add en data, cosy2 token for training

This commit is contained in:
root 2025-05-08 07:23:22 +00:00
parent 2dd40b62ef
commit 7cc366d82d
3 changed files with 150 additions and 45 deletions

View File

@ -173,3 +173,22 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
--audio-key audio --text-key text \ --audio-key audio --text-key text \
--prefix gigaspeech --prefix gigaspeech
fi fi
ngpu=2
exp_dir=./qwen_omni/exp_speech2speech_en
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "stage 10: Training Speech2Speech Model"
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
--max-duration 50 \
--enable-musan False \
--exp-dir $exp_dir \
--speech-encoder-path-or-name models/large-v2.pt \
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
--dataset-format vocalnet \
--manifest-dir data/fbank \
--deepspeed \
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
--use-flash-attn True \
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
fi

View File

@ -411,4 +411,42 @@ class AsrDataModule:
@lru_cache() @lru_cache()
def train_cuts(self) -> CutSet: def train_cuts(self) -> CutSet:
logging.info("About to get train cuts") logging.info("About to get train cuts")
return load_manifest_lazy(self.args.manifest_dir / "cuts_belle_train.jsonl.gz") slam_omni_zh_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_belle_train.jsonl.gz"
)
return slam_omni_zh_cuts
@lru_cache()
def train_cuts_en_vocalnet(self) -> CutSet:
logging.info("About to get train cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz"
)
ultrachat_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz"
)
return CutSet.mux(
VoiceAssistant_cuts,
ultrachat_cuts,
weights=[
len(VoiceAssistant_cuts),
len(ultrachat_cuts),
],
)
# valid cuts_voice_assistant.00000.jsonl.gz
@lru_cache()
def valid_cuts_en_vocalnet(self) -> CutSet:
logging.info("About to get valid cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
)
return VoiceAssistant_cuts
@lru_cache()
def test_cuts_en_vocalnet(self) -> CutSet:
logging.info("About to get test cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
)
return VoiceAssistant_cuts

View File

@ -73,10 +73,9 @@ from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
from icefall import diagnostics from icefall import diagnostics
from icefall.dist import get_rank, get_world_size from icefall.dist import get_rank, get_world_size
from icefall.env import get_env_info from icefall.env import get_env_info
from icefall.utils import ( from icefall.utils import ( # filter_uneven_sized_batch,
AttributeDict, AttributeDict,
MetricsTracker, MetricsTracker,
filter_uneven_sized_batch,
setup_logger, setup_logger,
str2bool, str2bool,
) )
@ -222,6 +221,13 @@ def get_parser():
default=False, default=False,
help="Whether to unfreeze speech adaptor during training.", help="Whether to unfreeze speech adaptor during training.",
) )
parser.add_argument(
"--dataset-format",
type=str,
default="slam_omni",
help="The format of the dataset.",
)
parser = deepspeed.add_config_arguments(parser) parser = deepspeed.add_config_arguments(parser)
add_model_arguments(parser) add_model_arguments(parser)
@ -271,6 +277,58 @@ def get_params() -> AttributeDict:
return params return params
def process_batch_slam_omni(batch: dict):
answers = batch["supervisions"]["text"]
questions_with_history = [
cut.custom["question"] for cut in batch["supervisions"]["cut"]
]
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]]
answer_cosyvoice_speech_token = [
cut.custom["answer_cosyvoice_speech_token"]
for cut in batch["supervisions"]["cut"]
]
last_questions = [
question.split("<USER>: ")[-1].strip() for question in questions_with_history
]
history_contexts = [
question.rsplit("<USER>:", 1)[0].strip() for question in questions_with_history
]
messages = []
for i, total_round in enumerate(chat_rounds):
message = []
if total_round > 1:
history_question_answer = history_contexts[i].split("USER:")
history_question_answer = [item for item in history_question_answer if item]
for j in range(total_round - 1):
question_answer = history_question_answer[j].split("ASSISTANT:")
message += [
{"role": "user", "content": question_answer[0].strip()},
{"role": "assistant", "content": question_answer[1].strip()},
]
message += [
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
{"role": "assistant", "content": answers[i]},
]
messages.append(message)
return messages, answer_cosyvoice_speech_token
def process_batch_vocalnet(batch: dict):
answers = batch["supervisions"]["text"]
answer_cosyvoice_speech_token = [
cut.custom["speech_token"] for cut in batch["supervisions"]["cut"]
]
messages = []
for i in range(len(answers)):
message = [
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
{"role": "assistant", "content": answers[i]},
]
messages.append(message)
return messages, answer_cosyvoice_speech_token
def compute_loss( def compute_loss(
params: AttributeDict, params: AttributeDict,
tokenizer: AutoTokenizer, tokenizer: AutoTokenizer,
@ -350,15 +408,16 @@ def compute_loss(
row = mask_indices[0][i] row = mask_indices[0][i]
col = mask_indices[1][i] col = mask_indices[1][i]
# + 6 to skip: 'assistant', '\n' 151665, 151645, 198, 151644, 77091, 198 # + 6 to skip: 'assistant', '\n' 151665, 151645, 198, 151644, 77091, 198
# WAR: TODO FIXME check qwen3
target_ids[row, : col + 6] = IGNORE_TOKEN_ID target_ids[row, : col + 6] = IGNORE_TOKEN_ID
attention_mask = input_ids.ne(tokenizer.pad_token_id) attention_mask = input_ids.ne(tokenizer.pad_token_id)
return input_ids, attention_mask, target_ids return input_ids, attention_mask, target_ids
max_frames = params.max_duration * 1000 // params.frame_shift_ms # max_frames = params.max_duration * 1000 // params.frame_shift_ms
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio)) # allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
batch = filter_uneven_sized_batch(batch, allowed_max_frames) # batch = filter_uneven_sized_batch(batch, allowed_max_frames)
device = next(model.parameters()).device device = next(model.parameters()).device
feature = batch["inputs"] feature = batch["inputs"]
@ -369,39 +428,13 @@ def compute_loss(
batch_idx_train = params.batch_idx_train batch_idx_train = params.batch_idx_train
answers = batch["supervisions"]["text"] # WAR: TODO FIXME merge process_batch_slam_omni and process_batch_vocalnet
questions_with_history = [ if params.dataset_format == "slam_omni":
cut.custom["question"] for cut in batch["supervisions"]["cut"] messages, answer_cosyvoice_speech_token = process_batch_slam_omni(batch)
] elif params.dataset_format == "vocalnet":
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]] messages, answer_cosyvoice_speech_token = process_batch_vocalnet(batch)
answer_cosyvoice_speech_token = [ else:
cut.custom["answer_cosyvoice_speech_token"] raise ValueError(f"Unknown dataset format: {params.dataset_format}")
for cut in batch["supervisions"]["cut"]
]
last_questions = [
question.split("<USER>: ")[-1].strip() for question in questions_with_history
]
history_contexts = [
question.rsplit("<USER>:", 1)[0].strip() for question in questions_with_history
]
messages = []
for i, total_round in enumerate(chat_rounds):
message = []
if total_round > 1:
history_question_answer = history_contexts[i].split("USER:")
history_question_answer = [item for item in history_question_answer if item]
for j in range(total_round - 1):
question_answer = history_question_answer[j].split("ASSISTANT:")
message += [
{"role": "user", "content": question_answer[0].strip()},
{"role": "assistant", "content": question_answer[1].strip()},
]
message += [
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
{"role": "assistant", "content": answers[i]},
]
messages.append(message)
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer) input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
@ -730,8 +763,12 @@ def run(rank, world_size, args):
else: else:
attn_implementation = "eager" attn_implementation = "eager"
torch_dtype = torch.float16 torch_dtype = torch.float16
if params.dataset_format == "slam_omni":
codec_vocab_size = 4096 + 4 codec_vocab_size = 4096 + 4
elif params.dataset_format == "vocalnet":
codec_vocab_size = 6561 + 4
else:
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
# TODO: modify above vocab size or supress_tokens when decoding # TODO: modify above vocab size or supress_tokens when decoding
config = Qwen2Config( config = Qwen2Config(
vocab_size=codec_vocab_size, vocab_size=codec_vocab_size,
@ -802,12 +839,16 @@ def run(rank, world_size, args):
# You should use ../local/display_manifest_statistics.py to get # You should use ../local/display_manifest_statistics.py to get
# an utterance duration distribution for your dataset to select # an utterance duration distribution for your dataset to select
# the threshold # the threshold
if c.duration < 1.0 or c.duration > 20.0: if c.duration < 1.0 or c.duration > 30.0:
# logging.warning( # logging.warning(
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
# ) # )
return False return False
codec_len = len(c.custom["answer_cosyvoice_speech_token"]) codec_len = (
len(c.custom["answer_cosyvoice_speech_token"])
if "answer_cosyvoice_speech_token" in c.custom
else len(c.custom["speech_token"])
)
if codec_len > 2200: if codec_len > 2200:
logging.warning( logging.warning(
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}, lenth: {codec_len}" f"Exclude cut with ID {c.id} from training. Duration: {c.duration}, lenth: {codec_len}"
@ -815,9 +856,17 @@ def run(rank, world_size, args):
return False return False
return True return True
train_cuts = data_module.train_cuts() if params.dataset_format == "slam_omni":
train_cuts = data_module.train_cuts()
valid_cuts = data_module.dev_cuts()
elif params.dataset_format == "vocalnet":
train_cuts = data_module.train_cuts_en_vocalnet()
valid_cuts = data_module.valid_cuts_en_vocalnet()
else:
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
train_cuts = train_cuts.filter(remove_short_and_long_utt) train_cuts = train_cuts.filter(remove_short_and_long_utt)
valid_cuts = valid_cuts.filter(remove_short_and_long_utt)
sampler_state_dict = None sampler_state_dict = None
if params.sampler_state_dict_path: if params.sampler_state_dict_path:
@ -828,7 +877,6 @@ def run(rank, world_size, args):
train_cuts, sampler_state_dict=sampler_state_dict train_cuts, sampler_state_dict=sampler_state_dict
) )
valid_cuts = data_module.dev_cuts()
valid_dl = data_module.valid_dataloaders(valid_cuts) valid_dl = data_module.valid_dataloaders(valid_cuts)
if args.tensorboard and rank == 0: if args.tensorboard and rank == 0: