mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-06 15:44:17 +00:00
minor updates
This commit is contained in:
parent
1adf38179c
commit
7eb2ba7d0d
259
egs/multi_zh_en/ASR/local/prepare_char.py
Executable file
259
egs/multi_zh_en/ASR/local/prepare_char.py
Executable file
@ -0,0 +1,259 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
This script takes as input `lang_dir`, which should contain::
|
||||
|
||||
- lang_dir/text,
|
||||
- lang_dir/words.txt
|
||||
|
||||
and generates the following files in the directory `lang_dir`:
|
||||
|
||||
- lexicon.txt
|
||||
- lexicon_disambig.txt
|
||||
- L.pt
|
||||
- L_disambig.pt
|
||||
- tokens.txt
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from prepare_lang import (
|
||||
Lexicon,
|
||||
add_disambig_symbols,
|
||||
add_self_loops,
|
||||
write_lexicon,
|
||||
write_mapping,
|
||||
)
|
||||
|
||||
|
||||
def lexicon_to_fst_no_sil(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format).
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
loop_state = 0 # words enter and leave from here
|
||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||
|
||||
arcs = []
|
||||
|
||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||
assert token2id["<blk>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
for word, pieces in lexicon:
|
||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
|
||||
|
||||
for i in range(len(pieces) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last piece of this word
|
||||
i = len(pieces) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs,
|
||||
disambig_token=disambig_token,
|
||||
disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
||||
"""Check if all the given tokens are in token symbol table.
|
||||
|
||||
Args:
|
||||
token_sym_table:
|
||||
Token symbol table that contains all the valid tokens.
|
||||
tokens:
|
||||
A list of tokens.
|
||||
Returns:
|
||||
Return True if there is any token not in the token_sym_table,
|
||||
otherwise False.
|
||||
"""
|
||||
for tok in tokens:
|
||||
if tok not in token_sym_table:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
|
||||
"""Generate a lexicon from a word list and token_sym_table.
|
||||
|
||||
Args:
|
||||
token_sym_table:
|
||||
Token symbol table that mapping token to token ids.
|
||||
words:
|
||||
A list of strings representing words.
|
||||
Returns:
|
||||
Return a dict whose keys are words and values are the corresponding
|
||||
tokens.
|
||||
"""
|
||||
lexicon = []
|
||||
for word in words:
|
||||
chars = list(word.strip(" \t"))
|
||||
if contain_oov(token_sym_table, chars):
|
||||
continue
|
||||
lexicon.append((word, chars))
|
||||
|
||||
# The OOV word is <UNK>
|
||||
lexicon.append(("<UNK>", ["<unk>"]))
|
||||
return lexicon
|
||||
|
||||
|
||||
def generate_tokens(text_file: str) -> Dict[str, int]:
|
||||
"""Generate tokens from the given text file.
|
||||
|
||||
Args:
|
||||
text_file:
|
||||
A file that contains text lines to generate tokens.
|
||||
Returns:
|
||||
Return a dict whose keys are tokens and values are token ids ranged
|
||||
from 0 to len(keys) - 1.
|
||||
"""
|
||||
tokens: Dict[str, int] = dict()
|
||||
tokens["<blk>"] = 0
|
||||
tokens["<sos/eos>"] = 1
|
||||
tokens["<unk>"] = 2
|
||||
whitespace = re.compile(r"([ \t\r\n]+)")
|
||||
with open(text_file, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
line = re.sub(whitespace, "", line)
|
||||
chars = list(line)
|
||||
for char in chars:
|
||||
if char not in tokens:
|
||||
tokens[char] = len(tokens)
|
||||
return tokens
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain the bpe.model and words.txt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
text_file = lang_dir / "text"
|
||||
|
||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
words = word_sym_table.symbols
|
||||
|
||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
|
||||
for w in excluded:
|
||||
if w in words:
|
||||
words.remove(w)
|
||||
|
||||
token_sym_table = generate_tokens(text_file)
|
||||
|
||||
lexicon = generate_lexicon(token_sym_table, words)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
next_token_id = max(token_sym_table.values()) + 1
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in token_sym_table
|
||||
token_sym_table[disambig] = next_token_id
|
||||
next_token_id += 1
|
||||
|
||||
word_sym_table.add("#0")
|
||||
word_sym_table.add("<s>")
|
||||
word_sym_table.add("</s>")
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||
|
||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst_no_sil(
|
||||
lexicon,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst_no_sil(
|
||||
lexicon_disambig,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -74,7 +74,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: preparation for training BPE model"
|
||||
log "Stage 4: Prepare Byte BPE based lang"
|
||||
mkdir -p data/fbank
|
||||
if [ ! -d ../../aishell2/ASR/data/lang_char ]; then
|
||||
log "Abort! Please run ../../aishell2/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||
@ -107,40 +107,40 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
./local/prepare_for_bpe_model.py \
|
||||
--lang_dir ./$lang_dir \
|
||||
--text $lang_dir/text
|
||||
|
||||
if [ ! -f $lang_dir/text_words_segmentation ]; then
|
||||
python3 ./local/text2segments.py \
|
||||
--input-file ./data/lang_char/text \
|
||||
--output-file $lang_dir/text_words_segmentation
|
||||
|
||||
cat ./data/lang_bpe_500/transcript_words.txt \
|
||||
>> $lang_dir/text_words_segmentation
|
||||
fi
|
||||
|
||||
cat $lang_dir/text_words_segmentation | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' | uniq > $lang_dir/words_no_ids.txt
|
||||
|
||||
if [ ! -f $lang_dir/words.txt ]; then
|
||||
python3 ./local/prepare_words.py \
|
||||
--input-file $lang_dir/words_no_ids.txt \
|
||||
--output-file $lang_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/bbpe.model ]; then
|
||||
./local/train_bbpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/transcript_chars.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
|
||||
|
||||
log "Validating $lang_dir/lexicon.txt"
|
||||
./local/validate_bpe_lexicon.py \
|
||||
--lexicon $lang_dir/lexicon.txt \
|
||||
--bpe-model $lang_dir/bbpe.model
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: training BPE model"
|
||||
if [ ! -d data/lang_char ]; then
|
||||
log "Abort! Please run stage 4 first"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d data/lang_phone ]; then
|
||||
log "Abort! Please run stage 4 first"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bbpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
log "Training BPE model with vocab size ${vocab_size}"
|
||||
python3 -m k2_cli.prepares.prep_bpe \
|
||||
--input-dir data/lang_char \
|
||||
--output-dir data/lang_char \
|
||||
--vocab-size ${vocab_size}
|
||||
fi
|
||||
|
||||
if [ ! -f data/lang_phone/bpe${vocab_size}.model ]; then
|
||||
log "Training BPE model with vocab size ${vocab_size}"
|
||||
python3 -m k2_cli.prepares.prep_bpe \
|
||||
--input-dir data/lang_phone \
|
||||
--output-dir data/lang_phone \
|
||||
--vocab-size ${vocab_size}
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
|
@ -31,213 +31,42 @@ class MultiDataset:
|
||||
Args:
|
||||
manifest_dir:
|
||||
It is expected to contain the following files:
|
||||
- aidatatang_cuts_train.jsonl.gz
|
||||
- aishell_cuts_train.jsonl.gz
|
||||
- aishell2_cuts_train.jsonl.gz
|
||||
- aishell4_cuts_train_L.jsonl.gz
|
||||
- aishell4_cuts_train_M.jsonl.gz
|
||||
- aishell4_cuts_train_S.jsonl.gz
|
||||
- alimeeting-far_cuts_train.jsonl.gz
|
||||
- magicdata_cuts_train.jsonl.gz
|
||||
- primewords_cuts_train.jsonl.gz
|
||||
- stcmds_cuts_train.jsonl.gz
|
||||
- thchs_30_cuts_train.jsonl.gz
|
||||
- kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
|
||||
- kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
|
||||
- wenetspeech/cuts_L.jsonl.gz
|
||||
"""
|
||||
self.fbank_dir = Path(fbank_dir)
|
||||
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset train cuts")
|
||||
|
||||
# THCHS-30
|
||||
logging.info("Loading THCHS-30 in lazy mode")
|
||||
thchs_30_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "thchs_30_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-1
|
||||
logging.info("Loading Aishell-1 in lazy mode")
|
||||
aishell_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 in lazy mode")
|
||||
aishell_2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-4
|
||||
logging.info("Loading Aishell-4 in lazy mode")
|
||||
aishell_4_L_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_L.jsonl.gz"
|
||||
)
|
||||
aishell_4_M_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_M.jsonl.gz"
|
||||
)
|
||||
aishell_4_S_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_S.jsonl.gz"
|
||||
)
|
||||
|
||||
# ST-CMDS
|
||||
logging.info("Loading ST-CMDS in lazy mode")
|
||||
stcmds_cuts = load_manifest_lazy(self.fbank_dir / "stcmds_cuts_train.jsonl.gz")
|
||||
|
||||
# Primewords
|
||||
logging.info("Loading Primewords in lazy mode")
|
||||
primewords_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "primewords_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData in lazy mode")
|
||||
magicdata_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# Aidatatang_200zh
|
||||
logging.info("Loading Aidatatang_200zh in lazy mode")
|
||||
aidatatang_200zh_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aidatatang_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting in lazy mode")
|
||||
alimeeting_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech in lazy mode")
|
||||
wenetspeech_L_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_L.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech in lazy mode")
|
||||
kespeech_1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
return CutSet.mux(
|
||||
thchs_30_cuts,
|
||||
aishell_cuts,
|
||||
aishell_2_cuts,
|
||||
aishell_4_L_cuts,
|
||||
aishell_4_M_cuts,
|
||||
aishell_4_S_cuts,
|
||||
stcmds_cuts,
|
||||
primewords_cuts,
|
||||
magicdata_cuts,
|
||||
aidatatang_200zh_cuts,
|
||||
alimeeting_cuts,
|
||||
wenetspeech_L_cuts,
|
||||
kespeech_1_cuts,
|
||||
kespeech_2_cuts,
|
||||
weights=[
|
||||
len(thchs_30_cuts),
|
||||
len(aishell_cuts),
|
||||
len(aishell_2_cuts),
|
||||
len(aishell_4_L_cuts),
|
||||
len(aishell_4_M_cuts),
|
||||
len(aishell_4_S_cuts),
|
||||
len(stcmds_cuts),
|
||||
len(primewords_cuts),
|
||||
len(magicdata_cuts),
|
||||
len(aidatatang_200zh_cuts),
|
||||
len(alimeeting_cuts),
|
||||
len(wenetspeech_L_cuts),
|
||||
len(kespeech_1_cuts),
|
||||
len(kespeech_2_cuts),
|
||||
],
|
||||
)
|
||||
|
||||
def dev_cuts(self) -> CutSet:
|
||||
def dev_cuts(self) -> List[CutSet]:
|
||||
logging.info("About to get multidataset dev cuts")
|
||||
|
||||
# Aidatatang_200zh
|
||||
logging.info("Loading Aidatatang_200zh DEV set in lazy mode")
|
||||
aidatatang_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL
|
||||
logging.info("Loading Aishell DEV set in lazy mode")
|
||||
aishell_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 DEV set in lazy mode")
|
||||
aishell2_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting DEV set in lazy mode")
|
||||
alimeeting_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData DEV set in lazy mode")
|
||||
magicdata_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech DEV set in lazy mode")
|
||||
kespeech_dev_phase1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech DEV set in lazy mode")
|
||||
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
|
||||
)
|
||||
|
||||
return wenetspeech_dev_cuts
|
||||
# return [
|
||||
# aidatatang_dev_cuts,
|
||||
# aishell_dev_cuts,
|
||||
# aishell2_dev_cuts,
|
||||
# alimeeting_dev_cuts,
|
||||
# magicdata_dev_cuts,
|
||||
# kespeech_dev_phase1_cuts,
|
||||
# kespeech_dev_phase2_cuts,
|
||||
# wenetspeech_dev_cuts,
|
||||
# ]
|
||||
return [
|
||||
aishell2_dev_cuts,
|
||||
]
|
||||
|
||||
def test_cuts(self) -> Dict[str, CutSet]:
|
||||
logging.info("About to get multidataset test cuts")
|
||||
|
||||
# Aidatatang_200zh
|
||||
logging.info("Loading Aidatatang_200zh set in lazy mode")
|
||||
aidatatang_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aidatatang_cuts_test.jsonl.gz"
|
||||
)
|
||||
aidatatang_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL
|
||||
logging.info("Loading Aishell set in lazy mode")
|
||||
aishell_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_test.jsonl.gz"
|
||||
)
|
||||
aishell_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 set in lazy mode")
|
||||
aishell2_test_cuts = load_manifest_lazy(
|
||||
@ -247,70 +76,7 @@ class MultiDataset:
|
||||
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-4
|
||||
logging.info("Loading Aishell-4 TEST set in lazy mode")
|
||||
aishell4_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_test.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting set in lazy mode")
|
||||
alimeeting_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_test.jsonl.gz"
|
||||
)
|
||||
alimeeting_eval_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData set in lazy mode")
|
||||
magicdata_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_test.jsonl.gz"
|
||||
)
|
||||
magicdata_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech set in lazy mode")
|
||||
kespeech_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_test.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech set in lazy mode")
|
||||
wenetspeech_test_meeting_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_TEST_MEETING.jsonl.gz"
|
||||
)
|
||||
wenetspeech_test_net_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_TEST_NET.jsonl.gz"
|
||||
)
|
||||
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
|
||||
)
|
||||
|
||||
return {
|
||||
"aidatatang_test": aidatatang_test_cuts,
|
||||
"aidatatang_dev": aidatatang_dev_cuts,
|
||||
"alimeeting_test": alimeeting_test_cuts,
|
||||
"alimeeting_eval": alimeeting_eval_cuts,
|
||||
"aishell_test": aishell_test_cuts,
|
||||
"aishell_dev": aishell_dev_cuts,
|
||||
"aishell-2_test": aishell2_test_cuts,
|
||||
"aishell-2_dev": aishell2_dev_cuts,
|
||||
"aishell-4": aishell4_test_cuts,
|
||||
"magicdata_test": magicdata_test_cuts,
|
||||
"magicdata_dev": magicdata_dev_cuts,
|
||||
"kespeech-asr_test": kespeech_test_cuts,
|
||||
"kespeech-asr_dev_phase1": kespeech_dev_phase1_cuts,
|
||||
"kespeech-asr_dev_phase2": kespeech_dev_phase2_cuts,
|
||||
"wenetspeech-meeting_test": wenetspeech_test_meeting_cuts,
|
||||
"wenetspeech-net_test": wenetspeech_test_net_cuts,
|
||||
"wenetspeech_dev": wenetspeech_dev_cuts,
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user