mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Support DDP training.
This commit is contained in:
parent
4a66712406
commit
8055bf31a0
@ -12,3 +12,11 @@ cd $PWD/..
|
||||
|
||||
./tdnn_lstm_ctc/train.py
|
||||
```
|
||||
|
||||
If you have 4 GPUs and want to use GPU 1 and GPU 3 for DDP training,
|
||||
you can do the following:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="1,3"
|
||||
./tdnn_lstm_ctc/train.py --world-size=2
|
||||
```
|
||||
|
@ -10,9 +10,13 @@ from typing import Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import TdnnLstm
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_value_
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
@ -20,9 +24,15 @@ from torch.utils.tensorboard import SummaryWriter
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict, encode_supervisions, setup_logger
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
encode_supervisions,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
@ -43,6 +53,14 @@ def get_parser():
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
# TODO: add extra arguments and support DDP training.
|
||||
# Currently, only single GPU training is implemented. Will add
|
||||
# DDP training once single GPU training is finished.
|
||||
@ -186,6 +204,7 @@ def save_checkpoint(
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
@ -202,6 +221,7 @@ def save_checkpoint(
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
@ -290,6 +310,7 @@ def compute_validation_loss(
|
||||
model: nn.Module,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
@ -312,6 +333,13 @@ def compute_validation_loss(
|
||||
tot_loss += loss_cpu
|
||||
tot_frames += params.valid_frames
|
||||
|
||||
if world_size > 1:
|
||||
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
|
||||
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||
s = s.cpu().tolist()
|
||||
tot_loss = s[0]
|
||||
tot_frames = s[1]
|
||||
|
||||
params.valid_loss = tot_loss / tot_frames
|
||||
|
||||
if params.valid_loss < params.best_valid_loss:
|
||||
@ -327,6 +355,7 @@ def train_one_epoch(
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
@ -349,6 +378,8 @@ def train_one_epoch(
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
@ -394,11 +425,12 @@ def train_one_epoch(
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss}, "
|
||||
f"best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
|
||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
|
||||
@ -409,26 +441,40 @@ def train_one_epoch(
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_phone_id = max(lexicon.tokens)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||
|
||||
@ -438,6 +484,8 @@ def main():
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = optim.AdamW(
|
||||
model.parameters(),
|
||||
@ -478,15 +526,36 @@ def main():
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
save_checkpoint(
|
||||
params=params, model=model, optimizer=optimizer, scheduler=scheduler
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
17
icefall/dist.py
Normal file
17
icefall/dist.py
Normal file
@ -0,0 +1,17 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
from torch import distributed as dist
|
||||
|
||||
|
||||
def setup_dist(rank, world_size, master_port=None):
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = (
|
||||
"12354" if master_port is None else str(master_port)
|
||||
)
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
|
||||
def cleanup_dist():
|
||||
dist.destroy_process_group()
|
Loading…
x
Reference in New Issue
Block a user