diff --git a/README.md b/README.md index 298feca2e..51c0cee32 100644 --- a/README.md +++ b/README.md @@ -39,9 +39,10 @@ and [TDNN LSTM CTC model][LibriSpeech_tdnn_lstm_ctc]. The best WER we currently have is: -||test-clean|test-other| -|--|--|--| -|WER| 2.57% | 5.94% | +| | test-clean | test-other | +|-----|------------|------------| +| WER | 2.42 | 5.73 | + We provide a Colab notebook to run a pre-trained conformer CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing) @@ -49,9 +50,9 @@ We provide a Colab notebook to run a pre-trained conformer CTC model: [![Open In The WER for this model is: -||test-clean|test-other| -|--|--|--| -|WER| 6.59% | 17.69% | +| | test-clean | test-other | +|-----|------------|------------| +| WER | 6.59 | 17.69 | We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing) diff --git a/egs/librispeech/ASR/RESULTS.md b/egs/librispeech/ASR/RESULTS.md index d7229f6b0..8d7c867c0 100644 --- a/egs/librispeech/ASR/RESULTS.md +++ b/egs/librispeech/ASR/RESULTS.md @@ -33,7 +33,8 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3" --world-size 4 \ --bucketing-sampler 1 \ --start-epoch 0 \ - --num-epochs 80 + --num-epochs 90 +# Note: It trains for 90 epochs, but the best WER is at epoch-77.pt ``` and the following command for decoding @@ -55,6 +56,9 @@ and the following command for decoding You can find the pre-trained model by visiting +The tensorboard log for training is available at + + #### 2021-08-19 (Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/13