mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
A Zipformer recipe with Byte-level BPE for Aishell-1 (#1464)
* init commit * Update train.py * Update decode.py * Update RESULTS.md * added `vocab_size` * removed unused softlinks * added scripts for testing pretrained models * set `bpe_model` as required * re-org the bbpe recipe for aishell
This commit is contained in:
parent
398401ed27
commit
7bdde9174c
@ -2,9 +2,61 @@
|
|||||||
|
|
||||||
### Aishell training result (Stateless Transducer)
|
### Aishell training result (Stateless Transducer)
|
||||||
|
|
||||||
|
#### Zipformer (Byte-level BPE)
|
||||||
|
|
||||||
|
[./zipformer](./zipformer/)
|
||||||
|
|
||||||
|
It's reworked Zipformer with Pruned RNNT loss, trained with Byte-level BPE, `vocab_size` set to 500.
|
||||||
|
|
||||||
|
##### normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M
|
||||||
|
|
||||||
|
| | test | dev | comment |
|
||||||
|
|------------------------|------|------|-----------------------------------------|
|
||||||
|
| greedy search | 4.54 | 4.31 | --epoch 40 --avg 10 |
|
||||||
|
| modified beam search | 4.37 | 4.11 | --epoch 40 --avg 10 |
|
||||||
|
| fast beam search | 4.43 | 4.17 | --epoch 40 --avg 10 |
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./prepare.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
|
||||||
|
./zipformer/train_bbpe.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 40 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--context-size 2 \
|
||||||
|
--enable-musan 0 \
|
||||||
|
--exp-dir zipformer/exp_bbpe \
|
||||||
|
--max-duration 1000 \
|
||||||
|
--enable-musan 0 \
|
||||||
|
--base-lr 0.045 \
|
||||||
|
--lr-batches 7500 \
|
||||||
|
--lr-epochs 10 \
|
||||||
|
--spec-aug-time-warp-factor 20
|
||||||
|
```
|
||||||
|
|
||||||
|
Command for decoding is:
|
||||||
|
```bash
|
||||||
|
for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||||
|
./zipformer/decode_bbpe.py \
|
||||||
|
--epoch 40 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./zipformer_bbpe/exp \
|
||||||
|
--bpe-model data/lang_bbpe_500/bbpe.model \
|
||||||
|
--context-size 2 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
```
|
||||||
|
Pretrained models, training logs, decoding logs, tensorboard and decoding results
|
||||||
|
are available at
|
||||||
|
<https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-bbpe-2024-01-16>
|
||||||
|
|
||||||
|
|
||||||
#### Zipformer (Non-streaming)
|
#### Zipformer (Non-streaming)
|
||||||
|
|
||||||
[./zipformer](./zipformer)
|
[./zipformer](./zipformer/)
|
||||||
|
|
||||||
It's reworked Zipformer with Pruned RNNT loss.
|
It's reworked Zipformer with Pruned RNNT loss.
|
||||||
**Caution**: It uses `--context-size=1`.
|
**Caution**: It uses `--context-size=1`.
|
||||||
@ -260,7 +312,7 @@ done
|
|||||||
Pretrained models, training logs, decoding logs, and decoding results
|
Pretrained models, training logs, decoding logs, and decoding results
|
||||||
are available at
|
are available at
|
||||||
<https://huggingface.co/marcoyang/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21>
|
<https://huggingface.co/marcoyang/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21>
|
||||||
#### Pruned transducer stateless 7 (zipformer)
|
#### Pruned transducer stateless 7 (Byte-level BPE)
|
||||||
|
|
||||||
See <https://github.com/k2-fsa/icefall/pull/986>
|
See <https://github.com/k2-fsa/icefall/pull/986>
|
||||||
|
|
||||||
|
840
egs/aishell/ASR/zipformer/decode_bbpe.py
Executable file
840
egs/aishell/ASR/zipformer/decode_bbpe.py
Executable file
@ -0,0 +1,840 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2024 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Mingshuang Luo,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/decode_bbpe.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp_bbpe \
|
||||||
|
--lang-dir data/lang_bbpe_500 \
|
||||||
|
--bpe-model data/lang_bbpe_500/bbpe.model \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/decode_bbpe.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp_bbpe \
|
||||||
|
--lang-dir data/lang_bbpe_500 \
|
||||||
|
--bpe-model data/lang_bbpe_500/bbpe.model \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) fast beam search (trivial_graph)
|
||||||
|
./zipformer/decode_bbpe.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp_bbpe \
|
||||||
|
--lang-dir data/lang_bbpe_500 \
|
||||||
|
--bpe-model data/lang_bbpe_500/bbpe.model \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(4) fast beam search (LG)
|
||||||
|
./zipformer/decode_bbpe.py \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp_bbpe \
|
||||||
|
--lang-dir data/lang_bbpe_500 \
|
||||||
|
--bpe-model data/lang_bbpe_500/bbpe.model \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_LG \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(5) fast beam search (nbest oracle WER)
|
||||||
|
./zipformer/decode_bbpe.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp_bbpe \
|
||||||
|
--lang-dir data/lang_bbpe_500 \
|
||||||
|
--bpe-model data/lang_bbpe_500/bbpe.model \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall import byte_encode, smart_byte_decode, tokenize_by_CJK_char
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
make_pad_mask,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer_bbpe/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bbpe_500/bbpe.model",
|
||||||
|
help="Path to the byte BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bbpe_500/",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_LG
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
If you use fast_beam_search_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=20.0,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search,
|
||||||
|
fast_beam_search, fast_beam_search_LG,
|
||||||
|
and fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ilme-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.2,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_LG.
|
||||||
|
It specifies the scale for the internal language model estimation.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--blank-penalty",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="""
|
||||||
|
The penalty applied on blank symbol during decoding.
|
||||||
|
Note: It is a positive value that would be applied to logits like
|
||||||
|
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||||
|
[batch_size, vocab] and blank id is 0).
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||||
|
pad_len = 30
|
||||||
|
feature_lens += pad_len
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, pad_len),
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
x, x_lens = model.encoder_embed(feature, feature_lens)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_LG":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
ilme_scale=params.ilme_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append([lexicon.word_table[i] for i in hyp])
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
ref_texts = []
|
||||||
|
for tx in supervisions["text"]:
|
||||||
|
ref_texts.append(byte_encode(tokenize_by_CJK_char(tx)))
|
||||||
|
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=sp.encode(ref_texts),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(smart_byte_decode(sp.decode(hyp)).split())
|
||||||
|
|
||||||
|
key = f"blank_penalty_{params.blank_penalty}"
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search_" + key: hyps}
|
||||||
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
|
key += f"_beam_{params.beam}_"
|
||||||
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
|
key += f"max_states_{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ilme_scale_{params.ilme_scale}"
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}_" + key: hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
lexicon:
|
||||||
|
directory containing the lexicon.
|
||||||
|
sp:
|
||||||
|
SentencePiece model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
lexicon=lexicon,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_words = "".join(ref_text.split())
|
||||||
|
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
|
||||||
|
results_char = []
|
||||||
|
for res in results:
|
||||||
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
|
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_LG",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"_ilme_scale_{params.ilme_scale}"
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
params.suffix += f"-blank-penalty-{params.blank_penalty}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> are defined in local/train_bbpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
|
||||||
|
def remove_short_utt(c: Cut):
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
if T <= 0:
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
|
||||||
|
)
|
||||||
|
return T > 0
|
||||||
|
|
||||||
|
dev_cuts = aishell.valid_cuts()
|
||||||
|
dev_cuts = dev_cuts.filter(remove_short_utt)
|
||||||
|
dev_dl = aishell.valid_dataloaders(dev_cuts)
|
||||||
|
|
||||||
|
test_cuts = aishell.test_cuts()
|
||||||
|
test_cuts = test_cuts.filter(remove_short_utt)
|
||||||
|
test_dl = aishell.test_dataloaders(test_cuts)
|
||||||
|
|
||||||
|
test_sets = ["dev", "test"]
|
||||||
|
test_dls = [dev_dl, test_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
lexicon=lexicon,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
279
egs/aishell/ASR/zipformer/jit_pretrained_bbpe.py
Executable file
279
egs/aishell/ASR/zipformer/jit_pretrained_bbpe.py
Executable file
@ -0,0 +1,279 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2024 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script loads torchscript models, exported by `torch.jit.script()`
|
||||||
|
and uses them to decode waves.
|
||||||
|
You can use the following command to get the exported models:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer_bbpe/exp \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 9 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
Usage of this script:
|
||||||
|
|
||||||
|
./zipformer/jit_pretrained.py \
|
||||||
|
--nn-model-filename ./zipformer_bbpe/exp/cpu_jit.pt \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
from icefall import smart_byte_decode
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nn-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the torchscript model cpu_jit.pt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="""Path to the bbpe.model.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float = 16000
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0].contiguous())
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: torch.jit.ScriptModule,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
A 3-D tensor of shape (N, T, C)
|
||||||
|
encoder_out_lens:
|
||||||
|
A 1-D tensor of shape (N,).
|
||||||
|
Returns:
|
||||||
|
Return the decoded results for each utterance.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||||
|
input=encoder_out,
|
||||||
|
lengths=encoder_out_lens.cpu(),
|
||||||
|
batch_first=True,
|
||||||
|
enforce_sorted=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
device = encoder_out.device
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
|
||||||
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||||
|
N = encoder_out.size(0)
|
||||||
|
|
||||||
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||||
|
assert N == batch_size_list[0], (N, batch_size_list)
|
||||||
|
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
hyps = [[blank_id] * context_size for _ in range(N)]
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
hyps,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (N, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=torch.tensor([False]),
|
||||||
|
).squeeze(1)
|
||||||
|
|
||||||
|
offset = 0
|
||||||
|
for batch_size in batch_size_list:
|
||||||
|
start = offset
|
||||||
|
end = offset + batch_size
|
||||||
|
current_encoder_out = packed_encoder_out.data[start:end]
|
||||||
|
current_encoder_out = current_encoder_out
|
||||||
|
# current_encoder_out's shape: (batch_size, encoder_out_dim)
|
||||||
|
offset = end
|
||||||
|
|
||||||
|
decoder_out = decoder_out[:batch_size]
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
hyps[i].append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
decoder_input,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=torch.tensor([False]),
|
||||||
|
)
|
||||||
|
decoder_out = decoder_out.squeeze(1)
|
||||||
|
|
||||||
|
sorted_ans = [h[context_size:] for h in hyps]
|
||||||
|
ans = []
|
||||||
|
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||||
|
for i in range(N):
|
||||||
|
ans.append(sorted_ans[unsorted_indices[i]])
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
model = torch.jit.load(args.nn_model_filename)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(args.bpe_model)
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
opts.mel_opts.high_freq = -400
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {args.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=args.sound_files,
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=math.log(1e-10),
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
features=features,
|
||||||
|
feature_lengths=feature_lengths,
|
||||||
|
)
|
||||||
|
|
||||||
|
hyps = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(args.sound_files, hyps):
|
||||||
|
words = smart_byte_decode(sp.decode(hyp))
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
403
egs/aishell/ASR/zipformer/pretrained_bbpe.py
Executable file
403
egs/aishell/ASR/zipformer/pretrained_bbpe.py
Executable file
@ -0,0 +1,403 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2024 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script loads a checkpoint and uses it to decode waves.
|
||||||
|
You can generate the checkpoint with the following command:
|
||||||
|
|
||||||
|
Note: This is a example for librispeech dataset, if you are using different
|
||||||
|
dataset, you should change the argument values according to your dataset.
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp_bbpe \
|
||||||
|
--tokens ./data/lang_bbpe_500/tokens.txt \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 9
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp_bbpe \
|
||||||
|
--causal 1 \
|
||||||
|
--tokens ./data/lang_bbpe_500/tokens.txt \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 9
|
||||||
|
|
||||||
|
Usage of this script:
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/pretrained_bbpe.py \
|
||||||
|
--checkpoint ./zipformer/exp_bbpe/pretrained.pt \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/pretrained_bbpe.py \
|
||||||
|
--checkpoint ./zipformer/exp_bbpe/pretrained.pt \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
--method modified_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) fast beam search
|
||||||
|
./zipformer/pretrained_bbpe.py \
|
||||||
|
--checkpoint ./zipformer/exp_bbpe/pretrained.pt \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
--method fast_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/pretrained_bbpe.py \
|
||||||
|
--checkpoint ./zipformer/exp_bbpe/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/pretrained_bbpe.py \
|
||||||
|
--checkpoint ./zipformer/exp_bbpe/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
--method modified_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) fast beam search
|
||||||
|
./zipformer/pretrained_bbpe.py \
|
||||||
|
--checkpoint ./zipformer/exp_bbpe/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--bpe ./data/lang_bbpe_500/bbpe.model \
|
||||||
|
--method fast_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
|
||||||
|
You can also use `./zipformer/exp_bbpe/epoch-xx.pt`.
|
||||||
|
|
||||||
|
Note: ./zipformer/exp_bbpe/pretrained.pt is generated by ./zipformer/export_bbpe.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall import smart_byte_decode
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="""Path to the bbpe.model.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0].contiguous())
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
opts.mel_opts.high_freq = -400
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
# model forward
|
||||||
|
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
|
||||||
|
|
||||||
|
num_waves = encoder_out.size(0)
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
logging.info(msg)
|
||||||
|
|
||||||
|
if params.method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
hyps.append(smart_byte_decode(sp.decode(hyp)).split())
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
942
egs/aishell/ASR/zipformer/train_bbpe.py
Executable file
942
egs/aishell/ASR/zipformer/train_bbpe.py
Executable file
@ -0,0 +1,942 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang,
|
||||||
|
# Mingshuang Luo,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Daniel Povey,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
|
./zipformer/train_bbpe.py \
|
||||||
|
--world-size 8 \
|
||||||
|
--num-epochs 12 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir zipformer/exp_bbpe \
|
||||||
|
--max-duration 350
|
||||||
|
|
||||||
|
# For mix precision training:
|
||||||
|
|
||||||
|
./zipformer/train_bbpe.py \
|
||||||
|
--world-size 8 \
|
||||||
|
--num-epochs 12 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp_bbpe \
|
||||||
|
--max-duration 750
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import copy
|
||||||
|
import logging
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional, Tuple, Union
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from optim import Eden, ScaledAdam
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.cuda.amp import GradScaler
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from train import (
|
||||||
|
LRSchedulerType,
|
||||||
|
add_model_arguments,
|
||||||
|
get_adjusted_batch_count,
|
||||||
|
get_model,
|
||||||
|
get_params,
|
||||||
|
load_checkpoint_if_available,
|
||||||
|
save_checkpoint,
|
||||||
|
set_batch_count,
|
||||||
|
)
|
||||||
|
|
||||||
|
from icefall import byte_encode, diagnostics
|
||||||
|
from icefall.checkpoint import remove_checkpoints
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
save_checkpoint_with_global_batch_idx,
|
||||||
|
update_averaged_model,
|
||||||
|
)
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.hooks import register_inf_check_hooks
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
MetricsTracker,
|
||||||
|
get_parameter_groups_with_lrs,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
tokenize_by_CJK_char,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Resume training from this epoch. It should be positive.
|
||||||
|
If larger than 1, it will load checkpoint from
|
||||||
|
exp-dir/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-batch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --start-epoch is ignored and
|
||||||
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer_bbpe/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bbpe_500/bbpe.model",
|
||||||
|
help="Path to the Byte BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--base-lr", type=float, default=0.045, help="The base learning rate."
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lr-batches",
|
||||||
|
type=float,
|
||||||
|
default=7500,
|
||||||
|
help="""Number of steps that affects how rapidly the learning rate
|
||||||
|
decreases. We suggest not to change this.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lr-epochs",
|
||||||
|
type=float,
|
||||||
|
default=3.5,
|
||||||
|
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ref-duration",
|
||||||
|
type=float,
|
||||||
|
default=600,
|
||||||
|
help="""Reference batch duration for purposes of adjusting batch counts for setting various schedules inside the model""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="""The context size in the decoder. 1 means bigram; 2 means tri-gram""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--prune-range",
|
||||||
|
type=int,
|
||||||
|
default=5,
|
||||||
|
help="""The prune range for rnnt loss, it means how many symbols(context)
|
||||||
|
we are using to compute the loss""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.25,
|
||||||
|
help="""The scale to smooth the loss with lm
|
||||||
|
(output of prediction network) part.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--am-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="""The scale to smooth the loss with am (output of encoder network) part.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simple-loss-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""To get pruning ranges, we will calculate a simple version
|
||||||
|
loss(joiner is just addition), this simple loss also uses for
|
||||||
|
training (as a regularization item). We will scale the simple loss
|
||||||
|
with this parameter before adding to the final loss.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--print-diagnostics",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Accumulate stats on activations, print them and exit.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--inf-check",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Add hooks to check for infinite module outputs and gradients.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--save-every-n",
|
||||||
|
type=int,
|
||||||
|
default=4000,
|
||||||
|
help="""Save checkpoint after processing this number of batches"
|
||||||
|
periodically. We save checkpoint to exp-dir/ whenever
|
||||||
|
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
||||||
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
||||||
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
||||||
|
end of each epoch where `xxx` is the epoch number counting from 0.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--keep-last-k",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""Only keep this number of checkpoints on disk.
|
||||||
|
For instance, if it is 3, there are only 3 checkpoints
|
||||||
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||||||
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--average-period",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Update the averaged model, namely `model_avg`, after processing
|
||||||
|
this number of batches. `model_avg` is a separate version of model,
|
||||||
|
in which each floating-point parameter is the average of all the
|
||||||
|
parameters from the start of training. Each time we take the average,
|
||||||
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
||||||
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: Union[nn.Module, DDP],
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Zipformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
warmup: a floating point value which increases throughout training;
|
||||||
|
values >= 1.0 are fully warmed up and have all modules present.
|
||||||
|
"""
|
||||||
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
batch_idx_train = params.batch_idx_train
|
||||||
|
warm_step = params.warm_step
|
||||||
|
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
y = sp.encode(texts, out_type=int)
|
||||||
|
y = k2.RaggedTensor(y).to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
simple_loss, pruned_loss, _ = model(
|
||||||
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
y=y,
|
||||||
|
prune_range=params.prune_range,
|
||||||
|
am_scale=params.am_scale,
|
||||||
|
lm_scale=params.lm_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
s = params.simple_loss_scale
|
||||||
|
# take down the scale on the simple loss from 1.0 at the start
|
||||||
|
# to params.simple_loss scale by warm_step.
|
||||||
|
simple_loss_scale = (
|
||||||
|
s
|
||||||
|
if batch_idx_train >= warm_step
|
||||||
|
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
|
||||||
|
)
|
||||||
|
pruned_loss_scale = (
|
||||||
|
1.0
|
||||||
|
if batch_idx_train >= warm_step
|
||||||
|
else 0.1 + 0.9 * (batch_idx_train / warm_step)
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
|
||||||
|
# Note: We use reduction=sum while computing the loss.
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
info["simple_loss"] = simple_loss.detach().cpu().item()
|
||||||
|
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: Union[nn.Module, DDP],
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: Union[nn.Module, DDP],
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: LRSchedulerType,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
scaler: GradScaler,
|
||||||
|
model_avg: Optional[nn.Module] = None,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler, we call step() every step.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
scaler:
|
||||||
|
The scaler used for mix precision training.
|
||||||
|
model_avg:
|
||||||
|
The stored model averaged from the start of training.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
rank:
|
||||||
|
The rank of the node in DDP training. If no DDP is used, it should
|
||||||
|
be set to 0.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
cur_batch_idx = params.get("cur_batch_idx", 0)
|
||||||
|
|
||||||
|
saved_bad_model = False
|
||||||
|
|
||||||
|
def save_bad_model(suffix: str = ""):
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
||||||
|
model=model,
|
||||||
|
model_avg=model_avg,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sampler=train_dl.sampler,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
if batch_idx % 10 == 0:
|
||||||
|
set_batch_count(model, get_adjusted_batch_count(params))
|
||||||
|
if batch_idx < cur_batch_idx:
|
||||||
|
continue
|
||||||
|
cur_batch_idx = batch_idx
|
||||||
|
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
try:
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
scheduler.step_batch(params.batch_idx_train)
|
||||||
|
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
except: # noqa
|
||||||
|
save_bad_model()
|
||||||
|
display_and_save_batch(batch, params=params, sp=sp)
|
||||||
|
raise
|
||||||
|
|
||||||
|
if params.print_diagnostics and batch_idx == 5:
|
||||||
|
return
|
||||||
|
|
||||||
|
if (
|
||||||
|
rank == 0
|
||||||
|
and params.batch_idx_train > 0
|
||||||
|
and params.batch_idx_train % params.average_period == 0
|
||||||
|
):
|
||||||
|
update_averaged_model(
|
||||||
|
params=params,
|
||||||
|
model_cur=model,
|
||||||
|
model_avg=model_avg,
|
||||||
|
)
|
||||||
|
|
||||||
|
if (
|
||||||
|
params.batch_idx_train > 0
|
||||||
|
and params.batch_idx_train % params.save_every_n == 0
|
||||||
|
):
|
||||||
|
params.cur_batch_idx = batch_idx
|
||||||
|
save_checkpoint_with_global_batch_idx(
|
||||||
|
out_dir=params.exp_dir,
|
||||||
|
global_batch_idx=params.batch_idx_train,
|
||||||
|
model=model,
|
||||||
|
model_avg=model_avg,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sampler=train_dl.sampler,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
del params.cur_batch_idx
|
||||||
|
remove_checkpoints(
|
||||||
|
out_dir=params.exp_dir,
|
||||||
|
topk=params.keep_last_k,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0 and params.use_fp16:
|
||||||
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
||||||
|
# of the grad scaler is configurable, but we can't configure it to have different
|
||||||
|
# behavior depending on the current grad scale.
|
||||||
|
cur_grad_scale = scaler._scale.item()
|
||||||
|
|
||||||
|
if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0):
|
||||||
|
scaler.update(cur_grad_scale * 2.0)
|
||||||
|
if cur_grad_scale < 0.01:
|
||||||
|
if not saved_bad_model:
|
||||||
|
save_bad_model(suffix="-first-warning")
|
||||||
|
saved_bad_model = True
|
||||||
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
||||||
|
if cur_grad_scale < 1.0e-05:
|
||||||
|
save_bad_model()
|
||||||
|
raise RuntimeError(
|
||||||
|
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
cur_lr = max(scheduler.get_last_lr())
|
||||||
|
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||||
|
f"lr: {cur_lr:.2e}, "
|
||||||
|
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
|
if params.use_fp16:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
logging.info(
|
||||||
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(params.seed)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bbpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
assert params.save_every_n >= params.average_period
|
||||||
|
model_avg: Optional[nn.Module] = None
|
||||||
|
if rank == 0:
|
||||||
|
# model_avg is only used with rank 0
|
||||||
|
model_avg = copy.deepcopy(model).to(torch.float64)
|
||||||
|
|
||||||
|
assert params.start_epoch > 0, params.start_epoch
|
||||||
|
checkpoints = load_checkpoint_if_available(
|
||||||
|
params=params, model=model, model_avg=model_avg
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
logging.info("Using DDP")
|
||||||
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||||
|
|
||||||
|
optimizer = ScaledAdam(
|
||||||
|
get_parameter_groups_with_lrs(model, lr=params.base_lr, include_names=True),
|
||||||
|
lr=params.base_lr, # should have no effect
|
||||||
|
clipping_scale=2.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||||||
|
|
||||||
|
if checkpoints and "optimizer" in checkpoints:
|
||||||
|
logging.info("Loading optimizer state dict")
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
if (
|
||||||
|
checkpoints
|
||||||
|
and "scheduler" in checkpoints
|
||||||
|
and checkpoints["scheduler"] is not None
|
||||||
|
):
|
||||||
|
logging.info("Loading scheduler state dict")
|
||||||
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||||
|
|
||||||
|
if params.print_diagnostics:
|
||||||
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
|
512
|
||||||
|
) # allow 4 megabytes per sub-module
|
||||||
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
|
if params.inf_check:
|
||||||
|
register_inf_check_hooks(model)
|
||||||
|
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
|
||||||
|
train_cuts = aishell.train_cuts()
|
||||||
|
valid_cuts = aishell.valid_cuts()
|
||||||
|
|
||||||
|
def remove_short_and_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration between 1 second and 15 seconds
|
||||||
|
#
|
||||||
|
# Caution: There is a reason to select 15.0 here. Please see
|
||||||
|
# ../local/display_manifest_statistics.py
|
||||||
|
#
|
||||||
|
# You should use ../local/display_manifest_statistics.py to get
|
||||||
|
# an utterance duration distribution for your dataset to select
|
||||||
|
# the threshold
|
||||||
|
if c.duration < 1.0 or c.duration > 15.0:
|
||||||
|
# logging.warning(
|
||||||
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
|
# )
|
||||||
|
return False
|
||||||
|
|
||||||
|
# In pruned RNN-T, we require that T >= S
|
||||||
|
# where T is the number of feature frames after subsampling
|
||||||
|
# and S is the number of tokens in the utterance
|
||||||
|
|
||||||
|
# In ./zipformer.py, the conv module uses the following expression
|
||||||
|
# for subsampling
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
tokens = sp.encode(c.supervisions[0].text, out_type=str)
|
||||||
|
|
||||||
|
if T < len(tokens):
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from training. "
|
||||||
|
f"Number of frames (before subsampling): {c.num_frames}. "
|
||||||
|
f"Number of frames (after subsampling): {T}. "
|
||||||
|
f"Text: {c.supervisions[0].text}. "
|
||||||
|
f"Tokens: {tokens}. "
|
||||||
|
f"Number of tokens: {len(tokens)}"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
def tokenize_and_encode_text(c: Cut):
|
||||||
|
# Text normalize for each sample
|
||||||
|
text = c.supervisions[0].text
|
||||||
|
text = byte_encode(tokenize_by_CJK_char(text))
|
||||||
|
c.supervisions[0].text = text
|
||||||
|
return c
|
||||||
|
|
||||||
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
|
train_cuts = train_cuts.map(tokenize_and_encode_text)
|
||||||
|
|
||||||
|
valid_cuts = valid_cuts.map(tokenize_and_encode_text)
|
||||||
|
|
||||||
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||||
|
# We only load the sampler's state dict when it loads a checkpoint
|
||||||
|
# saved in the middle of an epoch
|
||||||
|
sampler_state_dict = checkpoints["sampler"]
|
||||||
|
else:
|
||||||
|
sampler_state_dict = None
|
||||||
|
|
||||||
|
train_dl = aishell.train_dataloaders(
|
||||||
|
train_cuts, sampler_state_dict=sampler_state_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
valid_dl = aishell.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
if False and not params.print_diagnostics:
|
||||||
|
scan_pessimistic_batches_for_oom(
|
||||||
|
model=model,
|
||||||
|
train_dl=train_dl,
|
||||||
|
optimizer=optimizer,
|
||||||
|
sp=sp,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||||
|
if checkpoints and "grad_scaler" in checkpoints:
|
||||||
|
logging.info("Loading grad scaler state dict")
|
||||||
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||||
|
scheduler.step_epoch(epoch - 1)
|
||||||
|
fix_random_seed(params.seed + epoch - 1)
|
||||||
|
train_dl.sampler.set_epoch(epoch - 1)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
model_avg=model_avg,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sp=sp,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
scaler=scaler,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.print_diagnostics:
|
||||||
|
diagnostic.print_diagnostics()
|
||||||
|
break
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
model_avg=model_avg,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sampler=train_dl.sampler,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def display_and_save_batch(
|
||||||
|
batch: dict,
|
||||||
|
params: AttributeDict,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
) -> None:
|
||||||
|
"""Display the batch statistics and save the batch into disk.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
sp:
|
||||||
|
The sentence piece model.
|
||||||
|
"""
|
||||||
|
from lhotse.utils import uuid4
|
||||||
|
|
||||||
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||||||
|
logging.info(f"Saving batch to {filename}")
|
||||||
|
torch.save(batch, filename)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
features = batch["inputs"]
|
||||||
|
|
||||||
|
logging.info(f"features shape: {features.shape}")
|
||||||
|
|
||||||
|
y = sp.encode(supervisions["text"], out_type=int)
|
||||||
|
num_tokens = sum(len(i) for i in y)
|
||||||
|
logging.info(f"num tokens: {num_tokens}")
|
||||||
|
|
||||||
|
|
||||||
|
def scan_pessimistic_batches_for_oom(
|
||||||
|
model: Union[nn.Module, DDP],
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
params: AttributeDict,
|
||||||
|
):
|
||||||
|
from lhotse.dataset import find_pessimistic_batches
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
"Sanity check -- see if any of the batches in epoch 1 would cause OOM."
|
||||||
|
)
|
||||||
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||||
|
for criterion, cuts in batches.items():
|
||||||
|
batch = train_dl.dataset[cuts]
|
||||||
|
try:
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, _ = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
except Exception as e:
|
||||||
|
if "CUDA out of memory" in str(e):
|
||||||
|
logging.error(
|
||||||
|
"Your GPU ran out of memory with the current "
|
||||||
|
"max_duration setting. We recommend decreasing "
|
||||||
|
"max_duration and trying again.\n"
|
||||||
|
f"Failing criterion: {criterion} "
|
||||||
|
f"(={crit_values[criterion]}) ..."
|
||||||
|
)
|
||||||
|
display_and_save_batch(batch, params=params, sp=sp)
|
||||||
|
raise
|
||||||
|
logging.info(
|
||||||
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user