Apply random frame shift along the time axis.

This commit is contained in:
Fangjun Kuang 2022-02-07 12:09:26 +08:00
parent 35ecd7e562
commit 8653b6a68a
4 changed files with 200 additions and 2 deletions

View File

@ -19,7 +19,9 @@ import argparse
import logging
from functools import lru_cache
from pathlib import Path
from typing import Callable, List, Optional
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
from lhotse.dataset import (
BucketingSampler,
@ -179,7 +181,27 @@ class LibriSpeechAsrDataModule:
"with training dataset. ",
)
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
def train_dataloaders(
self,
cuts_train: CutSet,
extra_input_transforms: Optional[
List[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]
],
) -> DataLoader:
"""
Args:
cuts_train:
The cutset for training.
extra_input_transforms:
The extra input transforms that will be applied after all input
transforms, e.g., after SpecAugment if there is any.
Each input transform accepts two input arguments:
- A 3-D torch.Tensor of shape (N, T, C)
- A 2-D torch.Tensor of shape (num_seqs, 3), where the
first column is `sequence_idx`, the second column is
`start_frame`, and the third column is `num_frames`.
and returns a 3-D torch.Tensor of shape (N, T, C).
"""
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(
self.args.manifest_dir / "cuts_musan.json.gz"
@ -228,6 +250,10 @@ class LibriSpeechAsrDataModule:
else:
logging.info("Disable SpecAugment")
if extra_input_transforms is not None:
input_transforms += extra_input_transforms
logging.info(f"Input transforms: {input_transforms}")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,

View File

@ -0,0 +1,84 @@
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from lhotse.utils import LOG_EPSILON
def apply_frame_shift(
features: torch.Tensor,
supervision_segments: torch.Tensor,
) -> torch.Tensor:
"""Apply random frame shift along the time axis.
For instance, for the input frame `[a, b, c, d]`,
- If frame shift is 0, the resulting output is `[a, b, c, d]`
- If frame shift is -1, the resulting output is `[b, c, d, a]`
- If frame shift is 1, the resulting output is `[d, a, b, c]`
- If frame shift is 2, the resulting output is `[c, d, a, b]`
Args:
features:
A 3-D tensor of shape (N, T, C).
supervision_segments:
A 2-D tensor of shape (num_seqs, 3). The first column is
`sequence_idx`, the second column is `start_frame`, and
the third column is `num_frames`.
Returns:
Return a 3-D tensor of shape (N, T, C).
"""
# We assume the subsampling_factor is 4. If you change the
# subsampling_factor, you should also change the following
# list accordingly
#
# The value in frame_shifts is selected in such a way that
# "value % subsampling_factor" is not duplicated in frame_shifts.
frame_shifts = [-1, 0, 1, 2]
N = features.size(0)
# We don't support cut concatenation here
assert torch.all(
torch.eq(supervision_segments[:, 0], torch.arange(N))
), supervision_segments
ans = []
for i in range(N):
start = supervision_segments[i, 1]
end = start + supervision_segments[i, 2]
feat = features[i, start:end, :]
r = torch.randint(low=0, high=len(frame_shifts), size=(1,)).item()
frame_shift = frame_shifts[r]
# You can enable the following debug statement
# and run ./transducer_stateless/test_frame_shift.py to
# view the debug output.
# print("frame_shift", frame_shift)
feat = torch.roll(feat, shifts=frame_shift, dims=0)
ans.append(feat)
ans = torch.nn.utils.rnn.pad_sequence(
ans,
batch_first=True,
padding_value=LOG_EPSILON,
)
assert features.shape == ans.shape
return ans

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer_stateless/test_frame_shift.py
"""
import torch
from frame_shift import apply_frame_shift
def test_apply_frame_shift():
features = torch.tensor(
[
[
[1, 2, 5],
[2, 6, 9],
[3, 0, 2],
[4, 11, 13],
[0, 0, 0],
[0, 0, 0],
],
[
[1, 3, 9],
[2, 5, 8],
[3, 3, 6],
[4, 0, 3],
[5, 1, 2],
[6, 6, 6],
],
]
)
supervision_segments = torch.tensor(
[
[0, 0, 4],
[1, 0, 6],
],
dtype=torch.int32,
)
shifted_features = apply_frame_shift(features, supervision_segments)
# You can enable the debug statement in frame_shift.py
# and check the resulting shifted_features. I've verified
# manually that it is correct.
print(shifted_features)
def main():
test_apply_frame_shift()
if __name__ == "__main__":
main()

View File

@ -46,6 +46,7 @@ import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from conformer import Conformer
from decoder import Decoder
from frame_shift import apply_frame_shift
from joiner import Joiner
from lhotse.cut import Cut
from lhotse.utils import fix_random_seed
@ -138,6 +139,13 @@ def get_parser():
"2 means tri-gram",
)
parser.add_argument(
"--apply-frame-shift",
type=str2bool,
default=False,
help="If enabled, apply random frame shift along the time axis",
)
return parser
@ -620,7 +628,17 @@ def run(rank, world_size, args):
logging.info(f"After removing short and long utterances: {num_left}")
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
train_dl = librispeech.train_dataloaders(train_cuts)
if params.apply_frame_shift:
logging.info("Enable random frame shift")
extra_input_transforms = [apply_frame_shift]
else:
logging.info("Disable random frame shift")
extra_input_transforms = None
train_dl = librispeech.train_dataloaders(
train_cuts,
extra_input_transforms=extra_input_transforms,
)
valid_cuts = librispeech.dev_clean_cuts()
valid_cuts += librispeech.dev_other_cuts()