minor updates

This commit is contained in:
jinzr 2023-09-21 15:12:28 +08:00
parent 1adf38179c
commit 7eb2ba7d0d
3 changed files with 298 additions and 273 deletions

View File

@ -0,0 +1,259 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input `lang_dir`, which should contain::
- lang_dir/text,
- lang_dir/words.txt
and generates the following files in the directory `lang_dir`:
- lexicon.txt
- lexicon_disambig.txt
- L.pt
- L_disambig.pt
- tokens.txt
"""
import argparse
import re
from pathlib import Path
from typing import Dict, List
import k2
import torch
from prepare_lang import (
Lexicon,
add_disambig_symbols,
add_self_loops,
write_lexicon,
write_mapping,
)
def lexicon_to_fst_no_sil(
lexicon: Lexicon,
token2id: Dict[str, int],
word2id: Dict[str, int],
need_self_loops: bool = False,
) -> k2.Fsa:
"""Convert a lexicon to an FST (in k2 format).
Args:
lexicon:
The input lexicon. See also :func:`read_lexicon`
token2id:
A dict mapping tokens to IDs.
word2id:
A dict mapping words to IDs.
need_self_loops:
If True, add self-loop to states with non-epsilon output symbols
on at least one arc out of the state. The input label for this
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
Returns:
Return an instance of `k2.Fsa` representing the given lexicon.
"""
loop_state = 0 # words enter and leave from here
next_state = 1 # the next un-allocated state, will be incremented as we go
arcs = []
# The blank symbol <blk> is defined in local/train_bpe_model.py
assert token2id["<blk>"] == 0
assert word2id["<eps>"] == 0
eps = 0
for word, pieces in lexicon:
assert len(pieces) > 0, f"{word} has no pronunciations"
cur_state = loop_state
word = word2id[word]
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
for i in range(len(pieces) - 1):
w = word if i == 0 else eps
arcs.append([cur_state, next_state, pieces[i], w, 0])
cur_state = next_state
next_state += 1
# now for the last piece of this word
i = len(pieces) - 1
w = word if i == 0 else eps
arcs.append([cur_state, loop_state, pieces[i], w, 0])
if need_self_loops:
disambig_token = token2id["#0"]
disambig_word = word2id["#0"]
arcs = add_self_loops(
arcs,
disambig_token=disambig_token,
disambig_word=disambig_word,
)
final_state = next_state
arcs.append([loop_state, final_state, -1, -1, 0])
arcs.append([final_state])
arcs = sorted(arcs, key=lambda arc: arc[0])
arcs = [[str(i) for i in arc] for arc in arcs]
arcs = [" ".join(arc) for arc in arcs]
arcs = "\n".join(arcs)
fsa = k2.Fsa.from_str(arcs, acceptor=False)
return fsa
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
"""Check if all the given tokens are in token symbol table.
Args:
token_sym_table:
Token symbol table that contains all the valid tokens.
tokens:
A list of tokens.
Returns:
Return True if there is any token not in the token_sym_table,
otherwise False.
"""
for tok in tokens:
if tok not in token_sym_table:
return True
return False
def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
"""Generate a lexicon from a word list and token_sym_table.
Args:
token_sym_table:
Token symbol table that mapping token to token ids.
words:
A list of strings representing words.
Returns:
Return a dict whose keys are words and values are the corresponding
tokens.
"""
lexicon = []
for word in words:
chars = list(word.strip(" \t"))
if contain_oov(token_sym_table, chars):
continue
lexicon.append((word, chars))
# The OOV word is <UNK>
lexicon.append(("<UNK>", ["<unk>"]))
return lexicon
def generate_tokens(text_file: str) -> Dict[str, int]:
"""Generate tokens from the given text file.
Args:
text_file:
A file that contains text lines to generate tokens.
Returns:
Return a dict whose keys are tokens and values are token ids ranged
from 0 to len(keys) - 1.
"""
tokens: Dict[str, int] = dict()
tokens["<blk>"] = 0
tokens["<sos/eos>"] = 1
tokens["<unk>"] = 2
whitespace = re.compile(r"([ \t\r\n]+)")
with open(text_file, "r", encoding="utf-8") as f:
for line in f:
line = re.sub(whitespace, "", line)
chars = list(line)
for char in chars:
if char not in tokens:
tokens[char] = len(tokens)
return tokens
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
It should contain the bpe.model and words.txt
""",
)
return parser.parse_args()
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
text_file = lang_dir / "text"
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
words = word_sym_table.symbols
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
for w in excluded:
if w in words:
words.remove(w)
token_sym_table = generate_tokens(text_file)
lexicon = generate_lexicon(token_sym_table, words)
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
next_token_id = max(token_sym_table.values()) + 1
for i in range(max_disambig + 1):
disambig = f"#{i}"
assert disambig not in token_sym_table
token_sym_table[disambig] = next_token_id
next_token_id += 1
word_sym_table.add("#0")
word_sym_table.add("<s>")
word_sym_table.add("</s>")
write_mapping(lang_dir / "tokens.txt", token_sym_table)
write_lexicon(lang_dir / "lexicon.txt", lexicon)
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
L = lexicon_to_fst_no_sil(
lexicon,
token2id=token_sym_table,
word2id=word_sym_table,
)
L_disambig = lexicon_to_fst_no_sil(
lexicon_disambig,
token2id=token_sym_table,
word2id=word_sym_table,
need_self_loops=True,
)
torch.save(L.as_dict(), lang_dir / "L.pt")
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
if __name__ == "__main__":
main()

View File

@ -74,7 +74,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: preparation for training BPE model"
log "Stage 4: Prepare Byte BPE based lang"
mkdir -p data/fbank
if [ ! -d ../../aishell2/ASR/data/lang_char ]; then
log "Abort! Please run ../../aishell2/ASR/prepare.sh --stage 3 --stop-stage 3"
@ -107,40 +107,40 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
./local/prepare_for_bpe_model.py \
--lang_dir ./$lang_dir \
--text $lang_dir/text
if [ ! -f $lang_dir/text_words_segmentation ]; then
python3 ./local/text2segments.py \
--input-file ./data/lang_char/text \
--output-file $lang_dir/text_words_segmentation
cat ./data/lang_bpe_500/transcript_words.txt \
>> $lang_dir/text_words_segmentation
fi
cat $lang_dir/text_words_segmentation | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' | uniq > $lang_dir/words_no_ids.txt
if [ ! -f $lang_dir/words.txt ]; then
python3 ./local/prepare_words.py \
--input-file $lang_dir/words_no_ids.txt \
--output-file $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bbpe.model ]; then
./local/train_bbpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_chars.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bbpe.model
fi
done
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: training BPE model"
if [ ! -d data/lang_char ]; then
log "Abort! Please run stage 4 first"
exit 1
fi
if [ ! -d data/lang_phone ]; then
log "Abort! Please run stage 4 first"
exit 1
fi
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
mkdir -p $lang_dir
if [ ! -f $lang_dir/bpe.model ]; then
log "Training BPE model with vocab size ${vocab_size}"
python3 -m k2_cli.prepares.prep_bpe \
--input-dir data/lang_char \
--output-dir data/lang_char \
--vocab-size ${vocab_size}
fi
if [ ! -f data/lang_phone/bpe${vocab_size}.model ]; then
log "Training BPE model with vocab size ${vocab_size}"
python3 -m k2_cli.prepares.prep_bpe \
--input-dir data/lang_phone \
--output-dir data/lang_phone \
--vocab-size ${vocab_size}
fi
done
fi

View File

@ -31,213 +31,42 @@ class MultiDataset:
Args:
manifest_dir:
It is expected to contain the following files:
- aidatatang_cuts_train.jsonl.gz
- aishell_cuts_train.jsonl.gz
- aishell2_cuts_train.jsonl.gz
- aishell4_cuts_train_L.jsonl.gz
- aishell4_cuts_train_M.jsonl.gz
- aishell4_cuts_train_S.jsonl.gz
- alimeeting-far_cuts_train.jsonl.gz
- magicdata_cuts_train.jsonl.gz
- primewords_cuts_train.jsonl.gz
- stcmds_cuts_train.jsonl.gz
- thchs_30_cuts_train.jsonl.gz
- kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
- kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
- wenetspeech/cuts_L.jsonl.gz
"""
self.fbank_dir = Path(fbank_dir)
def train_cuts(self) -> CutSet:
logging.info("About to get multidataset train cuts")
# THCHS-30
logging.info("Loading THCHS-30 in lazy mode")
thchs_30_cuts = load_manifest_lazy(
self.fbank_dir / "thchs_30_cuts_train.jsonl.gz"
)
# AISHELL-1
logging.info("Loading Aishell-1 in lazy mode")
aishell_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 in lazy mode")
aishell_2_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
)
# AISHELL-4
logging.info("Loading Aishell-4 in lazy mode")
aishell_4_L_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_L.jsonl.gz"
)
aishell_4_M_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_M.jsonl.gz"
)
aishell_4_S_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_S.jsonl.gz"
)
# ST-CMDS
logging.info("Loading ST-CMDS in lazy mode")
stcmds_cuts = load_manifest_lazy(self.fbank_dir / "stcmds_cuts_train.jsonl.gz")
# Primewords
logging.info("Loading Primewords in lazy mode")
primewords_cuts = load_manifest_lazy(
self.fbank_dir / "primewords_cuts_train.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData in lazy mode")
magicdata_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_train.jsonl.gz"
)
# Aidatatang_200zh
logging.info("Loading Aidatatang_200zh in lazy mode")
aidatatang_200zh_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_train.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting in lazy mode")
alimeeting_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_train.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech in lazy mode")
wenetspeech_L_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_L.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech in lazy mode")
kespeech_1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase1.jsonl.gz"
)
kespeech_2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase2.jsonl.gz"
)
return CutSet.mux(
thchs_30_cuts,
aishell_cuts,
aishell_2_cuts,
aishell_4_L_cuts,
aishell_4_M_cuts,
aishell_4_S_cuts,
stcmds_cuts,
primewords_cuts,
magicdata_cuts,
aidatatang_200zh_cuts,
alimeeting_cuts,
wenetspeech_L_cuts,
kespeech_1_cuts,
kespeech_2_cuts,
weights=[
len(thchs_30_cuts),
len(aishell_cuts),
len(aishell_2_cuts),
len(aishell_4_L_cuts),
len(aishell_4_M_cuts),
len(aishell_4_S_cuts),
len(stcmds_cuts),
len(primewords_cuts),
len(magicdata_cuts),
len(aidatatang_200zh_cuts),
len(alimeeting_cuts),
len(wenetspeech_L_cuts),
len(kespeech_1_cuts),
len(kespeech_2_cuts),
],
)
def dev_cuts(self) -> CutSet:
def dev_cuts(self) -> List[CutSet]:
logging.info("About to get multidataset dev cuts")
# Aidatatang_200zh
logging.info("Loading Aidatatang_200zh DEV set in lazy mode")
aidatatang_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
)
# AISHELL
logging.info("Loading Aishell DEV set in lazy mode")
aishell_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 DEV set in lazy mode")
aishell2_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting DEV set in lazy mode")
alimeeting_dev_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData DEV set in lazy mode")
magicdata_dev_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech DEV set in lazy mode")
kespeech_dev_phase1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
)
kespeech_dev_phase2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech DEV set in lazy mode")
wenetspeech_dev_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
)
return wenetspeech_dev_cuts
# return [
# aidatatang_dev_cuts,
# aishell_dev_cuts,
# aishell2_dev_cuts,
# alimeeting_dev_cuts,
# magicdata_dev_cuts,
# kespeech_dev_phase1_cuts,
# kespeech_dev_phase2_cuts,
# wenetspeech_dev_cuts,
# ]
return [
aishell2_dev_cuts,
]
def test_cuts(self) -> Dict[str, CutSet]:
logging.info("About to get multidataset test cuts")
# Aidatatang_200zh
logging.info("Loading Aidatatang_200zh set in lazy mode")
aidatatang_test_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_test.jsonl.gz"
)
aidatatang_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
)
# AISHELL
logging.info("Loading Aishell set in lazy mode")
aishell_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_test.jsonl.gz"
)
aishell_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 set in lazy mode")
aishell2_test_cuts = load_manifest_lazy(
@ -247,70 +76,7 @@ class MultiDataset:
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
)
# AISHELL-4
logging.info("Loading Aishell-4 TEST set in lazy mode")
aishell4_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_test.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting set in lazy mode")
alimeeting_test_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_test.jsonl.gz"
)
alimeeting_eval_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData set in lazy mode")
magicdata_test_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_test.jsonl.gz"
)
magicdata_dev_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech set in lazy mode")
kespeech_test_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_test.jsonl.gz"
)
kespeech_dev_phase1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
)
kespeech_dev_phase2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech set in lazy mode")
wenetspeech_test_meeting_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_TEST_MEETING.jsonl.gz"
)
wenetspeech_test_net_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_TEST_NET.jsonl.gz"
)
wenetspeech_dev_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
)
return {
"aidatatang_test": aidatatang_test_cuts,
"aidatatang_dev": aidatatang_dev_cuts,
"alimeeting_test": alimeeting_test_cuts,
"alimeeting_eval": alimeeting_eval_cuts,
"aishell_test": aishell_test_cuts,
"aishell_dev": aishell_dev_cuts,
"aishell-2_test": aishell2_test_cuts,
"aishell-2_dev": aishell2_dev_cuts,
"aishell-4": aishell4_test_cuts,
"magicdata_test": magicdata_test_cuts,
"magicdata_dev": magicdata_dev_cuts,
"kespeech-asr_test": kespeech_test_cuts,
"kespeech-asr_dev_phase1": kespeech_dev_phase1_cuts,
"kespeech-asr_dev_phase2": kespeech_dev_phase2_cuts,
"wenetspeech-meeting_test": wenetspeech_test_meeting_cuts,
"wenetspeech-net_test": wenetspeech_test_net_cuts,
"wenetspeech_dev": wenetspeech_dev_cuts,
}