mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
add en data, cosy2 token for training
This commit is contained in:
parent
2dd40b62ef
commit
7cc366d82d
@ -173,3 +173,22 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|||||||
--audio-key audio --text-key text \
|
--audio-key audio --text-key text \
|
||||||
--prefix gigaspeech
|
--prefix gigaspeech
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
ngpu=2
|
||||||
|
exp_dir=./qwen_omni/exp_speech2speech_en
|
||||||
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||||
|
log "stage 10: Training Speech2Speech Model"
|
||||||
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
||||||
|
--max-duration 50 \
|
||||||
|
--enable-musan False \
|
||||||
|
--exp-dir $exp_dir \
|
||||||
|
--speech-encoder-path-or-name models/large-v2.pt \
|
||||||
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
||||||
|
--dataset-format vocalnet \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--deepspeed \
|
||||||
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
||||||
|
fi
|
||||||
|
@ -411,4 +411,42 @@ class AsrDataModule:
|
|||||||
@lru_cache()
|
@lru_cache()
|
||||||
def train_cuts(self) -> CutSet:
|
def train_cuts(self) -> CutSet:
|
||||||
logging.info("About to get train cuts")
|
logging.info("About to get train cuts")
|
||||||
return load_manifest_lazy(self.args.manifest_dir / "cuts_belle_train.jsonl.gz")
|
slam_omni_zh_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_belle_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
return slam_omni_zh_cuts
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz"
|
||||||
|
)
|
||||||
|
ultrachat_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
return CutSet.mux(
|
||||||
|
VoiceAssistant_cuts,
|
||||||
|
ultrachat_cuts,
|
||||||
|
weights=[
|
||||||
|
len(VoiceAssistant_cuts),
|
||||||
|
len(ultrachat_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
# valid cuts_voice_assistant.00000.jsonl.gz
|
||||||
|
@lru_cache()
|
||||||
|
def valid_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
logging.info("About to get valid cuts")
|
||||||
|
VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
|
||||||
|
)
|
||||||
|
return VoiceAssistant_cuts
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
|
||||||
|
)
|
||||||
|
return VoiceAssistant_cuts
|
||||||
|
@ -73,10 +73,9 @@ from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
|||||||
from icefall import diagnostics
|
from icefall import diagnostics
|
||||||
from icefall.dist import get_rank, get_world_size
|
from icefall.dist import get_rank, get_world_size
|
||||||
from icefall.env import get_env_info
|
from icefall.env import get_env_info
|
||||||
from icefall.utils import (
|
from icefall.utils import ( # filter_uneven_sized_batch,
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
MetricsTracker,
|
MetricsTracker,
|
||||||
filter_uneven_sized_batch,
|
|
||||||
setup_logger,
|
setup_logger,
|
||||||
str2bool,
|
str2bool,
|
||||||
)
|
)
|
||||||
@ -222,6 +221,13 @@ def get_parser():
|
|||||||
default=False,
|
default=False,
|
||||||
help="Whether to unfreeze speech adaptor during training.",
|
help="Whether to unfreeze speech adaptor during training.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset-format",
|
||||||
|
type=str,
|
||||||
|
default="slam_omni",
|
||||||
|
help="The format of the dataset.",
|
||||||
|
)
|
||||||
parser = deepspeed.add_config_arguments(parser)
|
parser = deepspeed.add_config_arguments(parser)
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
@ -271,6 +277,58 @@ def get_params() -> AttributeDict:
|
|||||||
return params
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def process_batch_slam_omni(batch: dict):
|
||||||
|
answers = batch["supervisions"]["text"]
|
||||||
|
questions_with_history = [
|
||||||
|
cut.custom["question"] for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]]
|
||||||
|
answer_cosyvoice_speech_token = [
|
||||||
|
cut.custom["answer_cosyvoice_speech_token"]
|
||||||
|
for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
last_questions = [
|
||||||
|
question.split("<USER>: ")[-1].strip() for question in questions_with_history
|
||||||
|
]
|
||||||
|
history_contexts = [
|
||||||
|
question.rsplit("<USER>:", 1)[0].strip() for question in questions_with_history
|
||||||
|
]
|
||||||
|
|
||||||
|
messages = []
|
||||||
|
for i, total_round in enumerate(chat_rounds):
|
||||||
|
message = []
|
||||||
|
if total_round > 1:
|
||||||
|
history_question_answer = history_contexts[i].split("USER:")
|
||||||
|
history_question_answer = [item for item in history_question_answer if item]
|
||||||
|
for j in range(total_round - 1):
|
||||||
|
question_answer = history_question_answer[j].split("ASSISTANT:")
|
||||||
|
message += [
|
||||||
|
{"role": "user", "content": question_answer[0].strip()},
|
||||||
|
{"role": "assistant", "content": question_answer[1].strip()},
|
||||||
|
]
|
||||||
|
message += [
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
||||||
|
{"role": "assistant", "content": answers[i]},
|
||||||
|
]
|
||||||
|
messages.append(message)
|
||||||
|
return messages, answer_cosyvoice_speech_token
|
||||||
|
|
||||||
|
|
||||||
|
def process_batch_vocalnet(batch: dict):
|
||||||
|
answers = batch["supervisions"]["text"]
|
||||||
|
answer_cosyvoice_speech_token = [
|
||||||
|
cut.custom["speech_token"] for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
messages = []
|
||||||
|
for i in range(len(answers)):
|
||||||
|
message = [
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
||||||
|
{"role": "assistant", "content": answers[i]},
|
||||||
|
]
|
||||||
|
messages.append(message)
|
||||||
|
return messages, answer_cosyvoice_speech_token
|
||||||
|
|
||||||
|
|
||||||
def compute_loss(
|
def compute_loss(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
tokenizer: AutoTokenizer,
|
tokenizer: AutoTokenizer,
|
||||||
@ -350,15 +408,16 @@ def compute_loss(
|
|||||||
row = mask_indices[0][i]
|
row = mask_indices[0][i]
|
||||||
col = mask_indices[1][i]
|
col = mask_indices[1][i]
|
||||||
# + 6 to skip: 'assistant', '\n' 151665, 151645, 198, 151644, 77091, 198
|
# + 6 to skip: 'assistant', '\n' 151665, 151645, 198, 151644, 77091, 198
|
||||||
|
# WAR: TODO FIXME check qwen3
|
||||||
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
||||||
|
|
||||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
return input_ids, attention_mask, target_ids
|
return input_ids, attention_mask, target_ids
|
||||||
|
|
||||||
max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
# max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
||||||
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
# allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
||||||
batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
# batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
device = next(model.parameters()).device
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
@ -369,39 +428,13 @@ def compute_loss(
|
|||||||
|
|
||||||
batch_idx_train = params.batch_idx_train
|
batch_idx_train = params.batch_idx_train
|
||||||
|
|
||||||
answers = batch["supervisions"]["text"]
|
# WAR: TODO FIXME merge process_batch_slam_omni and process_batch_vocalnet
|
||||||
questions_with_history = [
|
if params.dataset_format == "slam_omni":
|
||||||
cut.custom["question"] for cut in batch["supervisions"]["cut"]
|
messages, answer_cosyvoice_speech_token = process_batch_slam_omni(batch)
|
||||||
]
|
elif params.dataset_format == "vocalnet":
|
||||||
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]]
|
messages, answer_cosyvoice_speech_token = process_batch_vocalnet(batch)
|
||||||
answer_cosyvoice_speech_token = [
|
else:
|
||||||
cut.custom["answer_cosyvoice_speech_token"]
|
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
||||||
for cut in batch["supervisions"]["cut"]
|
|
||||||
]
|
|
||||||
last_questions = [
|
|
||||||
question.split("<USER>: ")[-1].strip() for question in questions_with_history
|
|
||||||
]
|
|
||||||
history_contexts = [
|
|
||||||
question.rsplit("<USER>:", 1)[0].strip() for question in questions_with_history
|
|
||||||
]
|
|
||||||
|
|
||||||
messages = []
|
|
||||||
for i, total_round in enumerate(chat_rounds):
|
|
||||||
message = []
|
|
||||||
if total_round > 1:
|
|
||||||
history_question_answer = history_contexts[i].split("USER:")
|
|
||||||
history_question_answer = [item for item in history_question_answer if item]
|
|
||||||
for j in range(total_round - 1):
|
|
||||||
question_answer = history_question_answer[j].split("ASSISTANT:")
|
|
||||||
message += [
|
|
||||||
{"role": "user", "content": question_answer[0].strip()},
|
|
||||||
{"role": "assistant", "content": question_answer[1].strip()},
|
|
||||||
]
|
|
||||||
message += [
|
|
||||||
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
|
||||||
{"role": "assistant", "content": answers[i]},
|
|
||||||
]
|
|
||||||
messages.append(message)
|
|
||||||
|
|
||||||
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
||||||
|
|
||||||
@ -730,8 +763,12 @@ def run(rank, world_size, args):
|
|||||||
else:
|
else:
|
||||||
attn_implementation = "eager"
|
attn_implementation = "eager"
|
||||||
torch_dtype = torch.float16
|
torch_dtype = torch.float16
|
||||||
|
if params.dataset_format == "slam_omni":
|
||||||
codec_vocab_size = 4096 + 4
|
codec_vocab_size = 4096 + 4
|
||||||
|
elif params.dataset_format == "vocalnet":
|
||||||
|
codec_vocab_size = 6561 + 4
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
||||||
# TODO: modify above vocab size or supress_tokens when decoding
|
# TODO: modify above vocab size or supress_tokens when decoding
|
||||||
config = Qwen2Config(
|
config = Qwen2Config(
|
||||||
vocab_size=codec_vocab_size,
|
vocab_size=codec_vocab_size,
|
||||||
@ -802,12 +839,16 @@ def run(rank, world_size, args):
|
|||||||
# You should use ../local/display_manifest_statistics.py to get
|
# You should use ../local/display_manifest_statistics.py to get
|
||||||
# an utterance duration distribution for your dataset to select
|
# an utterance duration distribution for your dataset to select
|
||||||
# the threshold
|
# the threshold
|
||||||
if c.duration < 1.0 or c.duration > 20.0:
|
if c.duration < 1.0 or c.duration > 30.0:
|
||||||
# logging.warning(
|
# logging.warning(
|
||||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
# )
|
# )
|
||||||
return False
|
return False
|
||||||
codec_len = len(c.custom["answer_cosyvoice_speech_token"])
|
codec_len = (
|
||||||
|
len(c.custom["answer_cosyvoice_speech_token"])
|
||||||
|
if "answer_cosyvoice_speech_token" in c.custom
|
||||||
|
else len(c.custom["speech_token"])
|
||||||
|
)
|
||||||
if codec_len > 2200:
|
if codec_len > 2200:
|
||||||
logging.warning(
|
logging.warning(
|
||||||
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}, lenth: {codec_len}"
|
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}, lenth: {codec_len}"
|
||||||
@ -815,9 +856,17 @@ def run(rank, world_size, args):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
train_cuts = data_module.train_cuts()
|
if params.dataset_format == "slam_omni":
|
||||||
|
train_cuts = data_module.train_cuts()
|
||||||
|
valid_cuts = data_module.dev_cuts()
|
||||||
|
elif params.dataset_format == "vocalnet":
|
||||||
|
train_cuts = data_module.train_cuts_en_vocalnet()
|
||||||
|
valid_cuts = data_module.valid_cuts_en_vocalnet()
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
||||||
|
|
||||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
|
valid_cuts = valid_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
sampler_state_dict = None
|
sampler_state_dict = None
|
||||||
if params.sampler_state_dict_path:
|
if params.sampler_state_dict_path:
|
||||||
@ -828,7 +877,6 @@ def run(rank, world_size, args):
|
|||||||
train_cuts, sampler_state_dict=sampler_state_dict
|
train_cuts, sampler_state_dict=sampler_state_dict
|
||||||
)
|
)
|
||||||
|
|
||||||
valid_cuts = data_module.dev_cuts()
|
|
||||||
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
if args.tensorboard and rank == 0:
|
if args.tensorboard and rank == 0:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user