mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-12 19:42:19 +00:00
Add libriheavy recipe
This commit is contained in:
parent
225bf3b54a
commit
7b548898a9
1
egs/libriheavy/TTS/hifigan/models.py
Symbolic link
1
egs/libriheavy/TTS/hifigan/models.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../ljspeech/TTS/hifigan/models.py
|
993
egs/libriheavy/TTS/hifigan/train.py
Executable file
993
egs/libriheavy/TTS/hifigan/train.py
Executable file
@ -0,0 +1,993 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023-2024 Xiaomi Corp. (authors: Zengwei Yao,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import itertools
|
||||
import json
|
||||
import copy
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Optimizer
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tts_datamodule import LibriheavyTtsDataModule
|
||||
|
||||
from torch.optim.lr_scheduler import ExponentialLR, LRScheduler
|
||||
from torch.optim import Optimizer
|
||||
|
||||
from utils import load_checkpoint, save_checkpoint, plot_spectrogram
|
||||
|
||||
from icefall import diagnostics
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.hooks import register_inf_check_hooks
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
get_parameter_groups_with_lrs,
|
||||
)
|
||||
from models import (
|
||||
HiFiGAN,
|
||||
feature_loss,
|
||||
generator_loss,
|
||||
discriminator_loss,
|
||||
)
|
||||
from lhotse import Fbank, FbankConfig
|
||||
from lhotse.utils import fix_random_seed
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Resume training from this epoch. It should be positive.
|
||||
If larger than 1, it will load checkpoint from
|
||||
exp-dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-batch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --start-epoch is ignored and
|
||||
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="hifigan/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--learning-rate", type=float, default=0.0002, help="The learning rate."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--print-diagnostics",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Accumulate stats on activations, print them and exit.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--inf-check",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Add hooks to check for infinite module outputs and gradients.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--save-every-n",
|
||||
type=int,
|
||||
default=4000,
|
||||
help="""Save checkpoint after processing this number of batches"
|
||||
periodically. We save checkpoint to exp-dir/ whenever
|
||||
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
||||
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
||||
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
||||
end of each epoch where `xxx` is the epoch number counting from 1.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--keep-last-k",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""Only keep this number of checkpoints on disk.
|
||||
For instance, if it is 3, there are only 3 checkpoints
|
||||
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||||
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--average-period",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Update the averaged model, namely `model_avg`, after processing
|
||||
this number of batches. `model_avg` is a separate version of model,
|
||||
in which each floating-point parameter is the average of all the
|
||||
parameters from the start of training. Each time we take the average,
|
||||
we do: `model_avg = model * (average_period / batch_idx_train) +
|
||||
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hifigan-version",
|
||||
type=str,
|
||||
default="v1",
|
||||
choices=["v1", "v2", "v3"],
|
||||
help="Version of hifigan.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 500,
|
||||
"feature_dim": 80,
|
||||
"segment_size": 8192,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.999,
|
||||
"v1": {
|
||||
"upsample_initial_channel": 512,
|
||||
"resblock_version": "1",
|
||||
"upsample_rates": [8, 8, 2, 2],
|
||||
"upsample_kernel_sizes": [16, 16, 4, 4],
|
||||
"resblock_kernel_sizes": [3, 7, 11],
|
||||
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
},
|
||||
"v2": {
|
||||
"upsample_initial_channel": 128,
|
||||
"resblock_version": "1",
|
||||
"upsample_rates": [8, 8, 2, 2],
|
||||
"upsample_kernel_sizes": [16, 16, 4, 4],
|
||||
"resblock_kernel_sizes": [3, 7, 11],
|
||||
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
},
|
||||
"v3": {
|
||||
"upsample_initial_channel": 256,
|
||||
"resblock_version": "2",
|
||||
"upsample_rates": [8, 8, 4],
|
||||
"upsample_kernel_sizes": [16, 16, 8],
|
||||
"resblock_kernel_sizes": [3, 5, 7],
|
||||
"resblock_dilation_sizes": [[1, 2], [2, 6], [3, 12]],
|
||||
},
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def fbank(
|
||||
audio: torch.Tensor,
|
||||
lengths: Optional[torch.Tensor] = None,
|
||||
sampling_rate: int = 16000,
|
||||
frame_length: int = 1024,
|
||||
frame_shift: int = 256,
|
||||
use_fft_mag: bool = True,
|
||||
):
|
||||
sampling_rate = sampling_rate
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=frame_length / sampling_rate, # (in second),
|
||||
frame_shift=frame_shift / sampling_rate, # (in second)
|
||||
use_fft_mag=use_fft_mag,
|
||||
)
|
||||
fb = Fbank(config)
|
||||
feat = fb.extract_batch(audio, sampling_rate=sampling_rate, lengths=lengths)
|
||||
if feat.dim() == 2:
|
||||
feat = feat.unsqueeze(0)
|
||||
return feat
|
||||
|
||||
|
||||
def get_model(params: AttributeDict) -> nn.Module:
|
||||
device = params.device
|
||||
model = HiFiGAN(
|
||||
in_channels=params.feature_dim,
|
||||
upsample_initial_channel=params[params.hifigan_version][
|
||||
"upsample_initial_channel"
|
||||
],
|
||||
upsample_rates=params[params.hifigan_version]["upsample_rates"],
|
||||
upsample_kernel_sizes=params[params.hifigan_version]["upsample_kernel_sizes"],
|
||||
resblock_version=params[params.hifigan_version]["resblock_version"],
|
||||
resblock_kernel_sizes=params[params.hifigan_version]["resblock_kernel_sizes"],
|
||||
resblock_dilation_sizes=params[params.hifigan_version][
|
||||
"resblock_dilation_sizes"
|
||||
],
|
||||
).to(device)
|
||||
num_param_g = sum([p.numel() for p in model.generator.parameters()])
|
||||
logging.info(f"Number of Generator parameters : {num_param_g}")
|
||||
num_param_mpd = sum([p.numel() for p in model.mpd.parameters()])
|
||||
logging.info(f"Number of MultiPeriodDiscriminator parameters : {num_param_mpd}")
|
||||
num_param_msd = sum([p.numel() for p in model.msd.parameters()])
|
||||
logging.info(f"Number of MultiScaleDiscriminator parameters : {num_param_msd}")
|
||||
logging.info(
|
||||
f"Number of model parameters : {num_param_g + num_param_mpd + num_param_msd}"
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
model_avg: nn.Module = None,
|
||||
optimizer_g: Optional[Optimizer] = None,
|
||||
optimizer_d: Optional[Optimizer] = None,
|
||||
scheduler_g: Optional[LRScheduler] = None,
|
||||
scheduler_d: Optional[LRScheduler] = None,
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_batch is positive, it will load the checkpoint from
|
||||
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||||
params.start_epoch is larger than 1, it will load the checkpoint from
|
||||
`params.start_epoch - 1`.
|
||||
|
||||
Apart from loading state dict for `model` and `optimizer` it also updates
|
||||
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The scheduler that we are using.
|
||||
Returns:
|
||||
Return a dict containing previously saved training info.
|
||||
"""
|
||||
if params.start_batch > 0:
|
||||
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||||
elif params.start_epoch > 1:
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
else:
|
||||
return None
|
||||
|
||||
assert filename.is_file(), f"{filename} does not exist!"
|
||||
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
optimizer_g=optimizer_g,
|
||||
optimizer_d=optimizer_d,
|
||||
scheduler_g=scheduler_g,
|
||||
scheduler_d=scheduler_d,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
if params.start_batch > 0:
|
||||
if "cur_epoch" in saved_params:
|
||||
params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def compute_generator_loss(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
features: Tensor,
|
||||
audios: Tensor,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
device = params.device
|
||||
model = model.module if isinstance(model, DDP) else model
|
||||
|
||||
audios = audios.unsqueeze(1) # (B, 1, T)
|
||||
|
||||
gen_audios = model(features) # (B, 1, T)
|
||||
|
||||
gen_features = fbank(gen_audios.squeeze(1)).permute(0, 2, 1).to(device) # (B, F, T)
|
||||
|
||||
# L1 Mel-Spectrogram Loss
|
||||
loss_mel = F.l1_loss(features, gen_features) * 45
|
||||
|
||||
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = model.mpd(audios, gen_audios)
|
||||
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = model.msd(audios, gen_audios)
|
||||
|
||||
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
|
||||
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
|
||||
|
||||
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
|
||||
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
|
||||
|
||||
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
|
||||
|
||||
assert loss_gen_all.requires_grad == True
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = 1
|
||||
info["loss_gen"] = loss_gen_all.detach().cpu().item()
|
||||
info["loss_mel"] = loss_mel.detach().cpu().item()
|
||||
info["loss_mel_error"] = loss_mel.detach().cpu().item() / 45
|
||||
info["loss_feature_msd"] = loss_fm_s.detach().cpu().item()
|
||||
info["loss_feature_mpd"] = loss_fm_f.detach().cpu().item()
|
||||
info["loss_gen_msd"] = loss_gen_s.detach().cpu().item()
|
||||
info["loss_gen_mpd"] = loss_gen_f.detach().cpu().item()
|
||||
|
||||
return loss_gen_all, info
|
||||
|
||||
|
||||
def compute_discriminator_loss(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
features: Tensor,
|
||||
audios: Tensor,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
device = params.device
|
||||
model = model.module if isinstance(model, DDP) else model
|
||||
|
||||
audios = audios.unsqueeze(1)
|
||||
|
||||
gen_audios = model(features) # (B, 1, T)
|
||||
|
||||
# MPD
|
||||
y_df_hat_r, y_df_hat_g, _, _ = model.mpd(audios, gen_audios.detach())
|
||||
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
|
||||
y_df_hat_r, y_df_hat_g
|
||||
)
|
||||
|
||||
# MSD
|
||||
y_ds_hat_r, y_ds_hat_g, _, _ = model.msd(audios, gen_audios.detach())
|
||||
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
|
||||
y_ds_hat_r, y_ds_hat_g
|
||||
)
|
||||
|
||||
loss_disc_all = loss_disc_s + loss_disc_f
|
||||
|
||||
info = MetricsTracker()
|
||||
# MetricsTracker will norm the loss value with "frames", set it to 1 here to
|
||||
# make tot_loss look normal.
|
||||
info["frames"] = 1
|
||||
info["loss_disc"] = loss_disc_all.detach().cpu().item()
|
||||
info["loss_disc_msd"] = loss_disc_s.detach().cpu().item()
|
||||
info["loss_disc_mpd"] = loss_disc_f.detach().cpu().item()
|
||||
|
||||
return loss_disc_all, info
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
optimizer_g: Optimizer,
|
||||
optimizer_d: Optimizer,
|
||||
scheduler_g: ExponentialLR,
|
||||
scheduler_d: ExponentialLR,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
scaler: GradScaler,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer.
|
||||
scheduler:
|
||||
The learning rate scheduler, we call step() every epoch.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
rank:
|
||||
The rank of the node in DDP training. If no DDP is used, it should
|
||||
be set to 0.
|
||||
"""
|
||||
model.train()
|
||||
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||
|
||||
# used to track the stats over iterations in one epoch
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
saved_bad_model = False
|
||||
|
||||
def save_bad_model(suffix: str = ""):
|
||||
save_checkpoint(
|
||||
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer_g=optimizer_g,
|
||||
optimizer_d=optimizer_d,
|
||||
scheduler_g=scheduler_g,
|
||||
scheduler_d=scheduler_d,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=0,
|
||||
)
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = batch["features_lens"].size(0)
|
||||
|
||||
features = batch["features"].to(device) # (B, T, F)
|
||||
features_lens = batch["features_lens"].to(device)
|
||||
audios = batch["audio"].to(device)
|
||||
|
||||
# 8192 samples is 29 frames
|
||||
segment_frames = (
|
||||
params.segment_size - params.frame_length
|
||||
) // params.frame_shift + 1
|
||||
start_p = random.randint(0, features_lens.min() - (segment_frames + 1))
|
||||
|
||||
features = features[:, start_p : start_p + segment_frames, :].permute(
|
||||
0, 2, 1
|
||||
) # (B, F, T)
|
||||
|
||||
audios = audios[
|
||||
:,
|
||||
start_p * params.frame_shift : start_p * params.frame_shift
|
||||
+ params.segment_size,
|
||||
] # (B, T)
|
||||
|
||||
try:
|
||||
|
||||
optimizer_d.zero_grad()
|
||||
|
||||
loss_disc, loss_disc_info = compute_discriminator_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
features=features,
|
||||
audios=audios,
|
||||
)
|
||||
|
||||
loss_disc.backward()
|
||||
optimizer_d.step()
|
||||
|
||||
optimizer_g.zero_grad()
|
||||
loss_gen, loss_gen_info = compute_generator_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
features=features,
|
||||
audios=audios,
|
||||
)
|
||||
|
||||
loss_gen.backward()
|
||||
optimizer_g.step()
|
||||
|
||||
loss_info = loss_gen_info + loss_disc_info
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_gen_info
|
||||
|
||||
except Exception as e:
|
||||
logging.info(f"Caught exception : {e}.")
|
||||
save_bad_model()
|
||||
raise
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
return
|
||||
|
||||
if params.batch_idx_train % 100 == 0 and params.use_fp16:
|
||||
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
||||
# of the grad scaler is configurable, but we can't configure it to have different
|
||||
# behavior depending on the current grad scale.
|
||||
cur_grad_scale = scaler._scale.item()
|
||||
|
||||
if cur_grad_scale < 8.0 or (
|
||||
cur_grad_scale < 32.0 and params.batch_idx_train % 400 == 0
|
||||
):
|
||||
scaler.update(cur_grad_scale * 2.0)
|
||||
if cur_grad_scale < 0.01:
|
||||
if not saved_bad_model:
|
||||
save_bad_model(suffix="-first-warning")
|
||||
saved_bad_model = True
|
||||
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
||||
if cur_grad_scale < 1.0e-05:
|
||||
save_bad_model()
|
||||
raise RuntimeError(
|
||||
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
||||
)
|
||||
|
||||
if params.batch_idx_train % params.log_interval == 0:
|
||||
cur_lr_g = max(scheduler_g.get_last_lr())
|
||||
cur_lr_d = max(scheduler_d.get_last_lr())
|
||||
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||
f"global_batch_idx: {params.batch_idx_train}, batch size: {batch_size}, "
|
||||
f"loss[{loss_info}], tot_loss[{tot_loss}], "
|
||||
f"cur_lr_g: {cur_lr_g:.2e}, "
|
||||
f"cur_lr_d: {cur_lr_d:.2e}, "
|
||||
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate_gen", cur_lr_g, params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate_disc", cur_lr_d, params.batch_idx_train
|
||||
)
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
if params.use_fp16:
|
||||
tb_writer.add_scalar(
|
||||
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
||||
)
|
||||
|
||||
if (
|
||||
params.batch_idx_train % params.valid_interval == 0
|
||||
and not params.print_diagnostics
|
||||
):
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
tb_writer=tb_writer,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
logging.info(
|
||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
loss_value = tot_loss["loss_gen"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
|
||||
model.eval()
|
||||
torch.cuda.empty_cache()
|
||||
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||
|
||||
# used to summary the stats over iterations
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
with torch.no_grad():
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
features = batch["features"] # (B, T, F)
|
||||
audios = batch["audio"]
|
||||
|
||||
x = features.permute(0, 2, 1) # (B, F, T)
|
||||
y = batch["audio"] # (B, T)
|
||||
y_mel = x.clone().to(device) # (B, F, T)
|
||||
|
||||
y_g_hat = model(x.to(device)) # (B, 1, T)
|
||||
|
||||
y_g_hat_mel = (
|
||||
fbank(y_g_hat.squeeze(1)).permute(0, 2, 1).to(device)
|
||||
) # (B, F, T)
|
||||
|
||||
loss_mel_error = F.l1_loss(y_mel, y_g_hat_mel)
|
||||
|
||||
loss_info = MetricsTracker()
|
||||
# MetricsTracker will norm the loss value with "frames", set it to 1 here to
|
||||
# make tot_loss look normal.
|
||||
loss_info["frames"] = 1
|
||||
loss_info["loss_mel_error"] = loss_mel_error.item()
|
||||
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if batch_idx <= 5 and rank == 0 and tb_writer is not None:
|
||||
if params.batch_idx_train == params.valid_interval:
|
||||
tb_writer.add_audio(
|
||||
"gt/y_{}".format(batch_idx),
|
||||
y[0],
|
||||
params.batch_idx_train,
|
||||
params.sampling_rate,
|
||||
)
|
||||
tb_writer.add_figure(
|
||||
"gt/y_spec_{}".format(batch_idx),
|
||||
plot_spectrogram(x[0].cpu().numpy()),
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_audio(
|
||||
"generated/y_hat_{}".format(batch_idx),
|
||||
y_g_hat[0],
|
||||
params.batch_idx_train,
|
||||
params.sampling_rate,
|
||||
)
|
||||
|
||||
tb_writer.add_figure(
|
||||
"generated/y_hat_spec_{}".format(batch_idx),
|
||||
plot_spectrogram(y_g_hat_mel[0].detach().cpu().numpy()),
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(device)
|
||||
|
||||
loss_value = tot_loss["loss_mel_error"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
torch.autograd.set_detect_anomaly(True)
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
|
||||
logging.info("Training started")
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
logging.info(f"Device: {device}")
|
||||
params.device = device
|
||||
logging.info(params)
|
||||
logging.info("About to create model")
|
||||
|
||||
model = get_model(params)
|
||||
|
||||
assert params.start_epoch > 0, params.start_epoch
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model = model.to(device)
|
||||
generator = model.generator
|
||||
msd = model.msd
|
||||
mpd = model.mpd
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||
|
||||
optimizer_g = torch.optim.AdamW(
|
||||
generator.parameters(),
|
||||
params.learning_rate,
|
||||
betas=[params.adam_b1, params.adam_b2],
|
||||
)
|
||||
optimizer_d = torch.optim.AdamW(
|
||||
itertools.chain(msd.parameters(), mpd.parameters()),
|
||||
params.learning_rate,
|
||||
betas=[params.adam_b1, params.adam_b2],
|
||||
)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optimizer_g, gamma=params.lr_decay
|
||||
)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optimizer_d, gamma=params.lr_decay
|
||||
)
|
||||
|
||||
if checkpoints is not None:
|
||||
# load state_dict for optimizers
|
||||
if "optimizer_g" in checkpoints:
|
||||
logging.info("Loading generator optimizer state dict")
|
||||
optimizer_g.load_state_dict(checkpoints["optimizer_g"])
|
||||
if "optimizer_d" in checkpoints:
|
||||
logging.info("Loading discriminator optimizer state dict")
|
||||
optimizer_d.load_state_dict(checkpoints["optimizer_d"])
|
||||
|
||||
# load state_dict for schedulers
|
||||
if "scheduler_g" in checkpoints:
|
||||
logging.info("Loading generator scheduler state dict")
|
||||
scheduler_g.load_state_dict(checkpoints["scheduler_g"])
|
||||
if "scheduler_d" in checkpoints:
|
||||
logging.info("Loading discriminator scheduler state dict")
|
||||
scheduler_d.load_state_dict(checkpoints["scheduler_d"])
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
if params.inf_check:
|
||||
register_inf_check_hooks(model)
|
||||
|
||||
libriheavy = LibriheavyTtsDataModule(args)
|
||||
|
||||
train_cuts = libriheavy.train_cuts_small()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
if c.duration < 1.0 or c.duration > 20.0:
|
||||
return False
|
||||
return True
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
train_dl = libriheavy.train_dataloaders(train_cuts)
|
||||
|
||||
valid_cuts = libriheavy.valid_cuts()
|
||||
valid_dl = libriheavy.valid_dataloaders(valid_cuts)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
logging.info(f"Start epoch {epoch}")
|
||||
|
||||
fix_random_seed(params.seed + epoch - 1)
|
||||
train_dl.sampler.set_epoch(epoch - 1)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer_g=optimizer_g,
|
||||
optimizer_d=optimizer_d,
|
||||
scheduler_g=scheduler_g,
|
||||
scheduler_d=scheduler_d,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
scaler=scaler,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.print_diagnostics:
|
||||
diagnostic.print_diagnostics()
|
||||
break
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint(
|
||||
filename=filename,
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer_g=optimizer_g,
|
||||
optimizer_d=optimizer_d,
|
||||
scheduler_g=scheduler_g,
|
||||
scheduler_d=scheduler_d,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.batch_idx_train % params.save_every_n == 0:
|
||||
filename = params.exp_dir / f"checkpoint-{params.batch_idx_train}.pt"
|
||||
save_checkpoint(
|
||||
filename=filename,
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer_g=optimizer_g,
|
||||
optimizer_d=optimizer_d,
|
||||
scheduler_g=scheduler_g,
|
||||
scheduler_d=scheduler_d,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
if rank == 0:
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriheavyTtsDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
main()
|
378
egs/libriheavy/TTS/hifigan/tts_datamodule.py
Normal file
378
egs/libriheavy/TTS/hifigan/tts_datamodule.py
Normal file
@ -0,0 +1,378 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022-2024 Xiaomi Corporation (Authors: Mingshuang Luo,
|
||||
# Zengwei Yao,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
SpeechSynthesisDataset,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class LibriheavyTtsDataModule:
|
||||
"""
|
||||
DataModule for tts experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="TTS data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-text",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to return the transcript of the audio.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--sampling-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sampleing rate of ljspeech dataset",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--frame-shift",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Frame shift.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--frame-length",
|
||||
type=int,
|
||||
default=1024,
|
||||
help="Frame shift.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--use-fft-mag",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use magnitude of fbank, false to use power energy.",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
logging.info("About to create train dataset")
|
||||
train = SpeechSynthesisDataset(
|
||||
return_text=self.args.return_text,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
sampling_rate = self.args.sampling_rate
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=self.args.frame_length / sampling_rate, # (in second),
|
||||
frame_shift=self.args.frame_shift / sampling_rate, # (in second)
|
||||
use_fft_mag=self.args.use_fft_mag,
|
||||
)
|
||||
train = SpeechSynthesisDataset(
|
||||
return_text=self.args.return_text,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=OnTheFlyFeatures(Fbank(config)),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
buffer_size=self.args.num_buckets * 2000,
|
||||
shuffle_buffer_size=self.args.num_buckets * 5000,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
sampling_rate = self.args.sampling_rate
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=self.args.frame_length / sampling_rate, # (in second),
|
||||
frame_shift=self.args.frame_shift / sampling_rate, # (in second)
|
||||
use_fft_mag=self.args.use_fft_mag,
|
||||
)
|
||||
validate = SpeechSynthesisDataset(
|
||||
return_text=self.args.return_text,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=OnTheFlyFeatures(Fbank(config)),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = SpeechSynthesisDataset(
|
||||
return_text=self.args.return_text,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
num_buckets=self.args.num_buckets,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create valid dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.info("About to create test dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
sampling_rate = self.args.sampling_rate
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=self.args.frame_length / sampling_rate, # (in second),
|
||||
frame_shift=self.args.frame_shift / sampling_rate, # (in second)
|
||||
use_fft_mag=self.args.use_fft_mag,
|
||||
)
|
||||
test = SpeechSynthesisDataset(
|
||||
return_text=self.args.return_text,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=OnTheFlyFeatures(Fbank(config)),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
test = SpeechSynthesisDataset(
|
||||
return_text=self.args.return_text,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
test_sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
num_buckets=self.args.num_buckets,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=test_sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts_small(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_small.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get validation cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts_finetune(self) -> CutSet:
|
||||
logging.info("About to get train cuts finetune")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_small_finetune.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts_finetune(self) -> CutSet:
|
||||
logging.info("About to get validation cuts finetune")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_dev_finetune.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_test_clean.jsonl.gz"
|
||||
)
|
1
egs/libriheavy/TTS/hifigan/utils.py
Symbolic link
1
egs/libriheavy/TTS/hifigan/utils.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../ljspeech/TTS/hifigan/utils.py
|
286
egs/libriheavy/TTS/local/compute_fbank_libriheavy.py
Executable file
286
egs/libriheavy/TTS/local/compute_fbank_libriheavy.py
Executable file
@ -0,0 +1,286 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the Libriheavy dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest-dir",
|
||||
type=str,
|
||||
help="""The source directory that contains raw manifests.
|
||||
""",
|
||||
default="data/manifests",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--fbank-dir",
|
||||
type=str,
|
||||
help="""Fbank output dir
|
||||
""",
|
||||
default="data/fbank",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sampling-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--frame-length",
|
||||
type=int,
|
||||
default=1024,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--frame-shift",
|
||||
type=int,
|
||||
default=256,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fft-mag",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--subset",
|
||||
type=str,
|
||||
help="""Dataset parts to compute fbank. If None, we will use all""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of dataloading workers used for reading the audio.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-duration",
|
||||
type=float,
|
||||
default=600.0,
|
||||
help="The maximum number of audio seconds in a batch."
|
||||
"Determines batch size dynamically.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-splits",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to compute fbank on splits.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-splits",
|
||||
type=int,
|
||||
help="""The number of splits of the medium and large subset.
|
||||
Only needed when --use-splits is true.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Process pieces starting from this number (inclusive).
|
||||
Only needed when --use-splits is true.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stop",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="""Stop processing pieces until this number (exclusive).
|
||||
Only needed when --use-splits is true.""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_libriheavy(args):
|
||||
src_dir = Path(args.manifest_dir)
|
||||
output_dir = Path(args.fbank_dir)
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_mel_bins = args.num_mel_bins
|
||||
subset = args.subset
|
||||
|
||||
sampling_rate = args.sampling_rate
|
||||
frame_length = args.frame_length / sampling_rate # (in second)
|
||||
frame_shift = args.frame_shift / sampling_rate # (in second)
|
||||
use_fft_mag = args.use_fft_mag
|
||||
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=frame_length,
|
||||
frame_shift=frame_shift,
|
||||
use_fft_mag=use_fft_mag,
|
||||
num_mel_bins=num_mel_bins,
|
||||
)
|
||||
extractor = Fbank(config)
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
output_cuts_path = output_dir / f"libriheavy_cuts_{subset}.jsonl.gz"
|
||||
if output_cuts_path.exists():
|
||||
logging.info(f"{output_cuts_path} exists - skipping")
|
||||
return
|
||||
|
||||
input_cuts_path = src_dir / f"libriheavy_cuts_{subset}.jsonl.gz"
|
||||
assert input_cuts_path.exists(), f"{input_cuts_path} does not exist!"
|
||||
logging.info(f"Loading {input_cuts_path}")
|
||||
cut_set = CutSet.from_file(input_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/libriheavy_feats_{subset}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {output_cuts_path}")
|
||||
cut_set.to_file(output_cuts_path)
|
||||
|
||||
|
||||
def compute_fbank_libriheavy_splits(args):
|
||||
num_splits = args.num_splits
|
||||
subset = args.subset
|
||||
src_dir = f"{args.manifest_dir}/libriheavy_{subset}_split"
|
||||
src_dir = Path(src_dir)
|
||||
output_dir = f"{args.fbank_dir}/libriheavy_{subset}_split"
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
start = args.start
|
||||
stop = args.stop
|
||||
if stop < start:
|
||||
stop = num_splits
|
||||
|
||||
stop = min(stop, num_splits)
|
||||
|
||||
num_mel_bins = args.num_mel_bins
|
||||
sampling_rate = args.sampling_rate
|
||||
frame_length = args.frame_length / sampling_rate # (in second)
|
||||
frame_shift = args.frame_shift / sampling_rate # (in second)
|
||||
use_fft_mag = args.use_fft_mag
|
||||
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=frame_length,
|
||||
frame_shift=frame_shift,
|
||||
use_fft_mag=use_fft_mag,
|
||||
num_mel_bins=num_mel_bins,
|
||||
)
|
||||
extractor = Fbank(config)
|
||||
|
||||
num_digits = 8 # num_digits is fixed by lhotse split-lazy
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
logging.info(f"Processing {idx}/{num_splits}")
|
||||
|
||||
cuts_path = output_dir / f"libriheavy_cuts_{subset}.{idx}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(f"{cuts_path} exists - skipping")
|
||||
continue
|
||||
|
||||
raw_cuts_path = src_dir / f"libriheavy_cuts_{subset}.{idx}.jsonl.gz"
|
||||
if not raw_cuts_path.is_file():
|
||||
logging.info(f"{raw_cuts_path} does not exist - skipping it")
|
||||
continue
|
||||
|
||||
logging.info(f"Loading {raw_cuts_path}")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
if (output_dir / f"libriheavy_feats_{subset}_{idx}.lca").exists():
|
||||
logging.info(f"Removing {output_dir}/libriheavy_feats_{subset}_{idx}.lca")
|
||||
os.remove(output_dir / f"libriheavy_feats_{subset}_{idx}.lca")
|
||||
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/libriheavy_feats_{subset}_{idx}",
|
||||
num_workers=args.num_workers,
|
||||
batch_duration=args.batch_duration,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
logging.info("About to split cuts into smaller chunks.")
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
logging.info(f"Saved to {cuts_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
args = get_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
if args.use_splits:
|
||||
assert args.num_splits is not None, "Please provide num_splits"
|
||||
compute_fbank_libriheavy_splits(args)
|
||||
else:
|
||||
compute_fbank_libriheavy(args)
|
Loading…
x
Reference in New Issue
Block a user