diff --git a/egs/librispeech/ASR/.prompt_tuning.sh.swp b/egs/librispeech/ASR/.prompt_tuning.sh.swp index 5fee9c2d2..21b0ee6f9 100644 Binary files a/egs/librispeech/ASR/.prompt_tuning.sh.swp and b/egs/librispeech/ASR/.prompt_tuning.sh.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index d815409bc..0f674ee6d 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index ac6dda4ae..646335cb9 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -490,7 +490,7 @@ class Data2VecAudioModel(BaseFairseqModel): ## for prompt tuning if prompt is not None: - if 0: + if 1: conv_feat_all = torch.tensor([]).to(features.device) length = 0 for i in range(padding_mask.size()[0]):