update results

This commit is contained in:
marcoyang 2022-11-02 17:24:53 +08:00
parent 63d0a52dbd
commit 86662f0b97

View File

@ -101,6 +101,7 @@ The WERs are:
|-------------------------------------|------------|------------|-------------------------|
| greedy search (max sym per frame 1) | 2.78 | 7.36 | --iter 468000 --avg 16 |
| modified_beam_search | 2.73 | 7.15 | --iter 468000 --avg 16 |
| modified_beam_search + RNNLM shallow fusion | 2.42 | 6.46 | --iter 468000 --avg 16 |
| fast_beam_search | 2.76 | 7.31 | --iter 468000 --avg 16 |
| greedy search (max sym per frame 1) | 2.77 | 7.35 | --iter 472000 --avg 18 |
| modified_beam_search | 2.75 | 7.08 | --iter 472000 --avg 18 |
@ -155,6 +156,27 @@ for m in greedy_search fast_beam_search modified_beam_search; do
done
```
To decode with RNNLM shallow fusion, use the following decoding command. A well-trained RNNLM
can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
for iter in 472000; do
for avg in 8 10 12 14 16 18; do
./lstm_transducer_stateless2/decode.py \
--iter $iter \
--avg $avg \
--exp-dir ./lstm_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
--beam 4 \
--rnn-lm-scale 0.3 \
--rnn-lm-exp-dir /path/to/RNNLM \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1
done
done
Pretrained models, training logs, decoding logs, and decoding results
are available at
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03>
@ -1311,6 +1333,7 @@ layers (24 v.s 12) but a narrower model (1536 feedforward dim and 384 encoder di
|-------------------------------------|------------|------------|-----------------------------------------|
| greedy search (max sym per frame 1) | 2.54 | 5.72 | --epoch 30 --avg 10 --max-duration 600 |
| modified beam search | 2.47 | 5.71 | --epoch 30 --avg 10 --max-duration 600 |
| modified beam search + RNNLM shallow fusion | 2.27 | 5.24 | --epoch 30 --avg 10 --max-duration 600 |
| fast beam search | 2.5 | 5.72 | --epoch 30 --avg 10 --max-duration 600 |
```bash
@ -1356,6 +1379,36 @@ for method in greedy_search modified_beam_search fast_beam_search; do
done
```
To decode with RNNLM shallow fusion, use the following decoding command. A well-trained RNNLM
can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
```bash
for method in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch 30 \
--avg 10 \
--exp-dir ./pruned_transducer_stateless5/exp-B \
--max-duration 600 \
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
--max-sym-per-frame 1 \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512 \
--use-averaged-model True
--beam 4 \
--max-contexts 4 \
--rnn-lm-scale 0.4 \
--rnn-lm-exp-dir /path/to/RNNLM/exp \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1
done
```
You can find a pretrained model, training logs, decoding logs, and decoding
results at:
<https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless5-B-2022-07-07>