mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 14:44:18 +00:00
first upload the conv_emformer_transducer recipe, integrating convolution module into emformer layers.
This commit is contained in:
parent
3e131891a2
commit
8129470586
1
egs/librispeech/ASR/conv_emformer_transducer/asr_datamodule.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/asr_datamodule.py
|
1
egs/librispeech/ASR/conv_emformer_transducer/beam_search.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/beam_search.py
|
549
egs/librispeech/ASR/conv_emformer_transducer/decode.py
Executable file
549
egs/librispeech/ASR/conv_emformer_transducer/decode.py
Executable file
@ -0,0 +1,549 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg-last-n",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch and --avg are ignored and it
|
||||
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
||||
where xxx is the number of processed batches while
|
||||
saving that checkpoint.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_emformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 100
|
||||
else:
|
||||
log_interval = 2
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.avg_last_n > 0:
|
||||
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/librispeech/ASR/conv_emformer_transducer/decoder.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/decoder.py
|
1445
egs/librispeech/ASR/conv_emformer_transducer/emformer.py
Normal file
1445
egs/librispeech/ASR/conv_emformer_transducer/emformer.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1 @@
|
||||
../transducer_stateless/encoder_interface.py
|
1
egs/librispeech/ASR/conv_emformer_transducer/joiner.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/joiner.py
|
1
egs/librispeech/ASR/conv_emformer_transducer/model.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/model.py
|
104
egs/librispeech/ASR/conv_emformer_transducer/noam.py
Normal file
104
egs/librispeech/ASR/conv_emformer_transducer/noam.py
Normal file
@ -0,0 +1,104 @@
|
||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
1
egs/librispeech/ASR/conv_emformer_transducer/subsampling.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../conformer_ctc/subsampling.py
|
359
egs/librispeech/ASR/conv_emformer_transducer/test_emformer.py
Normal file
359
egs/librispeech/ASR/conv_emformer_transducer/test_emformer.py
Normal file
@ -0,0 +1,359 @@
|
||||
import torch
|
||||
|
||||
|
||||
def test_emformer_attention_forward():
|
||||
from emformer import EmformerAttention
|
||||
|
||||
B, D = 2, 256
|
||||
U, R = 12, 2
|
||||
chunk_length = 2
|
||||
attention = EmformerAttention(embed_dim=D, nhead=8)
|
||||
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
S = U // chunk_length
|
||||
M = S - 1
|
||||
else:
|
||||
S, M = 0, 0
|
||||
|
||||
Q, KV = R + U + S, M + R + U
|
||||
utterance = torch.randn(U, B, D)
|
||||
lengths = torch.randint(1, U + 1, (B,))
|
||||
lengths[0] = U
|
||||
right_context = torch.randn(R, B, D)
|
||||
summary = torch.randn(S, B, D)
|
||||
memory = torch.randn(M, B, D)
|
||||
attention_mask = torch.rand(Q, KV) >= 0.5
|
||||
|
||||
output_right_context_utterance, output_memory = attention(
|
||||
utterance,
|
||||
lengths,
|
||||
right_context,
|
||||
summary,
|
||||
memory,
|
||||
attention_mask,
|
||||
)
|
||||
assert output_right_context_utterance.shape == (R + U, B, D)
|
||||
assert output_memory.shape == (M, B, D)
|
||||
|
||||
|
||||
def test_emformer_attention_infer():
|
||||
from emformer import EmformerAttention
|
||||
|
||||
B, D = 2, 256
|
||||
R, L = 4, 2
|
||||
chunk_length = 2
|
||||
U = chunk_length
|
||||
attention = EmformerAttention(embed_dim=D, nhead=8)
|
||||
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
S, M = 1, 3
|
||||
else:
|
||||
S, M = 0, 0
|
||||
|
||||
utterance = torch.randn(U, B, D)
|
||||
lengths = torch.randint(1, U + 1, (B,))
|
||||
lengths[0] = U
|
||||
right_context = torch.randn(R, B, D)
|
||||
summary = torch.randn(S, B, D)
|
||||
memory = torch.randn(M, B, D)
|
||||
left_context_key = torch.randn(L, B, D)
|
||||
left_context_val = torch.randn(L, B, D)
|
||||
|
||||
(
|
||||
output_right_context_utterance,
|
||||
output_memory,
|
||||
next_key,
|
||||
next_val,
|
||||
) = attention.infer(
|
||||
utterance,
|
||||
lengths,
|
||||
right_context,
|
||||
summary,
|
||||
memory,
|
||||
left_context_key,
|
||||
left_context_val,
|
||||
)
|
||||
assert output_right_context_utterance.shape == (R + U, B, D)
|
||||
assert output_memory.shape == (S, B, D)
|
||||
assert next_key.shape == (L + U, B, D)
|
||||
assert next_val.shape == (L + U, B, D)
|
||||
|
||||
|
||||
def test_emformer_layer_forward():
|
||||
from emformer import EmformerLayer
|
||||
|
||||
B, D = 2, 256
|
||||
U, R, L = 12, 2, 5
|
||||
chunk_length = 2
|
||||
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
S = U // chunk_length
|
||||
M = S - 1
|
||||
else:
|
||||
S, M = 0, 0
|
||||
|
||||
layer = EmformerLayer(
|
||||
d_model=D,
|
||||
nhead=8,
|
||||
dim_feedforward=1024,
|
||||
chunk_length=chunk_length,
|
||||
cnn_module_kernel=3,
|
||||
left_context_length=L,
|
||||
max_memory_size=M,
|
||||
)
|
||||
|
||||
Q, KV = R + U + S, M + R + U
|
||||
utterance = torch.randn(U, B, D)
|
||||
lengths = torch.randint(1, U + 1, (B,))
|
||||
lengths[0] = U
|
||||
right_context = torch.randn(R, B, D)
|
||||
memory = torch.randn(M, B, D)
|
||||
attention_mask = torch.rand(Q, KV) >= 0.5
|
||||
|
||||
output_utterance, output_right_context, output_memory = layer(
|
||||
utterance,
|
||||
lengths,
|
||||
right_context,
|
||||
memory,
|
||||
attention_mask,
|
||||
)
|
||||
assert output_utterance.shape == (U, B, D)
|
||||
assert output_right_context.shape == (R, B, D)
|
||||
assert output_memory.shape == (M, B, D)
|
||||
|
||||
|
||||
def test_emformer_layer_infer():
|
||||
from emformer import EmformerLayer
|
||||
|
||||
B, D = 2, 256
|
||||
R, L = 2, 5
|
||||
chunk_length = 2
|
||||
U = chunk_length
|
||||
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
M = 3
|
||||
else:
|
||||
M = 0
|
||||
|
||||
layer = EmformerLayer(
|
||||
d_model=D,
|
||||
nhead=8,
|
||||
dim_feedforward=1024,
|
||||
chunk_length=chunk_length,
|
||||
cnn_module_kernel=3,
|
||||
left_context_length=L,
|
||||
max_memory_size=M,
|
||||
)
|
||||
|
||||
utterance = torch.randn(U, B, D)
|
||||
lengths = torch.randint(1, U + 1, (B,))
|
||||
lengths[0] = U
|
||||
right_context = torch.randn(R, B, D)
|
||||
memory = torch.randn(M, B, D)
|
||||
state = None
|
||||
(
|
||||
output_utterance,
|
||||
output_right_context,
|
||||
output_memory,
|
||||
output_state,
|
||||
) = layer.infer(
|
||||
utterance,
|
||||
lengths,
|
||||
right_context,
|
||||
memory,
|
||||
state,
|
||||
)
|
||||
assert output_utterance.shape == (U, B, D)
|
||||
assert output_right_context.shape == (R, B, D)
|
||||
if use_memory:
|
||||
assert output_memory.shape == (1, B, D)
|
||||
else:
|
||||
assert output_memory.shape == (0, B, D)
|
||||
assert len(output_state) == 4
|
||||
assert output_state[0].shape == (M, B, D)
|
||||
assert output_state[1].shape == (L, B, D)
|
||||
assert output_state[2].shape == (L, B, D)
|
||||
assert output_state[3].shape == (1, B)
|
||||
|
||||
|
||||
def test_emformer_encoder_forward():
|
||||
from emformer import EmformerEncoder
|
||||
|
||||
B, D = 2, 256
|
||||
U, R, L = 12, 2, 5
|
||||
chunk_length = 2
|
||||
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
S = U // chunk_length
|
||||
M = S - 1
|
||||
else:
|
||||
S, M = 0, 0
|
||||
|
||||
encoder = EmformerEncoder(
|
||||
chunk_length=chunk_length,
|
||||
d_model=D,
|
||||
dim_feedforward=1024,
|
||||
num_encoder_layers=2,
|
||||
cnn_module_kernel=3,
|
||||
left_context_length=L,
|
||||
right_context_length=R,
|
||||
max_memory_size=M,
|
||||
)
|
||||
|
||||
x = torch.randn(U + R, B, D)
|
||||
lengths = torch.randint(1, U + R + 1, (B,))
|
||||
lengths[0] = U + R
|
||||
|
||||
output, output_lengths = encoder(x, lengths)
|
||||
assert output.shape == (U, B, D)
|
||||
assert torch.equal(output_lengths, torch.clamp(lengths - R, min=0))
|
||||
|
||||
|
||||
def test_emformer_encoder_infer():
|
||||
from emformer import EmformerEncoder
|
||||
|
||||
B, D = 2, 256
|
||||
R, L = 2, 5
|
||||
chunk_length = 2
|
||||
U = chunk_length
|
||||
num_chunks = 3
|
||||
num_encoder_layers = 2
|
||||
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
M = 3
|
||||
else:
|
||||
M = 0
|
||||
|
||||
encoder = EmformerEncoder(
|
||||
chunk_length=chunk_length,
|
||||
d_model=D,
|
||||
dim_feedforward=1024,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
cnn_module_kernel=3,
|
||||
left_context_length=L,
|
||||
right_context_length=R,
|
||||
max_memory_size=M,
|
||||
)
|
||||
|
||||
states = None
|
||||
for chunk_idx in range(num_chunks):
|
||||
x = torch.randn(U + R, B, D)
|
||||
lengths = torch.randint(1, U + R + 1, (B,))
|
||||
lengths[0] = U + R
|
||||
output, output_lengths, states = encoder.infer(x, lengths, states)
|
||||
assert output.shape == (U, B, D)
|
||||
assert torch.equal(output_lengths, torch.clamp(lengths - R, min=0))
|
||||
assert len(states) == num_encoder_layers
|
||||
for state in states:
|
||||
assert len(state) == 4
|
||||
assert state[0].shape == (M, B, D)
|
||||
assert state[1].shape == (L, B, D)
|
||||
assert state[2].shape == (L, B, D)
|
||||
assert torch.equal(
|
||||
state[3], (chunk_idx + 1) * U * torch.ones_like(state[3])
|
||||
)
|
||||
|
||||
|
||||
def test_emformer_forward():
|
||||
from emformer import Emformer
|
||||
|
||||
num_features = 80
|
||||
output_dim = 1000
|
||||
chunk_length = 8
|
||||
L, R = 128, 4
|
||||
B, D, U = 2, 256, 80
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
M = 3
|
||||
else:
|
||||
M = 0
|
||||
model = Emformer(
|
||||
num_features=num_features,
|
||||
output_dim=output_dim,
|
||||
chunk_length=chunk_length,
|
||||
subsampling_factor=4,
|
||||
d_model=D,
|
||||
cnn_module_kernel=3,
|
||||
left_context_length=L,
|
||||
right_context_length=R,
|
||||
max_memory_size=M,
|
||||
vgg_frontend=False,
|
||||
)
|
||||
x = torch.randn(B, U + R + 3, num_features)
|
||||
x_lens = torch.randint(1, U + R + 3 + 1, (B,))
|
||||
x_lens[0] = U + R + 3
|
||||
logits, output_lengths = model(x, x_lens)
|
||||
assert logits.shape == (B, U // 4, output_dim)
|
||||
assert torch.equal(
|
||||
output_lengths,
|
||||
torch.clamp(((x_lens - 1) // 2 - 1) // 2 - R // 4, min=0),
|
||||
)
|
||||
|
||||
|
||||
def test_emformer_infer():
|
||||
from emformer import Emformer
|
||||
|
||||
num_features = 80
|
||||
output_dim = 1000
|
||||
chunk_length = 8
|
||||
U = chunk_length
|
||||
L, R = 128, 4
|
||||
B, D = 2, 256
|
||||
num_chunks = 3
|
||||
num_encoder_layers = 2
|
||||
for use_memory in [True, False]:
|
||||
if use_memory:
|
||||
M = 3
|
||||
else:
|
||||
M = 0
|
||||
model = Emformer(
|
||||
num_features=num_features,
|
||||
output_dim=output_dim,
|
||||
chunk_length=chunk_length,
|
||||
subsampling_factor=4,
|
||||
d_model=D,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
cnn_module_kernel=3,
|
||||
left_context_length=L,
|
||||
right_context_length=R,
|
||||
max_memory_size=M,
|
||||
vgg_frontend=False,
|
||||
)
|
||||
states = None
|
||||
for chunk_idx in range(num_chunks):
|
||||
x = torch.randn(B, U + R + 3, num_features)
|
||||
x_lens = torch.randint(1, U + R + 3 + 1, (B,))
|
||||
x_lens[0] = U + R + 3
|
||||
logits, output_lengths, states = model.infer(x, x_lens, states)
|
||||
assert logits.shape == (B, U // 4, output_dim)
|
||||
assert torch.equal(
|
||||
output_lengths,
|
||||
torch.clamp(((x_lens - 1) // 2 - 1) // 2 - R // 4, min=0),
|
||||
)
|
||||
assert len(states) == num_encoder_layers
|
||||
for state in states:
|
||||
assert len(state) == 4
|
||||
assert state[0].shape == (M, B, D)
|
||||
assert state[1].shape == (L // 4, B, D)
|
||||
assert state[2].shape == (L // 4, B, D)
|
||||
assert torch.equal(
|
||||
state[3],
|
||||
U // 4 * (chunk_idx + 1) * torch.ones_like(state[3]),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_emformer_attention_forward()
|
||||
test_emformer_attention_infer()
|
||||
test_emformer_layer_forward()
|
||||
test_emformer_layer_infer()
|
||||
test_emformer_encoder_forward()
|
||||
test_emformer_encoder_infer()
|
||||
test_emformer_forward()
|
||||
test_emformer_infer()
|
1006
egs/librispeech/ASR/conv_emformer_transducer/train.py
Executable file
1006
egs/librispeech/ASR/conv_emformer_transducer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user