mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
use dynamicbucketsampler for decoding
This commit is contained in:
parent
74b3861320
commit
822fe21a83
@ -34,6 +34,7 @@ from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
@ -350,7 +351,7 @@ class Aidatatang_200zhAsrDataModule:
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = BucketingSampler(
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
rank=0,
|
||||
@ -382,7 +383,7 @@ class Aidatatang_200zhAsrDataModule:
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
rank=0,
|
||||
|
@ -508,13 +508,6 @@ def main():
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
average = average_checkpoints(filenames, device=device)
|
||||
checkpoint = {"model": average}
|
||||
torch.save(
|
||||
checkpoint,
|
||||
"pruned_transducer_stateless2/pretrained_average_11_to_29.pt",
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
Loading…
x
Reference in New Issue
Block a user