mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Use Swoosh-R in the Conv and Swoosh-L in the feedforward.
This commit is contained in:
parent
d214e1c352
commit
7b1f093077
@ -1214,7 +1214,7 @@ class TanSwish(torch.nn.Module):
|
||||
|
||||
|
||||
|
||||
class SwooshFunction(torch.autograd.Function):
|
||||
class SwooshLFunction(torch.autograd.Function):
|
||||
"""
|
||||
swoosh(x) = log(1 + exp(x-1)) - 0.08*x - 0.313261687
|
||||
|
||||
@ -1267,14 +1267,77 @@ class SwooshFunction(torch.autograd.Function):
|
||||
return (y_grad * d)
|
||||
|
||||
|
||||
class Swoosh(torch.nn.Module):
|
||||
class SwooshL(torch.nn.Module):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return tan-swish activation function which is tanh(x) sigmoid(x-1)n
|
||||
"""Return Swoosh-L activation.
|
||||
"""
|
||||
if torch.jit.is_scripting():
|
||||
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
|
||||
return torch.logaddexp(zero, x - 4.0) - 0.1 * x - 0.035
|
||||
return SwooshFunction.apply(x)
|
||||
return SwooshLFunction.apply(x)
|
||||
|
||||
|
||||
class SwooshRFunction(torch.autograd.Function):
|
||||
"""
|
||||
swoosh(x) = log(1 + exp(x-1)) - 0.08*x - 0.313261687
|
||||
|
||||
derivatives are between -0.08 and 0.92.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
requires_grad = x.requires_grad
|
||||
x_dtype = x.dtype
|
||||
|
||||
if x.dtype == torch.float16:
|
||||
x = x.to(torch.float32)
|
||||
|
||||
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
with torch.enable_grad():
|
||||
x = x.detach()
|
||||
x.requires_grad = True
|
||||
y = torch.logaddexp(zero, x - 1.) - 0.08 * x - 0.313261687
|
||||
|
||||
if not requires_grad:
|
||||
return y
|
||||
y.backward(gradient = torch.ones_like(y))
|
||||
|
||||
grad = x.grad
|
||||
floor = -0.08
|
||||
ceil = 0.925
|
||||
|
||||
d_scaled = ((grad - floor) * (255.0 / (ceil - floor)) + torch.rand_like(grad))
|
||||
if __name__ == "__main__":
|
||||
# for self-testing only.
|
||||
assert d_scaled.min() >= 0.0
|
||||
assert d_scaled.max() < 256.0
|
||||
|
||||
d_int = d_scaled.to(torch.uint8)
|
||||
ctx.save_for_backward(d_int)
|
||||
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
||||
y = y.to(torch.float16)
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
d, = ctx.saved_tensors
|
||||
# the same constants as used in forward pass.
|
||||
floor = -0.08
|
||||
ceil = 0.925
|
||||
d = (d * ((ceil - floor) / 255.0) + floor)
|
||||
return (y_grad * d)
|
||||
|
||||
|
||||
class SwooshR(torch.nn.Module):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return Swoosh-L activation.
|
||||
"""
|
||||
if torch.jit.is_scripting():
|
||||
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
|
||||
return torch.logaddexp(zero, x - 1.) - 0.08 * x - 0.313261687
|
||||
return SwooshRFunction.apply(x)
|
||||
|
||||
|
||||
|
||||
@ -1434,10 +1497,23 @@ def _test_tan_swish_deriv():
|
||||
x.requires_grad = True
|
||||
y = m(x)
|
||||
|
||||
def _test_swoosh_deriv():
|
||||
def _test_swooshl_deriv():
|
||||
x = torch.randn(10, 12, dtype=torch.double) * 3.0
|
||||
x.requires_grad = True
|
||||
m = Swoosh()
|
||||
m = SwooshL()
|
||||
|
||||
tol = (1.0 / 255.0)
|
||||
torch.autograd.gradcheck(m, x, atol=tol)
|
||||
|
||||
# for self-test.
|
||||
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
|
||||
x.requires_grad = True
|
||||
y = m(x)
|
||||
|
||||
def _test_swooshr_deriv():
|
||||
x = torch.randn(10, 12, dtype=torch.double) * 3.0
|
||||
x.requires_grad = True
|
||||
m = SwooshR()
|
||||
|
||||
tol = (1.0 / 255.0)
|
||||
torch.autograd.gradcheck(m, x, atol=tol)
|
||||
@ -1474,4 +1550,5 @@ if __name__ == "__main__":
|
||||
_test_basic_norm()
|
||||
_test_double_swish_deriv()
|
||||
_test_tan_swish_deriv()
|
||||
_test_swoosh_deriv()
|
||||
_test_swooshr_deriv()
|
||||
_test_swooshl_deriv()
|
||||
|
||||
@ -29,7 +29,8 @@ from scaling import (
|
||||
BasicNorm,
|
||||
MaxEig,
|
||||
DoubleSwish,
|
||||
Swoosh,
|
||||
SwooshL,
|
||||
SwooshR,
|
||||
TanSwish,
|
||||
ScaledConv1d,
|
||||
ScaledLinear, # not as in other dirs.. just scales down initial parameter values.
|
||||
@ -1426,7 +1427,7 @@ class FeedforwardModule(nn.Module):
|
||||
min_abs=1.0,
|
||||
max_abs=5.0,
|
||||
min_prob=0.25)
|
||||
self.activation = Swoosh()
|
||||
self.activation = SwooshL()
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.out_proj = LinearWithAuxLoss(feedforward_dim, embed_dim,
|
||||
initial_scale=0.01,
|
||||
@ -1601,11 +1602,11 @@ class ConvolutionModule(nn.Module):
|
||||
channels, channel_dim=1,
|
||||
min_positive=ScheduledFloat((0.0, 0.1), (8000.0, 0.05)),
|
||||
max_positive=1.0,
|
||||
min_abs=0.75,
|
||||
min_abs=ScheduledFloat((0.0, 0.2), (20000.0, 1.0)),
|
||||
max_abs=10.0,
|
||||
)
|
||||
|
||||
self.activation = nn.Tanh()
|
||||
self.activation = SwooshR()
|
||||
|
||||
self.whiten = Whiten(num_groups=1,
|
||||
whitening_limit=_whitening_schedule(7.5),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user