||||
--nproc_per_node 4 \
|
||||
./rnn_lm/train.py \
|
||||
--use-ddp-launch true \
|
||||
--start-epoch 0 \
|
||||
--num-epochs 10 \
|
||||
--batch-size 200
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from lhotse.utils import fix_random_seed
|
||||
from rnn_lm.dataset import get_dataloader
|
||||
from rnn_lm.model import RnnLmModel
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import (
|
||||
cleanup_dist,
|
||||
get_local_rank,
|
||||
get_rank,
|
||||
get_world_size,
|
||||
setup_dist,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
get_env_info,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
exp_dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp_small",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, logs, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-ddp-launch",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="True if using torch.distributed.launch",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters."""
|
||||
|
||||
params = AttributeDict(
|
||||
{
|
||||
# LM training/validation data
|
||||
"lm_data": "data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||
"lm_data_valid": "data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||
"max_sent_len": 200,
|
||||
"sos_id": 1,
|
||||
"eos_id": 1,
|
||||
"blank_id": 0,
|
||||
# model related
|
||||
#
|
||||
# vocab size of the BPE model
|
||||
"vocab_size": 500,
|
||||
"embedding_dim": 1024,
|
||||
"hidden_dim": 1024,
|
||||
"num_layers": 2,
|
||||
#
|
||||
"lr": 1e-3,
|
||||
"weight_decay": 1e-6,
|
||||
#
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 200,
|
||||
"reset_interval": 2000,
|
||||
"valid_interval": 30000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
logging.info(f"Loading checkpoint: {filename}")
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
model: nn.Module,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
is_training: bool,
|
||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||
"""Compute the negative log-likelihood loss given a model and its input.
|
||||
Args:
|
||||
model:
|
||||
The NN model, e.g., RnnLmModel.
|
||||
x:
|
||||
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
||||
each row starts with SOS ID.
|
||||
y:
|
||||
A 2-D tensor. Each row is a shifted version of the corresponding row
|
||||
in `x` but ends with an EOS ID (before padding).
|
||||
sentence_lengths:
|
||||
A 1-D tensor containing number of tokens of each sentence
|
||||
before padding.
|
||||
is_training:
|
||||
True for training. False for validation.
|
||||
"""
|
||||
with torch.set_grad_enabled(is_training):
|
||||
device = model.device
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum()
|
||||
|
||||
num_tokens = sentence_lengths.sum().item()
|
||||
|
||||
loss_info = MetricsTracker()
|
||||
# Note: Due to how MetricsTracker() is designed,
|
||||
# we use "frames" instead of "num_tokens" as a key here
|
||||
loss_info["frames"] = num_tokens
|
||||
loss_info["loss"] = loss.detach().item()
|
||||
return loss, loss_info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=False,
|
||||
)
|
||||
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all sentences is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
x, y, sentence_lengths = batch
|
||||
batch_size = x.size(0)
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
# Note: "frames" here means "num_tokens"
|
||||
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
||||
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
||||
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_ppl", tot_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
|
||||
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
||||
f"ppl: {valid_ppl}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
if params.use_ddp_launch:
|
||||
local_rank = get_local_rank()
|
||||
else:
|
||||
local_rank = rank
|
||||
|
||||
logging.warning(
|
||||
f"rank: {rank}, world_size: {world_size}, local_rank: {local_rank}"
|
||||
)
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port, params.use_ddp_launch)
|
||||
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log/log-train", rank=rank, world_size=world_size
|
||||
)
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", local_rank)
|
||||
|
||||
logging.info(f"Device: {device}, rank: {rank}, local_rank: {local_rank}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[local_rank])
|
||||
|
||||
model.device = device
|
||||
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
if checkpoints:
|
||||
logging.info("Load optimizer state_dict from checkpoint")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
logging.info(f"Loading LM training data from {params.lm_data}")
|
||||
train_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=world_size > 1,
|
||||
params=params,
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
||||
valid_dl = get_dataloader(
|
||||
filename=params.lm_data_valid,
|
||||
is_distributed=world_size > 1,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Note: No learning rate scheduler is used here
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
if world_size > 1:
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
if args.use_ddp_launch:
|
||||
# for torch.distributed.lanunch
|
||||
rank = get_rank()
|
||||
world_size = get_world_size()
|
||||
print(f"rank: {rank}, world_size: {world_size}")
|
||||
# This following is a hack as the default log level
|
||||
# is warning
|
||||
logging.info = logging.warning
|
||||
run(rank=rank, world_size=world_size, args=args)
|
||||
return
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
607
egs/librispeech/ASR/rnn_lm/train.py
Executable file
607
egs/librispeech/ASR/rnn_lm/train.py
Executable file
@ -0,0 +1,607 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./rnn_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--num-epochs 20 \
|
||||
--batch-size 200 \
|
||||
|
||||
If you want to use DDP training, e.g., a single node with 4 GPUs,
|
||||
use:
|
||||
|
||||
python -m torch.distributed.launch \
|
||||
--use_env \
|
||||
--nproc_per_node 4 \
|
||||
./rnn_lm/train.py \
|
||||
--use-ddp-launch true \
|
||||
--start-epoch 0 \
|
||||
--num-epochs 10 \
|
||||
--batch-size 200
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from lhotse.utils import fix_random_seed
|
||||
from rnn_lm.dataset import get_dataloader
|
||||
from rnn_lm.model import RnnLmModel
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import (
|
||||
cleanup_dist,
|
||||
get_local_rank,
|
||||
get_rank,
|
||||
get_world_size,
|
||||
setup_dist,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
get_env_info,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
exp_dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, logs, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-ddp-launch",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="True if using torch.distributed.launch",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters."""
|
||||
|
||||
params = AttributeDict(
|
||||
{
|
||||
# LM training/validation data
|
||||
"lm_data": "data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||
"lm_data_valid": "data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||
"max_sent_len": 200,
|
||||
"sos_id": 1,
|
||||
"eos_id": 1,
|
||||
"blank_id": 0,
|
||||
# model related
|
||||
#
|
||||
# vocab size of the BPE model
|
||||
"vocab_size": 500,
|
||||
"embedding_dim": 2048,
|
||||
"hidden_dim": 2048,
|
||||
"num_layers": 4,
|
||||
#
|
||||
"lr": 1e-3,
|
||||
"weight_decay": 1e-6,
|
||||
#
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 200,
|
||||
"reset_interval": 2000,
|
||||
"valid_interval": 30000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
logging.info(f"Loading checkpoint: {filename}")
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
model: nn.Module,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
is_training: bool,
|
||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||
"""Compute the negative log-likelihood loss given a model and its input.
|
||||
Args:
|
||||
model:
|
||||
The NN model, e.g., RnnLmModel.
|
||||
x:
|
||||
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
||||
each row starts with SOS ID.
|
||||
y:
|
||||
A 2-D tensor. Each row is a shifted version of the corresponding row
|
||||
in `x` but ends with an EOS ID (before padding).
|
||||
sentence_lengths:
|
||||
A 1-D tensor containing number of tokens of each sentence
|
||||
before padding.
|
||||
is_training:
|
||||
True for training. False for validation.
|
||||
"""
|
||||
with torch.set_grad_enabled(is_training):
|
||||
device = model.device
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum()
|
||||
|
||||
num_tokens = sentence_lengths.sum().item()
|
||||
|
||||
loss_info = MetricsTracker()
|
||||
# Note: Due to how MetricsTracker() is designed,
|
||||
# we use "frames" instead of "num_tokens" as a key here
|
||||
loss_info["frames"] = num_tokens
|
||||
loss_info["loss"] = loss.detach().item()
|
||||
return loss, loss_info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=False,
|
||||
)
|
||||
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all sentences is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
x, y, sentence_lengths = batch
|
||||
batch_size = x.size(0)
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
# Note: "frames" here means "num_tokens"
|
||||
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
||||
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
||||
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_ppl", tot_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
|
||||
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
||||
f"ppl: {valid_ppl}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
if params.use_ddp_launch:
|
||||
local_rank = get_local_rank()
|
||||
else:
|
||||
local_rank = rank
|
||||
|
||||
logging.warning(
|
||||
f"rank: {rank}, world_size: {world_size}, local_rank: {local_rank}"
|
||||
)
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port, params.use_ddp_launch)
|
||||
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log/log-train", rank=rank, world_size=world_size
|
||||
)
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", local_rank)
|
||||
|
||||
logging.info(f"Device: {device}, rank: {rank}, local_rank: {local_rank}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[local_rank])
|
||||
|
||||
model.device = device
|
||||
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
if checkpoints:
|
||||
logging.info("Load optimizer state_dict from checkpoint")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
logging.info(f"Loading LM training data from {params.lm_data}")
|
||||
train_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=world_size > 1,
|
||||
params=params,
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
||||
valid_dl = get_dataloader(
|
||||
filename=params.lm_data_valid,
|
||||
is_distributed=world_size > 1,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Note: No learning rate scheduler is used here
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
if world_size > 1:
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
if args.use_ddp_launch:
|
||||
# for torch.distributed.lanunch
|
||||
rank = get_rank()
|
||||
world_size = get_world_size()
|
||||
print(f"rank: {rank}, world_size: {world_size}")
|
||||
# This following is a hack as the default log level
|
||||
# is warning
|
||||
logging.info = logging.warning
|
||||
run(rank=rank, world_size=world_size, args=args)
|
||||
return
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -20,7 +20,7 @@ from typing import Dict, List, Optional, Union
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.utils import get_texts
|
||||
from icefall.utils import add_eos, add_sos, get_texts
|
||||
|
||||
|
||||
def _intersect_device(
|
||||
@ -903,3 +903,172 @@ def rescore_with_attention_decoder(
|
||||
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}"
|
||||
ans[key] = best_path
|
||||
return ans
|
||||
|
||||
|
||||
def rescore_with_rnn_lm(
|
||||
lattice: k2.Fsa,
|
||||
num_paths: int,
|
||||
rnn_lm_model: torch.nn.Module,
|
||||
model: torch.nn.Module,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: Optional[torch.Tensor],
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
blank_id: int,
|
||||
nbest_scale: float = 1.0,
|
||||
ngram_lm_scale: Optional[float] = None,
|
||||
attention_scale: Optional[float] = None,
|
||||
rnn_lm_scale: Optional[float] = None,
|
||||
use_double_scores: bool = True,
|
||||
) -> Dict[str, k2.Fsa]:
|
||||
"""This function extracts `num_paths` paths from the given lattice and uses
|
||||
an attention decoder to rescore them. The path with the highest score is
|
||||
the decoding output.
|
||||
|
||||
Args:
|
||||
lattice:
|
||||
An FsaVec with axes [utt][state][arc].
|
||||
num_paths:
|
||||
Number of paths to extract from the given lattice for rescoring.
|
||||
model:
|
||||
A transformer model. See the class "Transformer" in
|
||||
conformer_ctc/transformer.py for its interface.
|
||||
memory:
|
||||
The encoder memory of the given model. It is the output of
|
||||
the last torch.nn.TransformerEncoder layer in the given model.
|
||||
Its shape is `(T, N, C)`.
|
||||
memory_key_padding_mask:
|
||||
The padding mask for memory with shape `(N, T)`.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
nbest_scale:
|
||||
It's the scale applied to `lattice.scores`. A smaller value
|
||||
leads to more unique paths at the risk of missing the correct path.
|
||||
ngram_lm_scale:
|
||||
Optional. It specifies the scale for n-gram LM scores.
|
||||
attention_scale:
|
||||
Optional. It specifies the scale for attention decoder scores.
|
||||
rnn_lm_scale:
|
||||
Optional. It specifies the scale for RNN LM scores.
|
||||
Returns:
|
||||
A dict of FsaVec, whose key contains a string
|
||||
ngram_lm_scale_attention_scale and the value is the
|
||||
best decoding path for each utterance in the lattice.
|
||||
"""
|
||||
nbest = Nbest.from_lattice(
|
||||
lattice=lattice,
|
||||
num_paths=num_paths,
|
||||
use_double_scores=use_double_scores,
|
||||
nbest_scale=nbest_scale,
|
||||
)
|
||||
# nbest.fsa.scores are all 0s at this point
|
||||
|
||||
nbest = nbest.intersect(lattice)
|
||||
# Now nbest.fsa has its scores set.
|
||||
# Also, nbest.fsa inherits the attributes from `lattice`.
|
||||
assert hasattr(nbest.fsa, "lm_scores")
|
||||
|
||||
am_scores = nbest.compute_am_scores()
|
||||
ngram_lm_scores = nbest.compute_lm_scores()
|
||||
|
||||
# The `tokens` attribute is set inside `compile_hlg.py`
|
||||
assert hasattr(nbest.fsa, "tokens")
|
||||
assert isinstance(nbest.fsa.tokens, torch.Tensor)
|
||||
|
||||
path_to_utt_map = nbest.shape.row_ids(1).to(torch.long)
|
||||
# the shape of memory is (T, N, C), so we use axis=1 here
|
||||
expanded_memory = memory.index_select(1, path_to_utt_map)
|
||||
|
||||
if memory_key_padding_mask is not None:
|
||||
# The shape of memory_key_padding_mask is (N, T), so we
|
||||
# use axis=0 here.
|
||||
expanded_memory_key_padding_mask = memory_key_padding_mask.index_select(
|
||||
0, path_to_utt_map
|
||||
)
|
||||
else:
|
||||
expanded_memory_key_padding_mask = None
|
||||
|
||||
# remove axis corresponding to states.
|
||||
tokens_shape = nbest.fsa.arcs.shape().remove_axis(1)
|
||||
tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens)
|
||||
tokens = tokens.remove_values_leq(0)
|
||||
token_ids = tokens.tolist()
|
||||
|
||||
if len(token_ids) == 0:
|
||||
print("Warning: rescore_with_attention_decoder(): empty token-ids")
|
||||
return None
|
||||
|
||||
nll = model.decoder_nll(
|
||||
memory=expanded_memory,
|
||||
memory_key_padding_mask=expanded_memory_key_padding_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
assert nll.ndim == 2
|
||||
assert nll.shape[0] == len(token_ids)
|
||||
|
||||
attention_scores = -nll.sum(dim=1)
|
||||
|
||||
# Now for RNN LM
|
||||
sos_tokens = add_sos(tokens, sos_id)
|
||||
tokens_eos = add_eos(tokens, eos_id)
|
||||
sos_tokens_row_splits = sos_tokens.shape.row_splits(1)
|
||||
sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1]
|
||||
|
||||
x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id)
|
||||
y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
x_tokens = x_tokens.to(torch.int64)
|
||||
y_tokens = y_tokens.to(torch.int64)
|
||||
sentence_lengths = sentence_lengths.to(torch.int64)
|
||||
|
||||
rnn_lm_nll = rnn_lm_model(x=x_tokens, y=y_tokens, lengths=sentence_lengths)
|
||||
assert rnn_lm_nll.ndim == 2
|
||||
assert rnn_lm_nll.shape[0] == len(token_ids)
|
||||
|
||||
rnn_lm_scores = -1 * rnn_lm_nll.sum(dim=1)
|
||||
|
||||
if ngram_lm_scale is None:
|
||||
ngram_lm_scale_list = [0.01, 0.05, 0.08]
|
||||
ngram_lm_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
||||
ngram_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
||||
ngram_lm_scale_list += [2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0]
|
||||
else:
|
||||
ngram_lm_scale_list = [ngram_lm_scale]
|
||||
|
||||
if attention_scale is None:
|
||||
attention_scale_list = [0.01, 0.05, 0.08]
|
||||
attention_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
||||
attention_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
||||
attention_scale_list += [2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0]
|
||||
else:
|
||||
attention_scale_list = [attention_scale]
|
||||
|
||||
if rnn_lm_scale is None:
|
||||
rnn_lm_scale_list = [0.01, 0.05, 0.08]
|
||||
rnn_lm_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
||||
rnn_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
||||
rnn_lm_scale_list += [2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0]
|
||||
else:
|
||||
rnn_lm_scale_list = [rnn_lm_scale]
|
||||
|
||||
ans = dict()
|
||||
for n_scale in ngram_lm_scale_list:
|
||||
for a_scale in attention_scale_list:
|
||||
for r_scale in rnn_lm_scale_list:
|
||||
tot_scores = (
|
||||
am_scores.values
|
||||
+ n_scale * ngram_lm_scores.values
|
||||
+ a_scale * attention_scores
|
||||
+ r_scale * rnn_lm_scores
|
||||
)
|
||||
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
|
||||
max_indexes = ragged_tot_scores.argmax()
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
|
||||
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}_rnn_lm_scale_{r_scale}" # noqa
|
||||
ans[key] = best_path
|
||||
return ans
|
||||
|
125
icefall/utils.py
125
icefall/utils.py
@ -637,3 +637,128 @@ class MetricsTracker(collections.defaultdict):
|
||||
"""
|
||||
for k, v in self.norm_items():
|
||||
tb_writer.add_scalar(prefix + k, v, batch_idx)
|
||||
|
||||
|
||||
def concat(
|
||||
ragged: k2.RaggedTensor, value: int, direction: str
|
||||
) -> k2.RaggedTensor:
|
||||
"""Prepend a value to the beginning of each sublist or append a value.
|
||||
to the end of each sublist.
|
||||
|
||||
Args:
|
||||
ragged:
|
||||
A ragged tensor with two axes.
|
||||
value:
|
||||
The value to prepend or append.
|
||||
direction:
|
||||
It can be either "left" or "right". If it is "left", we
|
||||
prepend the value to the beginning of each sublist;
|
||||
if it is "right", we append the value to the end of each
|
||||
sublist.
|
||||
|
||||
Returns:
|
||||
Return a new ragged tensor, whose sublists either start with
|
||||
or end with the given value.
|
||||
|
||||
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||
>>> a
|
||||
[ [ 1 3 ] [ 5 ] ]
|
||||
>>> concat(a, value=0, direction="left")
|
||||
[ [ 0 1 3 ] [ 0 5 ] ]
|
||||
>>> concat(a, value=0, direction="right")
|
||||
[ [ 1 3 0 ] [ 5 0 ] ]
|
||||
|
||||
"""
|
||||
dtype = ragged.dtype
|
||||
device = ragged.device
|
||||
|
||||
assert ragged.num_axes == 2, f"num_axes: {ragged.num_axes}"
|
||||
pad_values = torch.full(
|
||||
size=(ragged.tot_size(0), 1),
|
||||
fill_value=value,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
pad = k2.RaggedTensor(pad_values)
|
||||
|
||||
if direction == "left":
|
||||
ans = k2.ragged.cat([pad, ragged], axis=1)
|
||||
elif direction == "right":
|
||||
ans = k2.ragged.cat([ragged, pad], axis=1)
|
||||
else:
|
||||
raise ValueError(
|
||||
f'Unsupported direction: {direction}. " \
|
||||
"Expect either "left" or "right"'
|
||||
)
|
||||
return ans
|
||||
|
||||
|
||||
def add_sos(ragged: k2.RaggedTensor, sos_id: int) -> k2.RaggedTensor:
|
||||
"""Add SOS to each sublist.
|
||||
|
||||
Args:
|
||||
ragged:
|
||||
A ragged tensor with two axes.
|
||||
sos_id:
|
||||
The ID of the SOS symbol.
|
||||
|
||||
Returns:
|
||||
Return a new ragged tensor, where each sublist starts with SOS.
|
||||
|
||||
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||
>>> a
|
||||
[ [ 1 3 ] [ 5 ] ]
|
||||
>>> add_sos(a, sos_id=0)
|
||||
[ [ 0 1 3 ] [ 0 5 ] ]
|
||||
|
||||
"""
|
||||
return concat(ragged, sos_id, direction="left")
|
||||
|
||||
|
||||
def add_eos(ragged: k2.RaggedTensor, eos_id: int) -> k2.RaggedTensor:
|
||||
"""Add EOS to each sublist.
|
||||
|
||||
Args:
|
||||
ragged:
|
||||
A ragged tensor with two axes.
|
||||
eos_id:
|
||||
The ID of the EOS symbol.
|
||||
|
||||
Returns:
|
||||
Return a new ragged tensor, where each sublist ends with EOS.
|
||||
|
||||
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||
>>> a
|
||||
[ [ 1 3 ] [ 5 ] ]
|
||||
>>> add_eos(a, eos_id=0)
|
||||
[ [ 1 3 0 ] [ 5 0 ] ]
|
||||
|
||||
"""
|
||||
return concat(ragged, eos_id, direction="right")
|
||||
|
||||
|
||||
def make_pad_mask(lengths: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
A 1-D tensor containing sentence lengths.
|
||||
Returns:
|
||||
Return a 2-D bool tensor, where masked positions
|
||||
are filled with `True` and non-masked positions are
|
||||
filled with `False`.
|
||||
|
||||
>>> lengths = torch.tensor([1, 3, 2, 5])
|
||||
>>> make_pad_mask(lengths)
|
||||
tensor([[False, True, True, True, True],
|
||||
[False, False, False, True, True],
|
||||
[False, False, True, True, True],
|
||||
[False, False, False, False, False]])
|
||||
"""
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
|
||||
max_len = lengths.max()
|
||||
n = lengths.size(0)
|
||||
|
||||
expaned_lengths = torch.arange(max_len).expand(n, max_len).to(lengths)
|
||||
|
||||
return expaned_lengths >= lengths.unsqueeze(1)
|
||||
|
@ -22,9 +22,12 @@ import torch
|
||||
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
add_eos,
|
||||
add_sos,
|
||||
encode_supervisions,
|
||||
get_env_info,
|
||||
get_texts,
|
||||
make_pad_mask,
|
||||
)
|
||||
|
||||
|
||||
@ -130,3 +133,35 @@ def test_attribute_dict():
|
||||
def test_get_env_info():
|
||||
s = get_env_info()
|
||||
print(s)
|
||||
|
||||
|
||||
def test_makd_pad_mask():
|
||||
lengths = torch.tensor([1, 3, 2])
|
||||
mask = make_pad_mask(lengths)
|
||||
expected = torch.tensor(
|
||||
[
|
||||
[False, True, True],
|
||||
[False, False, False],
|
||||
[False, False, True],
|
||||
]
|
||||
)
|
||||
assert torch.all(torch.eq(mask, expected))
|
||||
assert (~expected).sum() == lengths.sum()
|
||||
|
||||
|
||||
def test_add_sos():
|
||||
sos_id = 100
|
||||
ragged = k2.RaggedTensor([[1, 2], [3], [0]])
|
||||
sos_ragged = add_sos(ragged, sos_id)
|
||||
expected = k2.RaggedTensor([[sos_id, 1, 2], [sos_id, 3], [sos_id, 0]])
|
||||
assert str(sos_ragged) == str(expected)
|
||||
|
||||
|
||||
def test_add_eos():
|
||||
eos_id = 30
|
||||
ragged = k2.RaggedTensor([[1, 2], [3], [], [5, 8, 9]])
|
||||
ragged_eos = add_eos(ragged, eos_id)
|
||||
expected = k2.RaggedTensor(
|
||||
[[1, 2, eos_id], [3, eos_id], [eos_id], [5, 8, 9, eos_id]]
|
||||
)
|
||||
assert str(ragged_eos) == str(expected)
|
||||
|
Loading…
x
Reference in New Issue
Block a user