add unfreeze llm option

This commit is contained in:
root 2024-06-13 09:27:07 +00:00 committed by Yuekai Zhang
parent dbe85c1f12
commit 7db5445d1e

View File

@ -126,6 +126,13 @@ def add_model_arguments(parser: argparse.ArgumentParser):
help="Whether to use lora to fine-tune llm.", help="Whether to use lora to fine-tune llm.",
) )
parser.add_argument(
"--unfreeze-llm",
type=str2bool,
default=False,
help="Whether to unfreeze llm during training.",
)
def get_parser(): def get_parser():
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter formatter_class=argparse.ArgumentDefaultsHelpFormatter
@ -587,7 +594,7 @@ def train_one_epoch(
valid_info.write_summary( valid_info.write_summary(
tb_writer, "train/valid_", params.batch_idx_train tb_writer, "train/valid_", params.batch_idx_train
) )
if batch_idx != 0:
model.save_checkpoint( model.save_checkpoint(
save_dir=params.exp_dir, save_dir=params.exp_dir,
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}", tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
@ -695,6 +702,9 @@ def run(rank, world_size, args):
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu") whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
speech_encoder = whisper_model.encoder speech_encoder = whisper_model.encoder
speech_encoder_dim = whisper_model.dims.n_audio_state speech_encoder_dim = whisper_model.dims.n_audio_state
for name, param in speech_encoder.named_parameters():
param.requires_grad = False
speech_encoder.eval()
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name) tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
if params.use_flash_attn: if params.use_flash_attn:
@ -713,6 +723,12 @@ def run(rank, world_size, args):
attn_implementation=attn_implementation, attn_implementation=attn_implementation,
torch_dtype=torch_dtype, torch_dtype=torch_dtype,
) )
if not params.unfreeze_llm:
for name, param in llm.named_parameters():
param.requires_grad = False
llm.eval()
else:
if params.use_lora: if params.use_lora:
lora_config = LoraConfig( lora_config = LoraConfig(
r=64, r=64,
@ -733,15 +749,6 @@ def run(rank, world_size, args):
encoder_projector = EncoderProjector(speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate) encoder_projector = EncoderProjector(speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate)
for name, param in speech_encoder.named_parameters():
param.requires_grad = False
speech_encoder.eval()
if not params.use_lora:
for name, param in llm.named_parameters():
param.requires_grad = False
llm.eval()
model = SPEECH_LLM( model = SPEECH_LLM(
speech_encoder, speech_encoder,
llm, llm,