mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-05 15:14:18 +00:00
replace some py files with symlink
This commit is contained in:
parent
fbeca54fa9
commit
85cfd412e2
@ -1,159 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This script takes as input lang_dir and generates HLG from
|
|
||||||
|
|
||||||
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
|
||||||
- L, the lexicon, built from lang_dir/L_disambig.pt
|
|
||||||
|
|
||||||
Caution: We use a lexicon that contains disambiguation symbols
|
|
||||||
|
|
||||||
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
|
||||||
|
|
||||||
The generated HLG is saved in $lang_dir/HLG.pt
|
|
||||||
"""
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from icefall.lexicon import Lexicon
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
lang_dir:
|
|
||||||
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
|
||||||
|
|
||||||
Return:
|
|
||||||
An FSA representing HLG.
|
|
||||||
"""
|
|
||||||
lexicon = Lexicon(lang_dir)
|
|
||||||
max_token_id = max(lexicon.tokens)
|
|
||||||
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
|
||||||
H = k2.ctc_topo(max_token_id)
|
|
||||||
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
|
||||||
|
|
||||||
if Path("data/lm/G_3_gram.pt").is_file():
|
|
||||||
logging.info("Loading pre-compiled G_3_gram")
|
|
||||||
d = torch.load("data/lm/G_3_gram.pt")
|
|
||||||
G = k2.Fsa.from_dict(d)
|
|
||||||
else:
|
|
||||||
logging.info("Loading G_3_gram.fst.txt")
|
|
||||||
with open("data/lm/G_3_gram.fst.txt") as f:
|
|
||||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
|
||||||
torch.save(G.as_dict(), "data/lm/G_3_gram.pt")
|
|
||||||
|
|
||||||
first_token_disambig_id = lexicon.token_table["#0"]
|
|
||||||
first_word_disambig_id = lexicon.word_table["#0"]
|
|
||||||
|
|
||||||
L = k2.arc_sort(L)
|
|
||||||
G = k2.arc_sort(G)
|
|
||||||
|
|
||||||
logging.info("Intersecting L and G")
|
|
||||||
LG = k2.compose(L, G)
|
|
||||||
logging.info(f"LG shape: {LG.shape}")
|
|
||||||
|
|
||||||
logging.info("Connecting LG")
|
|
||||||
LG = k2.connect(LG)
|
|
||||||
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
|
||||||
|
|
||||||
logging.info(type(LG.aux_labels))
|
|
||||||
logging.info("Determinizing LG")
|
|
||||||
|
|
||||||
LG = k2.determinize(LG)
|
|
||||||
logging.info(type(LG.aux_labels))
|
|
||||||
|
|
||||||
logging.info("Connecting LG after k2.determinize")
|
|
||||||
LG = k2.connect(LG)
|
|
||||||
|
|
||||||
logging.info("Removing disambiguation symbols on LG")
|
|
||||||
|
|
||||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
|
||||||
# See https://github.com/k2-fsa/k2/issues/874
|
|
||||||
# for why we need to set LG.properties to None
|
|
||||||
LG.__dict__["_properties"] = None
|
|
||||||
|
|
||||||
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
|
||||||
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
|
||||||
|
|
||||||
LG = k2.remove_epsilon(LG)
|
|
||||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
|
||||||
|
|
||||||
LG = k2.connect(LG)
|
|
||||||
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
|
||||||
|
|
||||||
logging.info("Arc sorting LG")
|
|
||||||
LG = k2.arc_sort(LG)
|
|
||||||
|
|
||||||
logging.info("Composing H and LG")
|
|
||||||
# CAUTION: The name of the inner_labels is fixed
|
|
||||||
# to `tokens`. If you want to change it, please
|
|
||||||
# also change other places in icefall that are using
|
|
||||||
# it.
|
|
||||||
HLG = k2.compose(H, LG, inner_labels="tokens")
|
|
||||||
|
|
||||||
logging.info("Connecting LG")
|
|
||||||
HLG = k2.connect(HLG)
|
|
||||||
|
|
||||||
logging.info("Arc sorting LG")
|
|
||||||
HLG = k2.arc_sort(HLG)
|
|
||||||
logging.info(f"HLG.shape: {HLG.shape}")
|
|
||||||
|
|
||||||
return HLG
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
|
|
||||||
if (lang_dir / "HLG.pt").is_file():
|
|
||||||
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
logging.info(f"Processing {lang_dir}")
|
|
||||||
|
|
||||||
HLG = compile_HLG(lang_dir)
|
|
||||||
logging.info(f"Saving HLG.pt to {lang_dir}")
|
|
||||||
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = (
|
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/local/compile_hlg.py
Symbolic link
1
egs/tedlium3/ASR/local/compile_hlg.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compile_hlg.py
|
@ -1,97 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This file computes fbank features of the musan dataset.
|
|
||||||
It looks for manifests in the directory data/manifests.
|
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig, combine
|
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
|
||||||
|
|
||||||
from icefall.utils import get_executor
|
|
||||||
|
|
||||||
# Torch's multithreaded behavior needs to be disabled or
|
|
||||||
# it wastes a lot of CPU and slow things down.
|
|
||||||
# Do this outside of main() in case it needs to take effect
|
|
||||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank_musan():
|
|
||||||
src_dir = Path("data/manifests")
|
|
||||||
output_dir = Path("data/fbank")
|
|
||||||
num_jobs = min(15, os.cpu_count())
|
|
||||||
num_mel_bins = 80
|
|
||||||
|
|
||||||
dataset_parts = (
|
|
||||||
"music",
|
|
||||||
"speech",
|
|
||||||
"noise",
|
|
||||||
)
|
|
||||||
manifests = read_manifests_if_cached(
|
|
||||||
dataset_parts=dataset_parts, output_dir=src_dir
|
|
||||||
)
|
|
||||||
assert manifests is not None
|
|
||||||
|
|
||||||
musan_cuts_path = output_dir / "cuts_musan.json.gz"
|
|
||||||
|
|
||||||
if musan_cuts_path.is_file():
|
|
||||||
logging.info(f"{musan_cuts_path} already exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
logging.info("Extracting features for Musan")
|
|
||||||
|
|
||||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
|
||||||
|
|
||||||
with get_executor() as ex: # Initialize the executor only once.
|
|
||||||
# create chunks of Musan with duration 5 - 10 seconds
|
|
||||||
musan_cuts = (
|
|
||||||
CutSet.from_manifests(
|
|
||||||
recordings=combine(
|
|
||||||
part["recordings"] for part in manifests.values()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
.cut_into_windows(10.0)
|
|
||||||
.filter(lambda c: c.duration > 5)
|
|
||||||
.compute_and_store_features(
|
|
||||||
extractor=extractor,
|
|
||||||
storage_path=f"{output_dir}/feats_musan",
|
|
||||||
num_jobs=num_jobs if ex is None else 80,
|
|
||||||
executor=ex,
|
|
||||||
storage_type=ChunkedLilcomHdf5Writer,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
musan_cuts.to_json(musan_cuts_path)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = (
|
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
compute_fbank_musan()
|
|
1
egs/tedlium3/ASR/local/compute_fbank_musan.py
Symbolic link
1
egs/tedlium3/ASR/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compute_fbank_musan.py
|
@ -1,107 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
|
|
||||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
||||||
"""
|
|
||||||
Convert a transcript file containing words to a corpus file containing tokens
|
|
||||||
for LM training with the help of a lexicon.
|
|
||||||
|
|
||||||
If the lexicon contains phones, the resulting LM will be a phone LM; If the
|
|
||||||
lexicon contains word pieces, the resulting LM will be a word piece LM.
|
|
||||||
|
|
||||||
If a word has multiple pronunciations, the one that appears first in the lexicon
|
|
||||||
is kept; others are removed.
|
|
||||||
|
|
||||||
If the input transcript is:
|
|
||||||
|
|
||||||
hello zoo world hello
|
|
||||||
world zoo
|
|
||||||
foo zoo world hellO
|
|
||||||
|
|
||||||
and if the lexicon is
|
|
||||||
|
|
||||||
<UNK> SPN
|
|
||||||
hello h e l l o 2
|
|
||||||
hello h e l l o
|
|
||||||
world w o r l d
|
|
||||||
zoo z o o
|
|
||||||
|
|
||||||
Then the output is
|
|
||||||
|
|
||||||
h e l l o 2 z o o w o r l d h e l l o 2
|
|
||||||
w o r l d z o o
|
|
||||||
SPN z o o w o r l d SPN
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List
|
|
||||||
|
|
||||||
from generate_unique_lexicon import filter_multiple_pronunications
|
|
||||||
|
|
||||||
from icefall.lexicon import read_lexicon
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--transcript",
|
|
||||||
type=str,
|
|
||||||
help="The input transcript file."
|
|
||||||
"We assume that the transcript file consists of "
|
|
||||||
"lines. Each line consists of space separated words.",
|
|
||||||
)
|
|
||||||
parser.add_argument("--lexicon", type=str, help="The input lexicon file.")
|
|
||||||
parser.add_argument(
|
|
||||||
"--oov", type=str, default="<UNK>", help="The OOV word."
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def process_line(
|
|
||||||
lexicon: Dict[str, List[str]], line: str, oov_token: str
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
A dict containing pronunciations. Its keys are words and values
|
|
||||||
are pronunciations (i.e., tokens).
|
|
||||||
line:
|
|
||||||
A line of transcript consisting of space(s) separated words.
|
|
||||||
oov_token:
|
|
||||||
The pronunciation of the oov word if a word in `line` is not present
|
|
||||||
in the lexicon.
|
|
||||||
Returns:
|
|
||||||
Return None.
|
|
||||||
"""
|
|
||||||
s = ""
|
|
||||||
words = line.strip().split()
|
|
||||||
for i, w in enumerate(words):
|
|
||||||
tokens = lexicon.get(w, oov_token)
|
|
||||||
s += " ".join(tokens)
|
|
||||||
s += " "
|
|
||||||
print(s.strip())
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
assert Path(args.lexicon).is_file()
|
|
||||||
assert Path(args.transcript).is_file()
|
|
||||||
assert len(args.oov) > 0
|
|
||||||
|
|
||||||
# Only the first pronunciation of a word is kept
|
|
||||||
lexicon = filter_multiple_pronunications(read_lexicon(args.lexicon))
|
|
||||||
|
|
||||||
lexicon = dict(lexicon)
|
|
||||||
|
|
||||||
assert args.oov in lexicon
|
|
||||||
|
|
||||||
oov_token = lexicon[args.oov]
|
|
||||||
|
|
||||||
with open(args.transcript) as f:
|
|
||||||
for line in f:
|
|
||||||
process_line(lexicon=lexicon, line=line, oov_token=oov_token)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/local/convert_transcript_words_to_tokens.py
Symbolic link
1
egs/tedlium3/ASR/local/convert_transcript_words_to_tokens.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/convert_transcript_words_to_tokens.py
|
105
egs/tedlium3/ASR/local/display_manifest_statistics.py
Normal file → Executable file
105
egs/tedlium3/ASR/local/display_manifest_statistics.py
Normal file → Executable file
@ -21,66 +21,73 @@ This file displays duration statistics of utterances in a manifest.
|
|||||||
You can use the displayed value to choose minimum/maximum duration
|
You can use the displayed value to choose minimum/maximum duration
|
||||||
to remove short and long utterances during the training.
|
to remove short and long utterances during the training.
|
||||||
|
|
||||||
See the function `remove_short_and_long_utt()` in transducer/train.py
|
See the function `remove_short_and_long_utt()`
|
||||||
|
in ../../../librispeech/ASR/transducer/train.py
|
||||||
for usage.
|
for usage.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from lhotse import load_manifest
|
from lhotse import load_manifest
|
||||||
|
|
||||||
|
|
||||||
def describe(cuts) -> None:
|
|
||||||
"""
|
|
||||||
Print a message describing details about the ``CutSet`` - the number
|
|
||||||
of cuts and the duration statistics, including the total duration
|
|
||||||
and the percentage of speech segments.
|
|
||||||
|
|
||||||
Example output:
|
|
||||||
Cuts count: 804789
|
|
||||||
Total duration (hours): 1370.6
|
|
||||||
***
|
|
||||||
Duration statistics (seconds):
|
|
||||||
mean 6.1
|
|
||||||
std 3.1
|
|
||||||
min 0.5
|
|
||||||
25% 3.7
|
|
||||||
50% 6.0
|
|
||||||
75% 8.3
|
|
||||||
99.5% 14.9
|
|
||||||
99.9% 16.6
|
|
||||||
max 33.3
|
|
||||||
"""
|
|
||||||
durations = np.array([c.duration for c in cuts])
|
|
||||||
speech_durations = np.array(
|
|
||||||
[s.duration for c in cuts for s in c.trimmed_supervisions]
|
|
||||||
)
|
|
||||||
total_sum = durations.sum()
|
|
||||||
speech_sum = speech_durations.sum()
|
|
||||||
fraction = "{:.1%}".format(speech_sum / total_sum)
|
|
||||||
print("Cuts count:", len(cuts))
|
|
||||||
print(f"Total duration (hours): {total_sum / 3600:.1f}")
|
|
||||||
print(f"Speech duration (hours): {speech_sum / 3600:.1f} {fraction}")
|
|
||||||
print("***")
|
|
||||||
print("Duration statistics (seconds):")
|
|
||||||
print(f"mean\t{np.mean(durations):.1f}")
|
|
||||||
print(f"std\t{np.std(durations):.1f}")
|
|
||||||
print(f"min\t{np.min(durations):.1f}")
|
|
||||||
print(f"25%\t{np.percentile(durations, 25):.1f}")
|
|
||||||
print(f"50%\t{np.median(durations):.1f}")
|
|
||||||
print(f"75%\t{np.percentile(durations, 75):.1f}")
|
|
||||||
print(f"99.5%\t{np.percentile(durations, 99.5):.1f}")
|
|
||||||
print(f"99.9%\t{np.percentile(durations, 99.9):.1f}")
|
|
||||||
print(f"max\t{np.max(durations):.1f}")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
path = "./data/fbank/cuts_train.json.gz"
|
path = "./data/fbank/cuts_train.json.gz"
|
||||||
# path = "./data/fbank/cuts_dev.json.gz"
|
path = "./data/fbank/cuts_dev.json.gz"
|
||||||
# path = "./data/fbank/cuts_test.json.gz"
|
path = "./data/fbank/cuts_test.json.gz"
|
||||||
|
|
||||||
cuts = load_manifest(path)
|
cuts = load_manifest(path)
|
||||||
describe(cuts)
|
cuts.describe()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
||||||
|
"""
|
||||||
|
## train
|
||||||
|
Cuts count: 804789
|
||||||
|
Total duration (hours): 1370.6
|
||||||
|
Speech duration (hours): 1370.6 (100.0%)
|
||||||
|
***
|
||||||
|
Duration statistics (seconds):
|
||||||
|
mean 6.1
|
||||||
|
std 3.1
|
||||||
|
min 0.5
|
||||||
|
25% 3.7
|
||||||
|
50% 6.0
|
||||||
|
75% 8.3
|
||||||
|
99.5% 14.9
|
||||||
|
99.9% 16.6
|
||||||
|
max 33.3
|
||||||
|
|
||||||
|
## dev
|
||||||
|
Cuts count: 507
|
||||||
|
Total duration (hours): 1.6
|
||||||
|
Speech duration (hours): 1.6 (100.0%)
|
||||||
|
***
|
||||||
|
Duration statistics (seconds):
|
||||||
|
mean 11.3
|
||||||
|
std 5.7
|
||||||
|
min 0.5
|
||||||
|
25% 7.5
|
||||||
|
50% 10.6
|
||||||
|
75% 14.4
|
||||||
|
99.5% 29.8
|
||||||
|
99.9% 37.7
|
||||||
|
max 39.9
|
||||||
|
|
||||||
|
## test
|
||||||
|
Cuts count: 1155
|
||||||
|
Total duration (hours): 2.6
|
||||||
|
Speech duration (hours): 2.6 (100.0%)
|
||||||
|
***
|
||||||
|
Duration statistics (seconds):
|
||||||
|
mean 8.2
|
||||||
|
std 4.3
|
||||||
|
min 0.3
|
||||||
|
25% 4.6
|
||||||
|
50% 8.2
|
||||||
|
75% 10.9
|
||||||
|
99.5% 22.1
|
||||||
|
99.9% 26.7
|
||||||
|
max 32.5
|
||||||
|
"""
|
||||||
|
@ -1,100 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""
|
|
||||||
This file takes as input a lexicon.txt and output a new lexicon,
|
|
||||||
in which each word has a unique pronunciation.
|
|
||||||
|
|
||||||
The way to do this is to keep only the first pronunciation of a word
|
|
||||||
in lexicon.txt.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import List, Tuple
|
|
||||||
|
|
||||||
from icefall.lexicon import read_lexicon, write_lexicon
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain a file lexicon.txt.
|
|
||||||
This file will generate a new file uniq_lexicon.txt
|
|
||||||
in it.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def filter_multiple_pronunications(
|
|
||||||
lexicon: List[Tuple[str, List[str]]]
|
|
||||||
) -> List[Tuple[str, List[str]]]:
|
|
||||||
"""Remove multiple pronunciations of words from a lexicon.
|
|
||||||
|
|
||||||
If a word has more than one pronunciation in the lexicon, only
|
|
||||||
the first one is kept, while other pronunciations are removed
|
|
||||||
from the lexicon.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
The input lexicon, containing a list of (word, [p1, p2, ..., pn]),
|
|
||||||
where "p1, p2, ..., pn" are the pronunciations of the "word".
|
|
||||||
Returns:
|
|
||||||
Return a new lexicon where each word has a unique pronunciation.
|
|
||||||
"""
|
|
||||||
seen = set()
|
|
||||||
ans = []
|
|
||||||
|
|
||||||
for word, tokens in lexicon:
|
|
||||||
if word in seen:
|
|
||||||
continue
|
|
||||||
seen.add(word)
|
|
||||||
ans.append((word, tokens))
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
|
|
||||||
lexicon_filename = lang_dir / "lexicon.txt"
|
|
||||||
|
|
||||||
in_lexicon = read_lexicon(lexicon_filename)
|
|
||||||
|
|
||||||
out_lexicon = filter_multiple_pronunications(in_lexicon)
|
|
||||||
|
|
||||||
write_lexicon(lang_dir / "uniq_lexicon.txt", out_lexicon)
|
|
||||||
|
|
||||||
logging.info(f"Number of entries in lexicon.txt: {len(in_lexicon)}")
|
|
||||||
logging.info(f"Number of entries in uniq_lexicon.txt: {len(out_lexicon)}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = (
|
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/local/generate_unique_lexicon.py
Symbolic link
1
egs/tedlium3/ASR/local/generate_unique_lexicon.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/generate_unique_lexicon.py
|
@ -1,413 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
|
||||||
consisting of words and tokens (i.e., phones) and does the following:
|
|
||||||
|
|
||||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
|
||||||
|
|
||||||
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
|
||||||
|
|
||||||
3. Generate words.txt, the word table mapping a word to a unique integer.
|
|
||||||
|
|
||||||
4. Generate L.pt, in k2 format. It can be loaded by
|
|
||||||
|
|
||||||
d = torch.load("L.pt")
|
|
||||||
lexicon = k2.Fsa.from_dict(d)
|
|
||||||
|
|
||||||
5. Generate L_disambig.pt, in k2 format.
|
|
||||||
"""
|
|
||||||
import argparse
|
|
||||||
import math
|
|
||||||
from collections import defaultdict
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Dict, List, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from icefall.lexicon import read_lexicon, write_lexicon
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
Lexicon = List[Tuple[str, List[str]]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain a file lexicon.txt.
|
|
||||||
Generated files by this script are saved into this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--debug",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True for debugging, which will generate
|
|
||||||
a visualization of the lexicon FST.
|
|
||||||
|
|
||||||
Caution: If your lexicon contains hundreds of thousands
|
|
||||||
of lines, please set it to False!
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
|
||||||
"""Write a symbol to ID mapping to a file.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
No need to implement `read_mapping` as it can be done
|
|
||||||
through :func:`k2.SymbolTable.from_file`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename:
|
|
||||||
Filename to save the mapping.
|
|
||||||
sym2id:
|
|
||||||
A dict mapping symbols to IDs.
|
|
||||||
Returns:
|
|
||||||
Return None.
|
|
||||||
"""
|
|
||||||
with open(filename, "w", encoding="utf-8") as f:
|
|
||||||
for sym, i in sym2id.items():
|
|
||||||
f.write(f"{sym} {i}\n")
|
|
||||||
|
|
||||||
|
|
||||||
def get_tokens(lexicon: Lexicon) -> List[str]:
|
|
||||||
"""Get tokens from a lexicon.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is the return value of :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a list of unique tokens.
|
|
||||||
"""
|
|
||||||
ans = set()
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
ans.update(tokens)
|
|
||||||
sorted_ans = sorted(list(ans))
|
|
||||||
return sorted_ans
|
|
||||||
|
|
||||||
|
|
||||||
def get_words(lexicon: Lexicon) -> List[str]:
|
|
||||||
"""Get words from a lexicon.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is the return value of :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a list of unique words.
|
|
||||||
"""
|
|
||||||
ans = set()
|
|
||||||
for word, _ in lexicon:
|
|
||||||
ans.add(word)
|
|
||||||
sorted_ans = sorted(list(ans))
|
|
||||||
return sorted_ans
|
|
||||||
|
|
||||||
|
|
||||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
|
||||||
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
|
||||||
at the ends of tokens to ensure that all pronunciations are different,
|
|
||||||
and that none is a prefix of another.
|
|
||||||
|
|
||||||
See also add_lex_disambig.pl from kaldi.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is returned by :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a tuple with two elements:
|
|
||||||
|
|
||||||
- The output lexicon with disambiguation symbols
|
|
||||||
- The ID of the max disambiguation symbol that appears
|
|
||||||
in the lexicon
|
|
||||||
"""
|
|
||||||
|
|
||||||
# (1) Work out the count of each token-sequence in the
|
|
||||||
# lexicon.
|
|
||||||
count = defaultdict(int)
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
count[" ".join(tokens)] += 1
|
|
||||||
|
|
||||||
# (2) For each left sub-sequence of each token-sequence, note down
|
|
||||||
# that it exists (for identifying prefixes of longer strings).
|
|
||||||
issubseq = defaultdict(int)
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
tokens = tokens.copy()
|
|
||||||
tokens.pop()
|
|
||||||
while tokens:
|
|
||||||
issubseq[" ".join(tokens)] = 1
|
|
||||||
tokens.pop()
|
|
||||||
|
|
||||||
# (3) For each entry in the lexicon:
|
|
||||||
# if the token sequence is unique and is not a
|
|
||||||
# prefix of another word, no disambig symbol.
|
|
||||||
# Else output #1, or #2, #3, ... if the same token-seq
|
|
||||||
# has already been assigned a disambig symbol.
|
|
||||||
ans = []
|
|
||||||
|
|
||||||
# We start with #1 since #0 has its own purpose
|
|
||||||
first_allowed_disambig = 1
|
|
||||||
max_disambig = first_allowed_disambig - 1
|
|
||||||
last_used_disambig_symbol_of = defaultdict(int)
|
|
||||||
|
|
||||||
for word, tokens in lexicon:
|
|
||||||
tokenseq = " ".join(tokens)
|
|
||||||
assert tokenseq != ""
|
|
||||||
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
|
||||||
ans.append((word, tokens))
|
|
||||||
continue
|
|
||||||
|
|
||||||
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
|
||||||
if cur_disambig == 0:
|
|
||||||
cur_disambig = first_allowed_disambig
|
|
||||||
else:
|
|
||||||
cur_disambig += 1
|
|
||||||
|
|
||||||
if cur_disambig > max_disambig:
|
|
||||||
max_disambig = cur_disambig
|
|
||||||
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
|
||||||
tokenseq += f" #{cur_disambig}"
|
|
||||||
ans.append((word, tokenseq.split()))
|
|
||||||
return ans, max_disambig
|
|
||||||
|
|
||||||
|
|
||||||
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
|
||||||
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
symbols:
|
|
||||||
A list of unique symbols.
|
|
||||||
Returns:
|
|
||||||
A dict containing the mapping between symbols and IDs.
|
|
||||||
"""
|
|
||||||
return {sym: i for i, sym in enumerate(symbols)}
|
|
||||||
|
|
||||||
|
|
||||||
def add_self_loops(
|
|
||||||
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
|
||||||
) -> List[List[Any]]:
|
|
||||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
|
||||||
through it. They are added on each state with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state.
|
|
||||||
|
|
||||||
See also fstaddselfloops.pl from Kaldi. One difference is that
|
|
||||||
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
|
||||||
This function uses k2 style FSTs and it does not need to add self-loops
|
|
||||||
to the final state.
|
|
||||||
|
|
||||||
The input label of a self-loop is `disambig_token`, while the output
|
|
||||||
label is `disambig_word`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
arcs:
|
|
||||||
A list-of-list. The sublist contains
|
|
||||||
`[src_state, dest_state, label, aux_label, score]`
|
|
||||||
disambig_token:
|
|
||||||
It is the token ID of the symbol `#0`.
|
|
||||||
disambig_word:
|
|
||||||
It is the word ID of the symbol `#0`.
|
|
||||||
|
|
||||||
Return:
|
|
||||||
Return new `arcs` containing self-loops.
|
|
||||||
"""
|
|
||||||
states_needs_self_loops = set()
|
|
||||||
for arc in arcs:
|
|
||||||
src, dst, ilabel, olabel, score = arc
|
|
||||||
if olabel != 0:
|
|
||||||
states_needs_self_loops.add(src)
|
|
||||||
|
|
||||||
ans = []
|
|
||||||
for s in states_needs_self_loops:
|
|
||||||
ans.append([s, s, disambig_token, disambig_word, 0])
|
|
||||||
|
|
||||||
return arcs + ans
|
|
||||||
|
|
||||||
|
|
||||||
def lexicon_to_fst(
|
|
||||||
lexicon: Lexicon,
|
|
||||||
token2id: Dict[str, int],
|
|
||||||
word2id: Dict[str, int],
|
|
||||||
sil_token: str = "SIL",
|
|
||||||
sil_prob: float = 0.5,
|
|
||||||
need_self_loops: bool = False,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
|
||||||
the beginning and end of each word.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
The input lexicon. See also :func:`read_lexicon`
|
|
||||||
token2id:
|
|
||||||
A dict mapping tokens to IDs.
|
|
||||||
word2id:
|
|
||||||
A dict mapping words to IDs.
|
|
||||||
sil_token:
|
|
||||||
The silence token.
|
|
||||||
sil_prob:
|
|
||||||
The probability for adding a silence at the beginning and end
|
|
||||||
of the word.
|
|
||||||
need_self_loops:
|
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state. The input label for this
|
|
||||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
|
||||||
Returns:
|
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
|
||||||
"""
|
|
||||||
assert sil_prob > 0.0 and sil_prob < 1.0
|
|
||||||
# CAUTION: we use score, i.e, negative cost.
|
|
||||||
sil_score = math.log(sil_prob)
|
|
||||||
no_sil_score = math.log(1.0 - sil_prob)
|
|
||||||
|
|
||||||
start_state = 0
|
|
||||||
loop_state = 1 # words enter and leave from here
|
|
||||||
sil_state = 2 # words terminate here when followed by silence; this state
|
|
||||||
# has a silence transition to loop_state.
|
|
||||||
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
|
||||||
arcs = []
|
|
||||||
|
|
||||||
assert token2id["<eps>"] == 0
|
|
||||||
assert word2id["<eps>"] == 0
|
|
||||||
|
|
||||||
eps = 0
|
|
||||||
|
|
||||||
sil_token = token2id[sil_token]
|
|
||||||
|
|
||||||
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
|
||||||
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
|
||||||
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
|
||||||
|
|
||||||
for word, tokens in lexicon:
|
|
||||||
assert len(tokens) > 0, f"{word} has no pronunciations"
|
|
||||||
cur_state = loop_state
|
|
||||||
|
|
||||||
word = word2id[word]
|
|
||||||
tokens = [token2id[i] for i in tokens]
|
|
||||||
|
|
||||||
for i in range(len(tokens) - 1):
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
|
||||||
next_state += 1
|
|
||||||
|
|
||||||
# now for the last token of this word
|
|
||||||
# It has two out-going arcs, one to the loop state,
|
|
||||||
# the other one to the sil_state.
|
|
||||||
i = len(tokens) - 1
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
|
||||||
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
|
||||||
|
|
||||||
if need_self_loops:
|
|
||||||
disambig_token = token2id["#0"]
|
|
||||||
disambig_word = word2id["#0"]
|
|
||||||
arcs = add_self_loops(
|
|
||||||
arcs,
|
|
||||||
disambig_token=disambig_token,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
|
||||||
|
|
||||||
final_state = next_state
|
|
||||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
|
||||||
arcs.append([final_state])
|
|
||||||
|
|
||||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
|
||||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
|
||||||
arcs = [" ".join(arc) for arc in arcs]
|
|
||||||
arcs = "\n".join(arcs)
|
|
||||||
|
|
||||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
|
||||||
return fsa
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
lexicon_filename = lang_dir / "lexicon.txt"
|
|
||||||
sil_token = "SIL"
|
|
||||||
sil_prob = 0.5
|
|
||||||
|
|
||||||
lexicon = read_lexicon(lexicon_filename)
|
|
||||||
tokens = get_tokens(lexicon)
|
|
||||||
words = get_words(lexicon)
|
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
|
||||||
|
|
||||||
for i in range(max_disambig + 1):
|
|
||||||
disambig = f"#{i}"
|
|
||||||
assert disambig not in tokens
|
|
||||||
tokens.append(f"#{i}")
|
|
||||||
|
|
||||||
assert "<eps>" not in tokens
|
|
||||||
tokens = ["<eps>"] + tokens
|
|
||||||
|
|
||||||
assert "<eps>" not in words
|
|
||||||
assert "#0" not in words
|
|
||||||
assert "<s>" not in words
|
|
||||||
assert "</s>" not in words
|
|
||||||
|
|
||||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
|
||||||
|
|
||||||
token2id = generate_id_map(tokens)
|
|
||||||
word2id = generate_id_map(words)
|
|
||||||
|
|
||||||
write_mapping(lang_dir / "tokens.txt", token2id)
|
|
||||||
write_mapping(lang_dir / "words.txt", word2id)
|
|
||||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
|
||||||
|
|
||||||
L = lexicon_to_fst(
|
|
||||||
lexicon,
|
|
||||||
token2id=token2id,
|
|
||||||
word2id=word2id,
|
|
||||||
sil_token=sil_token,
|
|
||||||
sil_prob=sil_prob,
|
|
||||||
)
|
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst(
|
|
||||||
lexicon_disambig,
|
|
||||||
token2id=token2id,
|
|
||||||
word2id=word2id,
|
|
||||||
sil_token=sil_token,
|
|
||||||
sil_prob=sil_prob,
|
|
||||||
need_self_loops=True,
|
|
||||||
)
|
|
||||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
|
||||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
|
||||||
|
|
||||||
if args.debug:
|
|
||||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
|
||||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
L.labels_sym = labels_sym
|
|
||||||
L.aux_labels_sym = aux_labels_sym
|
|
||||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
|
||||||
|
|
||||||
L_disambig.labels_sym = labels_sym
|
|
||||||
L_disambig.aux_labels_sym = aux_labels_sym
|
|
||||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/local/prepare_lang.py
Symbolic link
1
egs/tedlium3/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang.py
|
@ -1,254 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
This script takes as input `lang_dir`, which should contain::
|
|
||||||
|
|
||||||
- lang_dir/bpe.model,
|
|
||||||
- lang_dir/words.txt
|
|
||||||
|
|
||||||
and generates the following files in the directory `lang_dir`:
|
|
||||||
|
|
||||||
- lexicon.txt
|
|
||||||
- lexicon_disambig.txt
|
|
||||||
- L.pt
|
|
||||||
- L_disambig.pt
|
|
||||||
- tokens.txt
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
from prepare_lang import (
|
|
||||||
Lexicon,
|
|
||||||
add_disambig_symbols,
|
|
||||||
add_self_loops,
|
|
||||||
write_lexicon,
|
|
||||||
write_mapping,
|
|
||||||
)
|
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def lexicon_to_fst_no_sil(
|
|
||||||
lexicon: Lexicon,
|
|
||||||
token2id: Dict[str, int],
|
|
||||||
word2id: Dict[str, int],
|
|
||||||
need_self_loops: bool = False,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""Convert a lexicon to an FST (in k2 format).
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
The input lexicon. See also :func:`read_lexicon`
|
|
||||||
token2id:
|
|
||||||
A dict mapping tokens to IDs.
|
|
||||||
word2id:
|
|
||||||
A dict mapping words to IDs.
|
|
||||||
need_self_loops:
|
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state. The input label for this
|
|
||||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
|
||||||
Returns:
|
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
|
||||||
"""
|
|
||||||
loop_state = 0 # words enter and leave from here
|
|
||||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
|
||||||
|
|
||||||
arcs = []
|
|
||||||
|
|
||||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
|
||||||
assert token2id["<blk>"] == 0
|
|
||||||
assert word2id["<eps>"] == 0
|
|
||||||
|
|
||||||
eps = 0
|
|
||||||
|
|
||||||
for word, pieces in lexicon:
|
|
||||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
|
||||||
cur_state = loop_state
|
|
||||||
|
|
||||||
word = word2id[word]
|
|
||||||
pieces = [token2id[i] for i in pieces]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
|
||||||
next_state += 1
|
|
||||||
|
|
||||||
# now for the last piece of this word
|
|
||||||
i = len(pieces) - 1
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
|
||||||
|
|
||||||
if need_self_loops:
|
|
||||||
disambig_token = token2id["#0"]
|
|
||||||
disambig_word = word2id["#0"]
|
|
||||||
arcs = add_self_loops(
|
|
||||||
arcs,
|
|
||||||
disambig_token=disambig_token,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
|
||||||
|
|
||||||
final_state = next_state
|
|
||||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
|
||||||
arcs.append([final_state])
|
|
||||||
|
|
||||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
|
||||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
|
||||||
arcs = [" ".join(arc) for arc in arcs]
|
|
||||||
arcs = "\n".join(arcs)
|
|
||||||
|
|
||||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
|
||||||
return fsa
|
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
|
||||||
model_file: str, words: List[str]
|
|
||||||
) -> Tuple[Lexicon, Dict[str, int]]:
|
|
||||||
"""Generate a lexicon from a BPE model.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model_file:
|
|
||||||
Path to a sentencepiece model.
|
|
||||||
words:
|
|
||||||
A list of strings representing words.
|
|
||||||
Returns:
|
|
||||||
Return a tuple with two elements:
|
|
||||||
- A dict whose keys are words and values are the corresponding
|
|
||||||
word pieces.
|
|
||||||
- A dict representing the token symbol, mapping from tokens to IDs.
|
|
||||||
"""
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(model_file))
|
|
||||||
|
|
||||||
words_pieces: List[List[str]] = sp.encode(words, out_type=str)
|
|
||||||
|
|
||||||
lexicon = []
|
|
||||||
for word, pieces in zip(words, words_pieces):
|
|
||||||
lexicon.append((word, pieces))
|
|
||||||
|
|
||||||
# The OOV word is <UNK>
|
|
||||||
lexicon.append(("<UNK>", [sp.id_to_piece(sp.unk_id())]))
|
|
||||||
|
|
||||||
token2id: Dict[str, int] = dict()
|
|
||||||
for i in range(sp.vocab_size()):
|
|
||||||
token2id[sp.id_to_piece(i)] = i
|
|
||||||
|
|
||||||
return lexicon, token2id
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain the bpe.model and words.txt
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--debug",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True for debugging, which will generate
|
|
||||||
a visualization of the lexicon FST.
|
|
||||||
|
|
||||||
Caution: If your lexicon contains hundreds of thousands
|
|
||||||
of lines, please set it to False!
|
|
||||||
|
|
||||||
See "test/test_bpe_lexicon.py" for usage.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
model_file = lang_dir / "bpe.model"
|
|
||||||
|
|
||||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
words = word_sym_table.symbols
|
|
||||||
|
|
||||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
|
|
||||||
for w in excluded:
|
|
||||||
if w in words:
|
|
||||||
words.remove(w)
|
|
||||||
|
|
||||||
lexicon, token_sym_table = generate_lexicon(model_file, words)
|
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
|
||||||
|
|
||||||
next_token_id = max(token_sym_table.values()) + 1
|
|
||||||
for i in range(max_disambig + 1):
|
|
||||||
disambig = f"#{i}"
|
|
||||||
assert disambig not in token_sym_table
|
|
||||||
token_sym_table[disambig] = next_token_id
|
|
||||||
next_token_id += 1
|
|
||||||
|
|
||||||
word_sym_table.add("#0")
|
|
||||||
word_sym_table.add("<s>")
|
|
||||||
word_sym_table.add("</s>")
|
|
||||||
|
|
||||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
|
||||||
|
|
||||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
|
||||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
|
||||||
|
|
||||||
L = lexicon_to_fst_no_sil(
|
|
||||||
lexicon,
|
|
||||||
token2id=token_sym_table,
|
|
||||||
word2id=word_sym_table,
|
|
||||||
)
|
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst_no_sil(
|
|
||||||
lexicon_disambig,
|
|
||||||
token2id=token_sym_table,
|
|
||||||
word2id=word_sym_table,
|
|
||||||
need_self_loops=True,
|
|
||||||
)
|
|
||||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
|
||||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
|
||||||
|
|
||||||
if args.debug:
|
|
||||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
|
||||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
L.labels_sym = labels_sym
|
|
||||||
L.aux_labels_sym = aux_labels_sym
|
|
||||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
|
||||||
|
|
||||||
L_disambig.labels_sym = labels_sym
|
|
||||||
L_disambig.aux_labels_sym = aux_labels_sym
|
|
||||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/tedlium3/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
@ -1,106 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
|
||||||
|
|
||||||
import os
|
|
||||||
import tempfile
|
|
||||||
|
|
||||||
import k2
|
|
||||||
from prepare_lang import (
|
|
||||||
add_disambig_symbols,
|
|
||||||
generate_id_map,
|
|
||||||
get_phones,
|
|
||||||
get_words,
|
|
||||||
lexicon_to_fst,
|
|
||||||
read_lexicon,
|
|
||||||
write_lexicon,
|
|
||||||
write_mapping,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon_file() -> str:
|
|
||||||
fd, filename = tempfile.mkstemp()
|
|
||||||
os.close(fd)
|
|
||||||
s = """
|
|
||||||
!SIL SIL
|
|
||||||
<SPOKEN_NOISE> SPN
|
|
||||||
<UNK> SPN
|
|
||||||
f f
|
|
||||||
a a
|
|
||||||
foo f o o
|
|
||||||
bar b a r
|
|
||||||
bark b a r k
|
|
||||||
food f o o d
|
|
||||||
food2 f o o d
|
|
||||||
fo f o
|
|
||||||
""".strip()
|
|
||||||
with open(filename, "w") as f:
|
|
||||||
f.write(s)
|
|
||||||
return filename
|
|
||||||
|
|
||||||
|
|
||||||
def test_read_lexicon(filename: str):
|
|
||||||
lexicon = read_lexicon(filename)
|
|
||||||
phones = get_phones(lexicon)
|
|
||||||
words = get_words(lexicon)
|
|
||||||
print(lexicon)
|
|
||||||
print(phones)
|
|
||||||
print(words)
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
|
||||||
print(lexicon_disambig)
|
|
||||||
print("max disambig:", f"#{max_disambig}")
|
|
||||||
|
|
||||||
phones = ["<eps>", "SIL", "SPN"] + phones
|
|
||||||
for i in range(max_disambig + 1):
|
|
||||||
phones.append(f"#{i}")
|
|
||||||
words = ["<eps>"] + words
|
|
||||||
|
|
||||||
phone2id = generate_id_map(phones)
|
|
||||||
word2id = generate_id_map(words)
|
|
||||||
|
|
||||||
print(phone2id)
|
|
||||||
print(word2id)
|
|
||||||
|
|
||||||
write_mapping("phones.txt", phone2id)
|
|
||||||
write_mapping("words.txt", word2id)
|
|
||||||
|
|
||||||
write_lexicon("a.txt", lexicon)
|
|
||||||
write_lexicon("a_disambig.txt", lexicon_disambig)
|
|
||||||
|
|
||||||
fsa = lexicon_to_fst(lexicon, phone2id=phone2id, word2id=word2id)
|
|
||||||
fsa.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
|
||||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
|
||||||
fsa.draw("L.pdf", title="L")
|
|
||||||
|
|
||||||
fsa_disambig = lexicon_to_fst(
|
|
||||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
|
||||||
)
|
|
||||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
|
||||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
|
||||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
filename = generate_lexicon_file()
|
|
||||||
test_read_lexicon(filename)
|
|
||||||
os.remove(filename)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/local/test_prepare_lang.py
Symbolic link
1
egs/tedlium3/ASR/local/test_prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/test_prepare_lang.py
|
@ -1,98 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# You can install sentencepiece via:
|
|
||||||
#
|
|
||||||
# pip install sentencepiece
|
|
||||||
#
|
|
||||||
# Due to an issue reported in
|
|
||||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
||||||
#
|
|
||||||
# Please install a version >=0.1.96
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain the training corpus: transcript_words.txt.
|
|
||||||
The generated bpe.model is saved to this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--transcript",
|
|
||||||
type=str,
|
|
||||||
help="Training transcript.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--vocab-size",
|
|
||||||
type=int,
|
|
||||||
help="Vocabulary size for BPE training",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
vocab_size = args.vocab_size
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
|
|
||||||
model_type = "unigram"
|
|
||||||
|
|
||||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
|
||||||
train_text = args.transcript
|
|
||||||
character_coverage = 1.0
|
|
||||||
input_sentence_size = 100000000
|
|
||||||
|
|
||||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
||||||
unk_id = len(user_defined_symbols)
|
|
||||||
# Note: unk_id is fixed to 2.
|
|
||||||
# If you change it, you should also change other
|
|
||||||
# places that are using it.
|
|
||||||
|
|
||||||
model_file = Path(model_prefix + ".model")
|
|
||||||
if not model_file.is_file():
|
|
||||||
spm.SentencePieceTrainer.train(
|
|
||||||
input=train_text,
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
model_type=model_type,
|
|
||||||
model_prefix=model_prefix,
|
|
||||||
input_sentence_size=input_sentence_size,
|
|
||||||
character_coverage=character_coverage,
|
|
||||||
user_defined_symbols=user_defined_symbols,
|
|
||||||
unk_id=unk_id,
|
|
||||||
bos_id=-1,
|
|
||||||
eos_id=-1,
|
|
||||||
)
|
|
||||||
|
|
||||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/local/train_bpe_model.py
Symbolic link
1
egs/tedlium3/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/train_bpe_model.py
|
@ -1,920 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import math
|
|
||||||
import warnings
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import Tensor, nn
|
|
||||||
from transformer import Transformer
|
|
||||||
|
|
||||||
from icefall.utils import make_pad_mask
|
|
||||||
|
|
||||||
|
|
||||||
class Conformer(Transformer):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
num_features (int): Number of input features
|
|
||||||
output_dim (int): Number of output dimension
|
|
||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
|
||||||
d_model (int): attention dimension
|
|
||||||
nhead (int): number of head
|
|
||||||
dim_feedforward (int): feedforward dimention
|
|
||||||
num_encoder_layers (int): number of encoder layers
|
|
||||||
dropout (float): dropout rate
|
|
||||||
cnn_module_kernel (int): Kernel size of convolution module
|
|
||||||
normalize_before (bool): whether to use layer_norm before the first block.
|
|
||||||
vgg_frontend (bool): whether to use vgg frontend.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
num_features: int,
|
|
||||||
output_dim: int,
|
|
||||||
subsampling_factor: int = 4,
|
|
||||||
d_model: int = 256,
|
|
||||||
nhead: int = 4,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
num_encoder_layers: int = 12,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
cnn_module_kernel: int = 31,
|
|
||||||
normalize_before: bool = True,
|
|
||||||
vgg_frontend: bool = False,
|
|
||||||
) -> None:
|
|
||||||
super(Conformer, self).__init__(
|
|
||||||
num_features=num_features,
|
|
||||||
output_dim=output_dim,
|
|
||||||
subsampling_factor=subsampling_factor,
|
|
||||||
d_model=d_model,
|
|
||||||
nhead=nhead,
|
|
||||||
dim_feedforward=dim_feedforward,
|
|
||||||
num_encoder_layers=num_encoder_layers,
|
|
||||||
dropout=dropout,
|
|
||||||
normalize_before=normalize_before,
|
|
||||||
vgg_frontend=vgg_frontend,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
|
||||||
|
|
||||||
encoder_layer = ConformerEncoderLayer(
|
|
||||||
d_model,
|
|
||||||
nhead,
|
|
||||||
dim_feedforward,
|
|
||||||
dropout,
|
|
||||||
cnn_module_kernel,
|
|
||||||
normalize_before,
|
|
||||||
)
|
|
||||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
|
||||||
self.normalize_before = normalize_before
|
|
||||||
if self.normalize_before:
|
|
||||||
self.after_norm = nn.LayerNorm(d_model)
|
|
||||||
else:
|
|
||||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
|
||||||
# and throws an error without this change.
|
|
||||||
self.after_norm = identity
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
|
||||||
x_lens:
|
|
||||||
A tensor of shape (batch_size,) containing the number of frames in
|
|
||||||
`x` before padding.
|
|
||||||
Returns:
|
|
||||||
Return a tuple containing 2 tensors:
|
|
||||||
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
|
||||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
|
||||||
of frames in `logits` before padding.
|
|
||||||
"""
|
|
||||||
x = self.encoder_embed(x)
|
|
||||||
x, pos_emb = self.encoder_pos(x)
|
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
||||||
|
|
||||||
# Caution: We assume the subsampling factor is 4!
|
|
||||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
|
||||||
assert x.size(0) == lengths.max().item()
|
|
||||||
mask = make_pad_mask(lengths)
|
|
||||||
|
|
||||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
|
|
||||||
|
|
||||||
if self.normalize_before:
|
|
||||||
x = self.after_norm(x)
|
|
||||||
|
|
||||||
logits = self.encoder_output_layer(x)
|
|
||||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
||||||
|
|
||||||
return logits, lengths
|
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoderLayer(nn.Module):
|
|
||||||
"""
|
|
||||||
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
|
||||||
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
|
||||||
|
|
||||||
Args:
|
|
||||||
d_model: the number of expected features in the input (required).
|
|
||||||
nhead: the number of heads in the multiheadattention models (required).
|
|
||||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
|
||||||
dropout: the dropout value (default=0.1).
|
|
||||||
cnn_module_kernel (int): Kernel size of convolution module.
|
|
||||||
normalize_before: whether to use layer_norm before the first block.
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
||||||
>>> src = torch.rand(10, 32, 512)
|
|
||||||
>>> pos_emb = torch.rand(32, 19, 512)
|
|
||||||
>>> out = encoder_layer(src, pos_emb)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model: int,
|
|
||||||
nhead: int,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
cnn_module_kernel: int = 31,
|
|
||||||
normalize_before: bool = True,
|
|
||||||
) -> None:
|
|
||||||
super(ConformerEncoderLayer, self).__init__()
|
|
||||||
self.self_attn = RelPositionMultiheadAttention(
|
|
||||||
d_model, nhead, dropout=0.0
|
|
||||||
)
|
|
||||||
|
|
||||||
self.feed_forward = nn.Sequential(
|
|
||||||
nn.Linear(d_model, dim_feedforward),
|
|
||||||
Swish(),
|
|
||||||
nn.Dropout(dropout),
|
|
||||||
nn.Linear(dim_feedforward, d_model),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.feed_forward_macaron = nn.Sequential(
|
|
||||||
nn.Linear(d_model, dim_feedforward),
|
|
||||||
Swish(),
|
|
||||||
nn.Dropout(dropout),
|
|
||||||
nn.Linear(dim_feedforward, d_model),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
|
||||||
|
|
||||||
self.norm_ff_macaron = nn.LayerNorm(
|
|
||||||
d_model
|
|
||||||
) # for the macaron style FNN module
|
|
||||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
|
||||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
|
||||||
|
|
||||||
self.ff_scale = 0.5
|
|
||||||
|
|
||||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
|
||||||
self.norm_final = nn.LayerNorm(
|
|
||||||
d_model
|
|
||||||
) # for the final output of the block
|
|
||||||
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
self.normalize_before = normalize_before
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
src_mask: Optional[Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tensor:
|
|
||||||
"""
|
|
||||||
Pass the input through the encoder layer.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
src: the sequence to the encoder layer (required).
|
|
||||||
pos_emb: Positional embedding tensor (required).
|
|
||||||
src_mask: the mask for the src sequence (optional).
|
|
||||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
src: (S, N, E).
|
|
||||||
pos_emb: (N, 2*S-1, E)
|
|
||||||
src_mask: (S, S).
|
|
||||||
src_key_padding_mask: (N, S).
|
|
||||||
S is the source sequence length, N is the batch size, E is the feature number
|
|
||||||
"""
|
|
||||||
|
|
||||||
# macaron style feed forward module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_ff_macaron(src)
|
|
||||||
src = residual + self.ff_scale * self.dropout(
|
|
||||||
self.feed_forward_macaron(src)
|
|
||||||
)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_ff_macaron(src)
|
|
||||||
|
|
||||||
# multi-headed self-attention module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_mha(src)
|
|
||||||
src_att = self.self_attn(
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
pos_emb=pos_emb,
|
|
||||||
attn_mask=src_mask,
|
|
||||||
key_padding_mask=src_key_padding_mask,
|
|
||||||
)[0]
|
|
||||||
src = residual + self.dropout(src_att)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_mha(src)
|
|
||||||
|
|
||||||
# convolution module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_conv(src)
|
|
||||||
src = residual + self.dropout(self.conv_module(src))
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_conv(src)
|
|
||||||
|
|
||||||
# feed forward module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_ff(src)
|
|
||||||
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_ff(src)
|
|
||||||
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_final(src)
|
|
||||||
|
|
||||||
return src
|
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoder(nn.TransformerEncoder):
|
|
||||||
r"""ConformerEncoder is a stack of N encoder layers
|
|
||||||
|
|
||||||
Args:
|
|
||||||
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
|
||||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
|
||||||
norm: the layer normalization component (optional).
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
||||||
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
|
||||||
>>> src = torch.rand(10, 32, 512)
|
|
||||||
>>> pos_emb = torch.rand(32, 19, 512)
|
|
||||||
>>> out = conformer_encoder(src, pos_emb)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
|
||||||
) -> None:
|
|
||||||
super(ConformerEncoder, self).__init__(
|
|
||||||
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
mask: Optional[Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tensor:
|
|
||||||
r"""Pass the input through the encoder layers in turn.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
src: the sequence to the encoder (required).
|
|
||||||
pos_emb: Positional embedding tensor (required).
|
|
||||||
mask: the mask for the src sequence (optional).
|
|
||||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
src: (S, N, E).
|
|
||||||
pos_emb: (N, 2*S-1, E)
|
|
||||||
mask: (S, S).
|
|
||||||
src_key_padding_mask: (N, S).
|
|
||||||
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
|
||||||
|
|
||||||
"""
|
|
||||||
output = src
|
|
||||||
|
|
||||||
for mod in self.layers:
|
|
||||||
output = mod(
|
|
||||||
output,
|
|
||||||
pos_emb,
|
|
||||||
src_mask=mask,
|
|
||||||
src_key_padding_mask=src_key_padding_mask,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.norm is not None:
|
|
||||||
output = self.norm(output)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class RelPositionalEncoding(torch.nn.Module):
|
|
||||||
"""Relative positional encoding module.
|
|
||||||
|
|
||||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
||||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
|
||||||
|
|
||||||
Args:
|
|
||||||
d_model: Embedding dimension.
|
|
||||||
dropout_rate: Dropout rate.
|
|
||||||
max_len: Maximum input length.
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
|
||||||
) -> None:
|
|
||||||
"""Construct an PositionalEncoding object."""
|
|
||||||
super(RelPositionalEncoding, self).__init__()
|
|
||||||
self.d_model = d_model
|
|
||||||
self.xscale = math.sqrt(self.d_model)
|
|
||||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
|
||||||
self.pe = None
|
|
||||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
|
||||||
|
|
||||||
def extend_pe(self, x: Tensor) -> None:
|
|
||||||
"""Reset the positional encodings."""
|
|
||||||
if self.pe is not None:
|
|
||||||
# self.pe contains both positive and negative parts
|
|
||||||
# the length of self.pe is 2 * input_len - 1
|
|
||||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
|
||||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
|
||||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
|
||||||
x.device
|
|
||||||
):
|
|
||||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
|
||||||
return
|
|
||||||
# Suppose `i` means to the position of query vecotr and `j` means the
|
|
||||||
# position of key vector. We use position relative positions when keys
|
|
||||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
|
||||||
pe_positive = torch.zeros(x.size(1), self.d_model)
|
|
||||||
pe_negative = torch.zeros(x.size(1), self.d_model)
|
|
||||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
|
||||||
div_term = torch.exp(
|
|
||||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
|
||||||
* -(math.log(10000.0) / self.d_model)
|
|
||||||
)
|
|
||||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
|
||||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
|
||||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
|
||||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
|
||||||
|
|
||||||
# Reserve the order of positive indices and concat both positive and
|
|
||||||
# negative indices. This is used to support the shifting trick
|
|
||||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
||||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
|
||||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
|
||||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
|
||||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
|
||||||
"""Add positional encoding.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
|
||||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
|
||||||
|
|
||||||
"""
|
|
||||||
self.extend_pe(x)
|
|
||||||
x = x * self.xscale
|
|
||||||
pos_emb = self.pe[
|
|
||||||
:,
|
|
||||||
self.pe.size(1) // 2
|
|
||||||
- x.size(1)
|
|
||||||
+ 1 : self.pe.size(1) // 2 # noqa E203
|
|
||||||
+ x.size(1),
|
|
||||||
]
|
|
||||||
return self.dropout(x), self.dropout(pos_emb)
|
|
||||||
|
|
||||||
|
|
||||||
class RelPositionMultiheadAttention(nn.Module):
|
|
||||||
r"""Multi-Head Attention layer with relative position encoding
|
|
||||||
|
|
||||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
||||||
|
|
||||||
Args:
|
|
||||||
embed_dim: total dimension of the model.
|
|
||||||
num_heads: parallel attention heads.
|
|
||||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
|
|
||||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
|
||||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
embed_dim: int,
|
|
||||||
num_heads: int,
|
|
||||||
dropout: float = 0.0,
|
|
||||||
) -> None:
|
|
||||||
super(RelPositionMultiheadAttention, self).__init__()
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.dropout = dropout
|
|
||||||
self.head_dim = embed_dim // num_heads
|
|
||||||
assert (
|
|
||||||
self.head_dim * num_heads == self.embed_dim
|
|
||||||
), "embed_dim must be divisible by num_heads"
|
|
||||||
|
|
||||||
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
|
||||||
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
|
||||||
|
|
||||||
# linear transformation for positional encoding.
|
|
||||||
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
|
||||||
# these two learnable bias are used in matrix c and matrix d
|
|
||||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
||||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
||||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
||||||
|
|
||||||
self._reset_parameters()
|
|
||||||
|
|
||||||
def _reset_parameters(self) -> None:
|
|
||||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
|
||||||
nn.init.constant_(self.in_proj.bias, 0.0)
|
|
||||||
nn.init.constant_(self.out_proj.bias, 0.0)
|
|
||||||
|
|
||||||
nn.init.xavier_uniform_(self.pos_bias_u)
|
|
||||||
nn.init.xavier_uniform_(self.pos_bias_v)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
query: Tensor,
|
|
||||||
key: Tensor,
|
|
||||||
value: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
key_padding_mask: Optional[Tensor] = None,
|
|
||||||
need_weights: bool = True,
|
|
||||||
attn_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
||||||
r"""
|
|
||||||
Args:
|
|
||||||
query, key, value: map a query and a set of key-value pairs to an output.
|
|
||||||
pos_emb: Positional embedding tensor
|
|
||||||
key_padding_mask: if provided, specified padding elements in the key will
|
|
||||||
be ignored by the attention. When given a binary mask and a value is True,
|
|
||||||
the corresponding value on the attention layer will be ignored. When given
|
|
||||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
|
||||||
layer will be ignored
|
|
||||||
need_weights: output attn_output_weights.
|
|
||||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
||||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
- Inputs:
|
|
||||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
||||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
|
||||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
|
||||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
||||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
||||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
||||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
|
||||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
||||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
||||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
||||||
is provided, it will be added to the attention weight.
|
|
||||||
|
|
||||||
- Outputs:
|
|
||||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
||||||
E is the embedding dimension.
|
|
||||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
||||||
L is the target sequence length, S is the source sequence length.
|
|
||||||
"""
|
|
||||||
return self.multi_head_attention_forward(
|
|
||||||
query,
|
|
||||||
key,
|
|
||||||
value,
|
|
||||||
pos_emb,
|
|
||||||
self.embed_dim,
|
|
||||||
self.num_heads,
|
|
||||||
self.in_proj.weight,
|
|
||||||
self.in_proj.bias,
|
|
||||||
self.dropout,
|
|
||||||
self.out_proj.weight,
|
|
||||||
self.out_proj.bias,
|
|
||||||
training=self.training,
|
|
||||||
key_padding_mask=key_padding_mask,
|
|
||||||
need_weights=need_weights,
|
|
||||||
attn_mask=attn_mask,
|
|
||||||
)
|
|
||||||
|
|
||||||
def rel_shift(self, x: Tensor) -> Tensor:
|
|
||||||
"""Compute relative positional encoding.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x: Input tensor (batch, head, time1, 2*time1-1).
|
|
||||||
time1 means the length of query vector.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor: tensor of shape (batch, head, time1, time2)
|
|
||||||
(note: time2 has the same value as time1, but it is for
|
|
||||||
the key, while time1 is for the query).
|
|
||||||
"""
|
|
||||||
(batch_size, num_heads, time1, n) = x.shape
|
|
||||||
assert n == 2 * time1 - 1
|
|
||||||
# Note: TorchScript requires explicit arg for stride()
|
|
||||||
batch_stride = x.stride(0)
|
|
||||||
head_stride = x.stride(1)
|
|
||||||
time1_stride = x.stride(2)
|
|
||||||
n_stride = x.stride(3)
|
|
||||||
return x.as_strided(
|
|
||||||
(batch_size, num_heads, time1, time1),
|
|
||||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
|
||||||
storage_offset=n_stride * (time1 - 1),
|
|
||||||
)
|
|
||||||
|
|
||||||
def multi_head_attention_forward(
|
|
||||||
self,
|
|
||||||
query: Tensor,
|
|
||||||
key: Tensor,
|
|
||||||
value: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
embed_dim_to_check: int,
|
|
||||||
num_heads: int,
|
|
||||||
in_proj_weight: Tensor,
|
|
||||||
in_proj_bias: Tensor,
|
|
||||||
dropout_p: float,
|
|
||||||
out_proj_weight: Tensor,
|
|
||||||
out_proj_bias: Tensor,
|
|
||||||
training: bool = True,
|
|
||||||
key_padding_mask: Optional[Tensor] = None,
|
|
||||||
need_weights: bool = True,
|
|
||||||
attn_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
||||||
r"""
|
|
||||||
Args:
|
|
||||||
query, key, value: map a query and a set of key-value pairs to an output.
|
|
||||||
pos_emb: Positional embedding tensor
|
|
||||||
embed_dim_to_check: total dimension of the model.
|
|
||||||
num_heads: parallel attention heads.
|
|
||||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
|
||||||
dropout_p: probability of an element to be zeroed.
|
|
||||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
|
||||||
training: apply dropout if is ``True``.
|
|
||||||
key_padding_mask: if provided, specified padding elements in the key will
|
|
||||||
be ignored by the attention. This is an binary mask. When the value is True,
|
|
||||||
the corresponding value on the attention layer will be filled with -inf.
|
|
||||||
need_weights: output attn_output_weights.
|
|
||||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
||||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
Inputs:
|
|
||||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
|
||||||
length, N is the batch size, E is the embedding dimension.
|
|
||||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
||||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
|
||||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
|
||||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
||||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
||||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
||||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
|
||||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
||||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
||||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
||||||
is provided, it will be added to the attention weight.
|
|
||||||
|
|
||||||
Outputs:
|
|
||||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
||||||
E is the embedding dimension.
|
|
||||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
||||||
L is the target sequence length, S is the source sequence length.
|
|
||||||
"""
|
|
||||||
|
|
||||||
tgt_len, bsz, embed_dim = query.size()
|
|
||||||
assert embed_dim == embed_dim_to_check
|
|
||||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
|
||||||
|
|
||||||
head_dim = embed_dim // num_heads
|
|
||||||
assert (
|
|
||||||
head_dim * num_heads == embed_dim
|
|
||||||
), "embed_dim must be divisible by num_heads"
|
|
||||||
scaling = float(head_dim) ** -0.5
|
|
||||||
|
|
||||||
if torch.equal(query, key) and torch.equal(key, value):
|
|
||||||
# self-attention
|
|
||||||
q, k, v = nn.functional.linear(
|
|
||||||
query, in_proj_weight, in_proj_bias
|
|
||||||
).chunk(3, dim=-1)
|
|
||||||
|
|
||||||
elif torch.equal(key, value):
|
|
||||||
# encoder-decoder attention
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = 0
|
|
||||||
_end = embed_dim
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
q = nn.functional.linear(query, _w, _b)
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim
|
|
||||||
_end = None
|
|
||||||
_w = in_proj_weight[_start:, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:]
|
|
||||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
|
||||||
|
|
||||||
else:
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = 0
|
|
||||||
_end = embed_dim
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
q = nn.functional.linear(query, _w, _b)
|
|
||||||
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim
|
|
||||||
_end = embed_dim * 2
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
k = nn.functional.linear(key, _w, _b)
|
|
||||||
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim * 2
|
|
||||||
_end = None
|
|
||||||
_w = in_proj_weight[_start:, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:]
|
|
||||||
v = nn.functional.linear(value, _w, _b)
|
|
||||||
|
|
||||||
if attn_mask is not None:
|
|
||||||
assert (
|
|
||||||
attn_mask.dtype == torch.float32
|
|
||||||
or attn_mask.dtype == torch.float64
|
|
||||||
or attn_mask.dtype == torch.float16
|
|
||||||
or attn_mask.dtype == torch.uint8
|
|
||||||
or attn_mask.dtype == torch.bool
|
|
||||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
|
||||||
attn_mask.dtype
|
|
||||||
)
|
|
||||||
if attn_mask.dtype == torch.uint8:
|
|
||||||
warnings.warn(
|
|
||||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
|
||||||
)
|
|
||||||
attn_mask = attn_mask.to(torch.bool)
|
|
||||||
|
|
||||||
if attn_mask.dim() == 2:
|
|
||||||
attn_mask = attn_mask.unsqueeze(0)
|
|
||||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
|
||||||
raise RuntimeError(
|
|
||||||
"The size of the 2D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
elif attn_mask.dim() == 3:
|
|
||||||
if list(attn_mask.size()) != [
|
|
||||||
bsz * num_heads,
|
|
||||||
query.size(0),
|
|
||||||
key.size(0),
|
|
||||||
]:
|
|
||||||
raise RuntimeError(
|
|
||||||
"The size of the 3D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise RuntimeError(
|
|
||||||
"attn_mask's dimension {} is not supported".format(
|
|
||||||
attn_mask.dim()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# attn_mask's dim is 3 now.
|
|
||||||
|
|
||||||
# convert ByteTensor key_padding_mask to bool
|
|
||||||
if (
|
|
||||||
key_padding_mask is not None
|
|
||||||
and key_padding_mask.dtype == torch.uint8
|
|
||||||
):
|
|
||||||
warnings.warn(
|
|
||||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
|
||||||
)
|
|
||||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
|
||||||
|
|
||||||
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
|
||||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
|
||||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
|
||||||
|
|
||||||
src_len = k.size(0)
|
|
||||||
|
|
||||||
if key_padding_mask is not None:
|
|
||||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
|
||||||
key_padding_mask.size(0), bsz
|
|
||||||
)
|
|
||||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
|
||||||
key_padding_mask.size(1), src_len
|
|
||||||
)
|
|
||||||
|
|
||||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
|
||||||
|
|
||||||
pos_emb_bsz = pos_emb.size(0)
|
|
||||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
|
||||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
|
||||||
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
|
||||||
|
|
||||||
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
|
||||||
1, 2
|
|
||||||
) # (batch, head, time1, d_k)
|
|
||||||
|
|
||||||
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
|
||||||
1, 2
|
|
||||||
) # (batch, head, time1, d_k)
|
|
||||||
|
|
||||||
# compute attention score
|
|
||||||
# first compute matrix a and matrix c
|
|
||||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
||||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
|
||||||
matrix_ac = torch.matmul(
|
|
||||||
q_with_bias_u, k
|
|
||||||
) # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
# compute matrix b and matrix d
|
|
||||||
matrix_bd = torch.matmul(
|
|
||||||
q_with_bias_v, p.transpose(-2, -1)
|
|
||||||
) # (batch, head, time1, 2*time1-1)
|
|
||||||
matrix_bd = self.rel_shift(matrix_bd)
|
|
||||||
|
|
||||||
attn_output_weights = (
|
|
||||||
matrix_ac + matrix_bd
|
|
||||||
) * scaling # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz * num_heads, tgt_len, -1
|
|
||||||
)
|
|
||||||
|
|
||||||
assert list(attn_output_weights.size()) == [
|
|
||||||
bsz * num_heads,
|
|
||||||
tgt_len,
|
|
||||||
src_len,
|
|
||||||
]
|
|
||||||
|
|
||||||
if attn_mask is not None:
|
|
||||||
if attn_mask.dtype == torch.bool:
|
|
||||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
|
||||||
else:
|
|
||||||
attn_output_weights += attn_mask
|
|
||||||
|
|
||||||
if key_padding_mask is not None:
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz, num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
attn_output_weights = attn_output_weights.masked_fill(
|
|
||||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
|
||||||
float("-inf"),
|
|
||||||
)
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz * num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
|
|
||||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
|
||||||
attn_output_weights = nn.functional.dropout(
|
|
||||||
attn_output_weights, p=dropout_p, training=training
|
|
||||||
)
|
|
||||||
|
|
||||||
attn_output = torch.bmm(attn_output_weights, v)
|
|
||||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
|
||||||
attn_output = (
|
|
||||||
attn_output.transpose(0, 1)
|
|
||||||
.contiguous()
|
|
||||||
.view(tgt_len, bsz, embed_dim)
|
|
||||||
)
|
|
||||||
attn_output = nn.functional.linear(
|
|
||||||
attn_output, out_proj_weight, out_proj_bias
|
|
||||||
)
|
|
||||||
|
|
||||||
if need_weights:
|
|
||||||
# average attention weights over heads
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz, num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
|
||||||
else:
|
|
||||||
return attn_output, None
|
|
||||||
|
|
||||||
|
|
||||||
class ConvolutionModule(nn.Module):
|
|
||||||
"""ConvolutionModule in Conformer model.
|
|
||||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
|
||||||
|
|
||||||
Args:
|
|
||||||
channels (int): The number of channels of conv layers.
|
|
||||||
kernel_size (int): Kernerl size of conv layers.
|
|
||||||
bias (bool): Whether to use bias in conv layers (default=True).
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, channels: int, kernel_size: int, bias: bool = True
|
|
||||||
) -> None:
|
|
||||||
"""Construct an ConvolutionModule object."""
|
|
||||||
super(ConvolutionModule, self).__init__()
|
|
||||||
# kernerl_size should be a odd number for 'SAME' padding
|
|
||||||
assert (kernel_size - 1) % 2 == 0
|
|
||||||
|
|
||||||
self.pointwise_conv1 = nn.Conv1d(
|
|
||||||
channels,
|
|
||||||
2 * channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
self.depthwise_conv = nn.Conv1d(
|
|
||||||
channels,
|
|
||||||
channels,
|
|
||||||
kernel_size,
|
|
||||||
stride=1,
|
|
||||||
padding=(kernel_size - 1) // 2,
|
|
||||||
groups=channels,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
self.norm = nn.LayerNorm(channels)
|
|
||||||
self.pointwise_conv2 = nn.Conv1d(
|
|
||||||
channels,
|
|
||||||
channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
self.activation = Swish()
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
"""Compute convolution module.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x: Input tensor (#time, batch, channels).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor: Output tensor (#time, batch, channels).
|
|
||||||
|
|
||||||
"""
|
|
||||||
# exchange the temporal dimension and the feature dimension
|
|
||||||
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
|
||||||
|
|
||||||
# GLU mechanism
|
|
||||||
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
|
||||||
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
|
||||||
|
|
||||||
# 1D Depthwise Conv
|
|
||||||
x = self.depthwise_conv(x)
|
|
||||||
# x is (batch, channels, time)
|
|
||||||
x = x.permute(0, 2, 1)
|
|
||||||
x = self.norm(x)
|
|
||||||
x = x.permute(0, 2, 1)
|
|
||||||
|
|
||||||
x = self.activation(x)
|
|
||||||
|
|
||||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
|
||||||
|
|
||||||
return x.permute(2, 0, 1)
|
|
||||||
|
|
||||||
|
|
||||||
class Swish(torch.nn.Module):
|
|
||||||
"""Construct an Swish object."""
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
"""Return Swich activation function."""
|
|
||||||
return x * torch.sigmoid(x)
|
|
||||||
|
|
||||||
|
|
||||||
def identity(x):
|
|
||||||
return x
|
|
1
egs/tedlium3/ASR/transducer_stateless/conformer.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/conformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/conformer.py
|
@ -1,43 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from typing import Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
|
|
||||||
class EncoderInterface(nn.Module):
|
|
||||||
def forward(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
A tensor of shape (batch_size, input_seq_len, num_features)
|
|
||||||
containing the input features.
|
|
||||||
x_lens:
|
|
||||||
A tensor of shape (batch_size,) containing the number of frames
|
|
||||||
in `x` before padding.
|
|
||||||
Returns:
|
|
||||||
Return a tuple containing two tensors:
|
|
||||||
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
|
||||||
containing unnormalized probabilities, i.e., the output of a
|
|
||||||
linear layer.
|
|
||||||
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
|
||||||
the number of frames in `encoder_out` before padding.
|
|
||||||
"""
|
|
||||||
raise NotImplementedError("Please implement it in a subclass")
|
|
1
egs/tedlium3/ASR/transducer_stateless/encoder_interface.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/encoder_interface.py
|
@ -1,249 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
#
|
|
||||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
# This script converts several saved checkpoints
|
|
||||||
# to a single one using model averaging.
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
./transducer_stateless/export.py \
|
|
||||||
--exp-dir ./transducer_stateless/exp \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
|
||||||
--epoch 20 \
|
|
||||||
--avg 10
|
|
||||||
|
|
||||||
It will generate a file exp_dir/pretrained.pt
|
|
||||||
|
|
||||||
To use the generated file with `transducer_stateless/decode.py`, you can do:
|
|
||||||
|
|
||||||
cd /path/to/exp_dir
|
|
||||||
ln -s pretrained.pt epoch-9999.pt
|
|
||||||
|
|
||||||
cd /path/to/egs/librispeech/ASR
|
|
||||||
./transducer_stateless/decode.py \
|
|
||||||
--exp-dir ./transducer_stateless/exp \
|
|
||||||
--epoch 9999 \
|
|
||||||
--avg 1 \
|
|
||||||
--max-duration 1 \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from conformer import Conformer
|
|
||||||
from decoder import Decoder
|
|
||||||
from joiner import Joiner
|
|
||||||
from model import Transducer
|
|
||||||
|
|
||||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.utils import AttributeDict, str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=20,
|
|
||||||
help="It specifies the checkpoint to use for decoding."
|
|
||||||
"Note: Epoch counts from 0.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=10,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch'. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="transducer_stateless/exp",
|
|
||||||
help="""It specifies the directory where all training related
|
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/bpe.model",
|
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--jit",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True to save a model after applying torch.jit.script.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_parser().parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
assert args.jit is False, "Support torchscript will be added later"
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> is defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
if params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if start >= 0:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
model.to("cpu")
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
if params.jit:
|
|
||||||
logging.info("Using torch.jit.script")
|
|
||||||
model = torch.jit.script(model)
|
|
||||||
filename = params.exp_dir / "cpu_jit.pt"
|
|
||||||
model.save(str(filename))
|
|
||||||
logging.info(f"Saved to {filename}")
|
|
||||||
else:
|
|
||||||
logging.info("Not using torch.jit.script")
|
|
||||||
# Save it using a format so that it can be loaded
|
|
||||||
# by :func:`load_checkpoint`
|
|
||||||
filename = params.exp_dir / "pretrained.pt"
|
|
||||||
torch.save({"model": model.state_dict()}, str(filename))
|
|
||||||
logging.info(f"Saved to {filename}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = (
|
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/transducer_stateless/export.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/export.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/export.py
|
@ -1,72 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
|
|
||||||
class Joiner(nn.Module):
|
|
||||||
def __init__(self, input_dim: int, output_dim: int):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.input_dim = input_dim
|
|
||||||
self.output_dim = output_dim
|
|
||||||
self.output_linear = nn.Linear(input_dim, output_dim)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
decoder_out: torch.Tensor,
|
|
||||||
encoder_out_len: torch.Tensor,
|
|
||||||
decoder_out_len: torch.Tensor,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, self.input_dim).
|
|
||||||
decoder_out:
|
|
||||||
Output from the decoder. Its shape is (N, U, self.input_dim).
|
|
||||||
Returns:
|
|
||||||
Return a tensor of shape (sum_all_TU, self.output_dim).
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == decoder_out.ndim == 3
|
|
||||||
assert encoder_out.size(0) == decoder_out.size(0)
|
|
||||||
assert encoder_out.size(2) == self.input_dim
|
|
||||||
assert decoder_out.size(2) == self.input_dim
|
|
||||||
|
|
||||||
N = encoder_out.size(0)
|
|
||||||
|
|
||||||
encoder_out_list = [
|
|
||||||
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
|
|
||||||
]
|
|
||||||
|
|
||||||
decoder_out_list = [
|
|
||||||
decoder_out[i, : decoder_out_len[i], :] for i in range(N)
|
|
||||||
]
|
|
||||||
|
|
||||||
x = [
|
|
||||||
e.unsqueeze(1) + d.unsqueeze(0)
|
|
||||||
for e, d in zip(encoder_out_list, decoder_out_list)
|
|
||||||
]
|
|
||||||
|
|
||||||
x = [p.reshape(-1, self.input_dim) for p in x]
|
|
||||||
x = torch.cat(x)
|
|
||||||
|
|
||||||
activations = torch.tanh(x)
|
|
||||||
|
|
||||||
logits = self.output_linear(activations)
|
|
||||||
|
|
||||||
return logits
|
|
1
egs/tedlium3/ASR/transducer_stateless/joiner.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/joiner.py
|
@ -1,143 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import random
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from encoder_interface import EncoderInterface
|
|
||||||
|
|
||||||
from icefall.utils import add_sos
|
|
||||||
|
|
||||||
|
|
||||||
class Transducer(nn.Module):
|
|
||||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
|
||||||
"Sequence Transduction with Recurrent Neural Networks"
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
encoder: EncoderInterface,
|
|
||||||
decoder: nn.Module,
|
|
||||||
joiner: nn.Module,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
encoder:
|
|
||||||
It is the transcription network in the paper. Its accepts
|
|
||||||
two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
|
|
||||||
It returns two tensors: `logits` of shape (N, T, C) and
|
|
||||||
`logit_lens` of shape (N,).
|
|
||||||
decoder:
|
|
||||||
It is the prediction network in the paper. Its input shape
|
|
||||||
is (N, U) and its output shape is (N, U, C). It should contain
|
|
||||||
one attribute: `blank_id`.
|
|
||||||
joiner:
|
|
||||||
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
|
||||||
output shape is (N, T, U, C). Note that its output contains
|
|
||||||
unnormalized probs, i.e., not processed by log-softmax.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
|
||||||
assert hasattr(decoder, "blank_id")
|
|
||||||
|
|
||||||
self.encoder = encoder
|
|
||||||
self.decoder = decoder
|
|
||||||
self.joiner = joiner
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
x: torch.Tensor,
|
|
||||||
x_lens: torch.Tensor,
|
|
||||||
y: k2.RaggedTensor,
|
|
||||||
modified_transducer_prob: float = 0.0,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
A 3-D tensor of shape (N, T, C).
|
|
||||||
x_lens:
|
|
||||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
||||||
before padding.
|
|
||||||
y:
|
|
||||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
|
||||||
utterance.
|
|
||||||
modified_transducer_prob:
|
|
||||||
The probability to use modified transducer loss.
|
|
||||||
Returns:
|
|
||||||
Return the transducer loss.
|
|
||||||
"""
|
|
||||||
assert x.ndim == 3, x.shape
|
|
||||||
assert x_lens.ndim == 1, x_lens.shape
|
|
||||||
assert y.num_axes == 2, y.num_axes
|
|
||||||
|
|
||||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
|
||||||
|
|
||||||
encoder_out, x_lens = self.encoder(x, x_lens)
|
|
||||||
assert torch.all(x_lens > 0)
|
|
||||||
|
|
||||||
# Now for the decoder, i.e., the prediction network
|
|
||||||
row_splits = y.shape.row_splits(1)
|
|
||||||
y_lens = row_splits[1:] - row_splits[:-1]
|
|
||||||
|
|
||||||
blank_id = self.decoder.blank_id
|
|
||||||
sos_y = add_sos(y, sos_id=blank_id)
|
|
||||||
|
|
||||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
|
||||||
sos_y_padded = sos_y_padded.to(torch.int64)
|
|
||||||
|
|
||||||
decoder_out = self.decoder(sos_y_padded)
|
|
||||||
|
|
||||||
# +1 here since a blank is prepended to each utterance.
|
|
||||||
logits = self.joiner(
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
decoder_out=decoder_out,
|
|
||||||
encoder_out_len=x_lens,
|
|
||||||
decoder_out_len=y_lens + 1,
|
|
||||||
)
|
|
||||||
|
|
||||||
# rnnt_loss requires 0 padded targets
|
|
||||||
# Note: y does not start with SOS
|
|
||||||
y_padded = y.pad(mode="constant", padding_value=0)
|
|
||||||
|
|
||||||
# We don't put this `import` at the beginning of the file
|
|
||||||
# as it is required only in the training, not during the
|
|
||||||
# reference stage
|
|
||||||
import optimized_transducer
|
|
||||||
|
|
||||||
assert 0 <= modified_transducer_prob <= 1
|
|
||||||
|
|
||||||
if modified_transducer_prob == 0:
|
|
||||||
one_sym_per_frame = False
|
|
||||||
elif random.random() < modified_transducer_prob:
|
|
||||||
# random.random() returns a float in the range [0, 1)
|
|
||||||
one_sym_per_frame = True
|
|
||||||
else:
|
|
||||||
one_sym_per_frame = False
|
|
||||||
|
|
||||||
loss = optimized_transducer.transducer_loss(
|
|
||||||
logits=logits,
|
|
||||||
targets=y_padded,
|
|
||||||
logit_lengths=x_lens,
|
|
||||||
target_lengths=y_lens,
|
|
||||||
blank=blank_id,
|
|
||||||
reduction="sum",
|
|
||||||
one_sym_per_frame=one_sym_per_frame,
|
|
||||||
from_log_softmax=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return loss
|
|
1
egs/tedlium3/ASR/transducer_stateless/model.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/model.py
|
@ -1,340 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
|
|
||||||
(1) greedy search
|
|
||||||
./transducer_stateless/pretrained.py \
|
|
||||||
--checkpoint ./transducer_stateless/exp/pretrained.pt \
|
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
||||||
--method greedy_search \
|
|
||||||
--max-sym-per-frame 1 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav \
|
|
||||||
|
|
||||||
(2) beam search
|
|
||||||
./transducer_stateless/pretrained.py \
|
|
||||||
--checkpoint ./transducer_stateless/exp/pretrained.pt \
|
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
||||||
--method beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav \
|
|
||||||
|
|
||||||
(3) modified beam search
|
|
||||||
./transducer_stateless/pretrained.py \
|
|
||||||
--checkpoint ./transducer_stateless/exp/pretrained.pt \
|
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
||||||
--method modified_beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav \
|
|
||||||
|
|
||||||
You can also use `./transducer_stateless/exp/epoch-xx.pt`.
|
|
||||||
|
|
||||||
Note: ./transducer_stateless/exp/pretrained.pt is generated by
|
|
||||||
./transducer_stateless/export.py
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import kaldifeat
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torchaudio
|
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
|
||||||
from conformer import Conformer
|
|
||||||
from decoder import Decoder
|
|
||||||
from joiner import Joiner
|
|
||||||
from model import Transducer
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
|
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--checkpoint",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to the checkpoint. "
|
|
||||||
"The checkpoint is assumed to be saved by "
|
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
help="""Path to bpe.model.
|
|
||||||
Used only when method is ctc-decoding.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Possible values are:
|
|
||||||
- greedy_search
|
|
||||||
- beam_search
|
|
||||||
- modified_beam_search
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"sound_files",
|
|
||||||
type=str,
|
|
||||||
nargs="+",
|
|
||||||
help="The input sound file(s) to transcribe. "
|
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
|
||||||
"For example, wav and flac are supported. "
|
|
||||||
"The sample rate has to be 16kHz.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam-size",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="Used only when --method is beam_search and modified_beam_search ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-sym-per-frame",
|
|
||||||
type=int,
|
|
||||||
default=3,
|
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
|
||||||
--method is greedy_search.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
"sample_rate": 16000,
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
|
||||||
filenames: List[str], expected_sample_rate: float
|
|
||||||
) -> List[torch.Tensor]:
|
|
||||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
||||||
Args:
|
|
||||||
filenames:
|
|
||||||
A list of sound filenames.
|
|
||||||
expected_sample_rate:
|
|
||||||
The expected sample rate of the sound files.
|
|
||||||
Returns:
|
|
||||||
Return a list of 1-D float32 torch tensors.
|
|
||||||
"""
|
|
||||||
ans = []
|
|
||||||
for f in filenames:
|
|
||||||
wave, sample_rate = torchaudio.load(f)
|
|
||||||
assert sample_rate == expected_sample_rate, (
|
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
|
||||||
f"Given: {sample_rate}"
|
|
||||||
)
|
|
||||||
# We use only the first channel
|
|
||||||
ans.append(wave[0])
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> is defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(f"{params}")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
logging.info("Creating model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
||||||
model.load_state_dict(checkpoint["model"], strict=False)
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
|
||||||
opts = kaldifeat.FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = params.sample_rate
|
|
||||||
opts.mel_opts.num_bins = params.feature_dim
|
|
||||||
|
|
||||||
fbank = kaldifeat.Fbank(opts)
|
|
||||||
|
|
||||||
logging.info(f"Reading sound files: {params.sound_files}")
|
|
||||||
waves = read_sound_files(
|
|
||||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
||||||
)
|
|
||||||
waves = [w.to(device) for w in waves]
|
|
||||||
|
|
||||||
logging.info("Decoding started")
|
|
||||||
features = fbank(waves)
|
|
||||||
feature_lengths = [f.size(0) for f in features]
|
|
||||||
|
|
||||||
features = pad_sequence(
|
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
|
||||||
x=features, x_lens=feature_lengths
|
|
||||||
)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
|
||||||
hyps = []
|
|
||||||
msg = f"Using {params.method}"
|
|
||||||
if params.method == "beam_search":
|
|
||||||
msg += f" with beam size {params.beam_size}"
|
|
||||||
logging.info(msg)
|
|
||||||
for i in range(num_waves):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.method == "greedy_search":
|
|
||||||
hyp = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp = modified_beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
|
||||||
|
|
||||||
hyps.append(sp.decode(hyp).split())
|
|
||||||
|
|
||||||
s = "\n"
|
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
|
||||||
words = " ".join(hyp)
|
|
||||||
s += f"{filename}:\n{words}\n\n"
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
logging.info("Decoding Done")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = (
|
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
1
egs/tedlium3/ASR/transducer_stateless/pretrained.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/pretrained.py
|
@ -1,161 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
|
|
||||||
class Conv2dSubsampling(nn.Module):
|
|
||||||
"""Convolutional 2D subsampling (to 1/4 length).
|
|
||||||
|
|
||||||
Convert an input of shape (N, T, idim) to an output
|
|
||||||
with shape (N, T', odim), where
|
|
||||||
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
|
||||||
|
|
||||||
It is based on
|
|
||||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, idim: int, odim: int) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
idim:
|
|
||||||
Input dim. The input shape is (N, T, idim).
|
|
||||||
Caution: It requires: T >=7, idim >=7
|
|
||||||
odim:
|
|
||||||
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
|
||||||
"""
|
|
||||||
assert idim >= 7
|
|
||||||
super().__init__()
|
|
||||||
self.conv = nn.Sequential(
|
|
||||||
nn.Conv2d(
|
|
||||||
in_channels=1, out_channels=odim, kernel_size=3, stride=2
|
|
||||||
),
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.Conv2d(
|
|
||||||
in_channels=odim, out_channels=odim, kernel_size=3, stride=2
|
|
||||||
),
|
|
||||||
nn.ReLU(),
|
|
||||||
)
|
|
||||||
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""Subsample x.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
Its shape is (N, T, idim).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
|
||||||
"""
|
|
||||||
# On entry, x is (N, T, idim)
|
|
||||||
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
|
||||||
x = self.conv(x)
|
|
||||||
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
|
|
||||||
b, c, t, f = x.size()
|
|
||||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
||||||
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class VggSubsampling(nn.Module):
|
|
||||||
"""Trying to follow the setup described in the following paper:
|
|
||||||
https://arxiv.org/pdf/1910.09799.pdf
|
|
||||||
|
|
||||||
This paper is not 100% explicit so I am guessing to some extent,
|
|
||||||
and trying to compare with other VGG implementations.
|
|
||||||
|
|
||||||
Convert an input of shape (N, T, idim) to an output
|
|
||||||
with shape (N, T', odim), where
|
|
||||||
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, idim: int, odim: int) -> None:
|
|
||||||
"""Construct a VggSubsampling object.
|
|
||||||
|
|
||||||
This uses 2 VGG blocks with 2 Conv2d layers each,
|
|
||||||
subsampling its input by a factor of 4 in the time dimensions.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
idim:
|
|
||||||
Input dim. The input shape is (N, T, idim).
|
|
||||||
Caution: It requires: T >=7, idim >=7
|
|
||||||
odim:
|
|
||||||
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
cur_channels = 1
|
|
||||||
layers = []
|
|
||||||
block_dims = [32, 64]
|
|
||||||
|
|
||||||
# The decision to use padding=1 for the 1st convolution, then padding=0
|
|
||||||
# for the 2nd and for the max-pooling, and ceil_mode=True, was driven by
|
|
||||||
# a back-compatibility concern so that the number of frames at the
|
|
||||||
# output would be equal to:
|
|
||||||
# (((T-1)//2)-1)//2.
|
|
||||||
# We can consider changing this by using padding=1 on the
|
|
||||||
# 2nd convolution, so the num-frames at the output would be T//4.
|
|
||||||
for block_dim in block_dims:
|
|
||||||
layers.append(
|
|
||||||
torch.nn.Conv2d(
|
|
||||||
in_channels=cur_channels,
|
|
||||||
out_channels=block_dim,
|
|
||||||
kernel_size=3,
|
|
||||||
padding=1,
|
|
||||||
stride=1,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
layers.append(torch.nn.ReLU())
|
|
||||||
layers.append(
|
|
||||||
torch.nn.Conv2d(
|
|
||||||
in_channels=block_dim,
|
|
||||||
out_channels=block_dim,
|
|
||||||
kernel_size=3,
|
|
||||||
padding=0,
|
|
||||||
stride=1,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
layers.append(
|
|
||||||
torch.nn.MaxPool2d(
|
|
||||||
kernel_size=2, stride=2, padding=0, ceil_mode=True
|
|
||||||
)
|
|
||||||
)
|
|
||||||
cur_channels = block_dim
|
|
||||||
|
|
||||||
self.layers = nn.Sequential(*layers)
|
|
||||||
|
|
||||||
self.out = nn.Linear(
|
|
||||||
block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""Subsample x.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
Its shape is (N, T, idim).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
|
||||||
"""
|
|
||||||
x = x.unsqueeze(1)
|
|
||||||
x = self.layers(x)
|
|
||||||
b, c, t, f = x.size()
|
|
||||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
||||||
return x
|
|
1
egs/tedlium3/ASR/transducer_stateless/subsampling.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/subsampling.py
|
@ -1,5 +1,6 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Mingshuang Luo)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -18,7 +19,7 @@
|
|||||||
"""
|
"""
|
||||||
To run this file, do:
|
To run this file, do:
|
||||||
|
|
||||||
cd icefall/egs/librispeech/ASR
|
cd icefall/egs/tedlium3/ASR
|
||||||
python ./transducer_stateless/test_decoder.py
|
python ./transducer_stateless/test_decoder.py
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -29,6 +30,7 @@ from decoder import Decoder
|
|||||||
def test_decoder():
|
def test_decoder():
|
||||||
vocab_size = 3
|
vocab_size = 3
|
||||||
blank_id = 0
|
blank_id = 0
|
||||||
|
unk_id = 2
|
||||||
embedding_dim = 128
|
embedding_dim = 128
|
||||||
context_size = 4
|
context_size = 4
|
||||||
|
|
||||||
@ -36,6 +38,7 @@ def test_decoder():
|
|||||||
vocab_size=vocab_size,
|
vocab_size=vocab_size,
|
||||||
embedding_dim=embedding_dim,
|
embedding_dim=embedding_dim,
|
||||||
blank_id=blank_id,
|
blank_id=blank_id,
|
||||||
|
unk_id=unk_id,
|
||||||
context_size=context_size,
|
context_size=context_size,
|
||||||
)
|
)
|
||||||
N = 100
|
N = 100
|
||||||
|
@ -108,7 +108,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--exp-dir",
|
"--exp-dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="transducer_stateless/exp-1-gpu-optimized-specaug",
|
default="transducer_stateless/exp",
|
||||||
help="""The experiment dir.
|
help="""The experiment dir.
|
||||||
It specifies the directory where all training related
|
It specifies the directory where all training related
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
@ -1,418 +0,0 @@
|
|||||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import math
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from encoder_interface import EncoderInterface
|
|
||||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
|
||||||
|
|
||||||
from icefall.utils import make_pad_mask
|
|
||||||
|
|
||||||
|
|
||||||
class Transformer(EncoderInterface):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
num_features: int,
|
|
||||||
output_dim: int,
|
|
||||||
subsampling_factor: int = 4,
|
|
||||||
d_model: int = 256,
|
|
||||||
nhead: int = 4,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
num_encoder_layers: int = 12,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
normalize_before: bool = True,
|
|
||||||
vgg_frontend: bool = False,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
num_features:
|
|
||||||
The input dimension of the model.
|
|
||||||
output_dim:
|
|
||||||
The output dimension of the model.
|
|
||||||
subsampling_factor:
|
|
||||||
Number of output frames is num_in_frames // subsampling_factor.
|
|
||||||
Currently, subsampling_factor MUST be 4.
|
|
||||||
d_model:
|
|
||||||
Attention dimension.
|
|
||||||
nhead:
|
|
||||||
Number of heads in multi-head attention.
|
|
||||||
Must satisfy d_model // nhead == 0.
|
|
||||||
dim_feedforward:
|
|
||||||
The output dimension of the feedforward layers in encoder.
|
|
||||||
num_encoder_layers:
|
|
||||||
Number of encoder layers.
|
|
||||||
dropout:
|
|
||||||
Dropout in encoder.
|
|
||||||
normalize_before:
|
|
||||||
If True, use pre-layer norm; False to use post-layer norm.
|
|
||||||
vgg_frontend:
|
|
||||||
True to use vgg style frontend for subsampling.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.num_features = num_features
|
|
||||||
self.output_dim = output_dim
|
|
||||||
self.subsampling_factor = subsampling_factor
|
|
||||||
if subsampling_factor != 4:
|
|
||||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
|
||||||
|
|
||||||
# self.encoder_embed converts the input of shape (N, T, num_features)
|
|
||||||
# to the shape (N, T//subsampling_factor, d_model).
|
|
||||||
# That is, it does two things simultaneously:
|
|
||||||
# (1) subsampling: T -> T//subsampling_factor
|
|
||||||
# (2) embedding: num_features -> d_model
|
|
||||||
if vgg_frontend:
|
|
||||||
self.encoder_embed = VggSubsampling(num_features, d_model)
|
|
||||||
else:
|
|
||||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
|
||||||
|
|
||||||
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
|
||||||
|
|
||||||
encoder_layer = TransformerEncoderLayer(
|
|
||||||
d_model=d_model,
|
|
||||||
nhead=nhead,
|
|
||||||
dim_feedforward=dim_feedforward,
|
|
||||||
dropout=dropout,
|
|
||||||
normalize_before=normalize_before,
|
|
||||||
)
|
|
||||||
|
|
||||||
if normalize_before:
|
|
||||||
encoder_norm = nn.LayerNorm(d_model)
|
|
||||||
else:
|
|
||||||
encoder_norm = None
|
|
||||||
|
|
||||||
self.encoder = nn.TransformerEncoder(
|
|
||||||
encoder_layer=encoder_layer,
|
|
||||||
num_layers=num_encoder_layers,
|
|
||||||
norm=encoder_norm,
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO(fangjun): remove dropout
|
|
||||||
self.encoder_output_layer = nn.Sequential(
|
|
||||||
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
|
||||||
x_lens:
|
|
||||||
A tensor of shape (batch_size,) containing the number of frames in
|
|
||||||
`x` before padding.
|
|
||||||
Returns:
|
|
||||||
Return a tuple containing 2 tensors:
|
|
||||||
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
|
||||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
|
||||||
of frames in `logits` before padding.
|
|
||||||
"""
|
|
||||||
x = self.encoder_embed(x)
|
|
||||||
x = self.encoder_pos(x)
|
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
||||||
|
|
||||||
# Caution: We assume the subsampling factor is 4!
|
|
||||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
|
||||||
assert x.size(0) == lengths.max().item()
|
|
||||||
|
|
||||||
mask = make_pad_mask(lengths)
|
|
||||||
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
|
|
||||||
|
|
||||||
logits = self.encoder_output_layer(x)
|
|
||||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
||||||
|
|
||||||
return logits, lengths
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerEncoderLayer(nn.Module):
|
|
||||||
"""
|
|
||||||
Modified from torch.nn.TransformerEncoderLayer.
|
|
||||||
Add support of normalize_before,
|
|
||||||
i.e., use layer_norm before the first block.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
d_model:
|
|
||||||
the number of expected features in the input (required).
|
|
||||||
nhead:
|
|
||||||
the number of heads in the multiheadattention models (required).
|
|
||||||
dim_feedforward:
|
|
||||||
the dimension of the feedforward network model (default=2048).
|
|
||||||
dropout:
|
|
||||||
the dropout value (default=0.1).
|
|
||||||
activation:
|
|
||||||
the activation function of intermediate layer, relu or
|
|
||||||
gelu (default=relu).
|
|
||||||
normalize_before:
|
|
||||||
whether to use layer_norm before the first block.
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
|
||||||
>>> src = torch.rand(10, 32, 512)
|
|
||||||
>>> out = encoder_layer(src)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model: int,
|
|
||||||
nhead: int,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
activation: str = "relu",
|
|
||||||
normalize_before: bool = True,
|
|
||||||
) -> None:
|
|
||||||
super(TransformerEncoderLayer, self).__init__()
|
|
||||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
|
||||||
# Implementation of Feedforward model
|
|
||||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
||||||
|
|
||||||
self.norm1 = nn.LayerNorm(d_model)
|
|
||||||
self.norm2 = nn.LayerNorm(d_model)
|
|
||||||
self.dropout1 = nn.Dropout(dropout)
|
|
||||||
self.dropout2 = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
self.activation = _get_activation_fn(activation)
|
|
||||||
|
|
||||||
self.normalize_before = normalize_before
|
|
||||||
|
|
||||||
def __setstate__(self, state):
|
|
||||||
if "activation" not in state:
|
|
||||||
state["activation"] = nn.functional.relu
|
|
||||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: torch.Tensor,
|
|
||||||
src_mask: Optional[torch.Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Pass the input through the encoder layer.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
src: the sequence to the encoder layer (required).
|
|
||||||
src_mask: the mask for the src sequence (optional).
|
|
||||||
src_key_padding_mask: the mask for the src keys per batch (optional)
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
src: (S, N, E).
|
|
||||||
src_mask: (S, S).
|
|
||||||
src_key_padding_mask: (N, S).
|
|
||||||
S is the source sequence length, T is the target sequence length,
|
|
||||||
N is the batch size, E is the feature number
|
|
||||||
"""
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm1(src)
|
|
||||||
src2 = self.self_attn(
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
attn_mask=src_mask,
|
|
||||||
key_padding_mask=src_key_padding_mask,
|
|
||||||
)[0]
|
|
||||||
src = residual + self.dropout1(src2)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm1(src)
|
|
||||||
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm2(src)
|
|
||||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
|
||||||
src = residual + self.dropout2(src2)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm2(src)
|
|
||||||
return src
|
|
||||||
|
|
||||||
|
|
||||||
def _get_activation_fn(activation: str):
|
|
||||||
if activation == "relu":
|
|
||||||
return nn.functional.relu
|
|
||||||
elif activation == "gelu":
|
|
||||||
return nn.functional.gelu
|
|
||||||
|
|
||||||
raise RuntimeError(
|
|
||||||
"activation should be relu/gelu, not {}".format(activation)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class PositionalEncoding(nn.Module):
|
|
||||||
"""This class implements the positional encoding
|
|
||||||
proposed in the following paper:
|
|
||||||
|
|
||||||
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
|
||||||
|
|
||||||
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
|
||||||
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
|
||||||
|
|
||||||
Note::
|
|
||||||
|
|
||||||
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
|
||||||
= exp(-1* 2i / d_model * log(100000))
|
|
||||||
= exp(2i * -(log(10000) / d_model))
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
d_model:
|
|
||||||
Embedding dimension.
|
|
||||||
dropout:
|
|
||||||
Dropout probability to be applied to the output of this module.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.d_model = d_model
|
|
||||||
self.xscale = math.sqrt(self.d_model)
|
|
||||||
self.dropout = nn.Dropout(p=dropout)
|
|
||||||
# not doing: self.pe = None because of errors thrown by torchscript
|
|
||||||
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
|
||||||
|
|
||||||
def extend_pe(self, x: torch.Tensor) -> None:
|
|
||||||
"""Extend the time t in the positional encoding if required.
|
|
||||||
|
|
||||||
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
|
||||||
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
|
||||||
to (N, T, d_model). Otherwise, nothing is done.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
It is a tensor of shape (N, T, C).
|
|
||||||
Returns:
|
|
||||||
Return None.
|
|
||||||
"""
|
|
||||||
if self.pe is not None:
|
|
||||||
if self.pe.size(1) >= x.size(1):
|
|
||||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
|
||||||
return
|
|
||||||
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
|
||||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
|
||||||
div_term = torch.exp(
|
|
||||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
|
||||||
* -(math.log(10000.0) / self.d_model)
|
|
||||||
)
|
|
||||||
pe[:, 0::2] = torch.sin(position * div_term)
|
|
||||||
pe[:, 1::2] = torch.cos(position * div_term)
|
|
||||||
pe = pe.unsqueeze(0)
|
|
||||||
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
|
||||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Add positional encoding.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
Its shape is (N, T, C)
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Return a tensor of shape (N, T, C)
|
|
||||||
"""
|
|
||||||
self.extend_pe(x)
|
|
||||||
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
|
||||||
return self.dropout(x)
|
|
||||||
|
|
||||||
|
|
||||||
class Noam(object):
|
|
||||||
"""
|
|
||||||
Implements Noam optimizer.
|
|
||||||
|
|
||||||
Proposed in
|
|
||||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
|
||||||
|
|
||||||
Modified from
|
|
||||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
iterable of parameters to optimize or dicts defining parameter groups
|
|
||||||
model_size:
|
|
||||||
attention dimension of the transformer model
|
|
||||||
factor:
|
|
||||||
learning rate factor
|
|
||||||
warm_step:
|
|
||||||
warmup steps
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
params,
|
|
||||||
model_size: int = 256,
|
|
||||||
factor: float = 10.0,
|
|
||||||
warm_step: int = 25000,
|
|
||||||
weight_decay=0,
|
|
||||||
) -> None:
|
|
||||||
"""Construct an Noam object."""
|
|
||||||
self.optimizer = torch.optim.Adam(
|
|
||||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
|
||||||
)
|
|
||||||
self._step = 0
|
|
||||||
self.warmup = warm_step
|
|
||||||
self.factor = factor
|
|
||||||
self.model_size = model_size
|
|
||||||
self._rate = 0
|
|
||||||
|
|
||||||
@property
|
|
||||||
def param_groups(self):
|
|
||||||
"""Return param_groups."""
|
|
||||||
return self.optimizer.param_groups
|
|
||||||
|
|
||||||
def step(self):
|
|
||||||
"""Update parameters and rate."""
|
|
||||||
self._step += 1
|
|
||||||
rate = self.rate()
|
|
||||||
for p in self.optimizer.param_groups:
|
|
||||||
p["lr"] = rate
|
|
||||||
self._rate = rate
|
|
||||||
self.optimizer.step()
|
|
||||||
|
|
||||||
def rate(self, step=None):
|
|
||||||
"""Implement `lrate` above."""
|
|
||||||
if step is None:
|
|
||||||
step = self._step
|
|
||||||
return (
|
|
||||||
self.factor
|
|
||||||
* self.model_size ** (-0.5)
|
|
||||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
|
||||||
)
|
|
||||||
|
|
||||||
def zero_grad(self):
|
|
||||||
"""Reset gradient."""
|
|
||||||
self.optimizer.zero_grad()
|
|
||||||
|
|
||||||
def state_dict(self):
|
|
||||||
"""Return state_dict."""
|
|
||||||
return {
|
|
||||||
"_step": self._step,
|
|
||||||
"warmup": self.warmup,
|
|
||||||
"factor": self.factor,
|
|
||||||
"model_size": self.model_size,
|
|
||||||
"_rate": self._rate,
|
|
||||||
"optimizer": self.optimizer.state_dict(),
|
|
||||||
}
|
|
||||||
|
|
||||||
def load_state_dict(self, state_dict):
|
|
||||||
"""Load state_dict."""
|
|
||||||
for key, value in state_dict.items():
|
|
||||||
if key == "optimizer":
|
|
||||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
|
||||||
else:
|
|
||||||
setattr(self, key, value)
|
|
1
egs/tedlium3/ASR/transducer_stateless/transformer.py
Symbolic link
1
egs/tedlium3/ASR/transducer_stateless/transformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/transducer_stateless/transformer.py
|
Loading…
x
Reference in New Issue
Block a user