diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 62292f92a..a2f694473 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index aba350f42..a6cc1006d 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -42,8 +42,9 @@ class TransformerEncoderAdapter(TransformerEncoder): self.adapters = ResidualAdapterModule() for p in self.adapters.parameters(): - # p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) - p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/20.) + p.data /= 10 + #p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) + #p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/20.) def forward(self, x, padding_mask=None, layer=None, tgt_layer=None): x, layer_results = self.extract_features_with_adapter(