From 7b03f2718318d24cf23829412b9638377b0a49d6 Mon Sep 17 00:00:00 2001 From: csukuangfj Date: Wed, 12 Jun 2024 16:02:46 +0000 Subject: [PATCH] deploy: 13f55d073513b3beaefdf0b7e16237b35199ca04 --- _sources/docker/intro.rst.txt | 2 + .../fst-based-forced-alignment/diff.rst.txt | 41 + .../fst-based-forced-alignment/index.rst.txt | 18 + .../k2-based.rst.txt | 4 + .../kaldi-based.rst.txt | 712 +++++++++++++++ _sources/index.rst.txt | 4 +- .../export-ncnn-conv-emformer.rst.txt | 4 +- .../model-export/export-ncnn-lstm.rst.txt | 4 +- .../export-ncnn-zipformer.rst.txt | 4 +- ...-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav | Bin 0 -> 108844 bytes _static/kaldi-align/at.wav | Bin 0 -> 2620 bytes _static/kaldi-align/beside.wav | Bin 0 -> 14206 bytes _static/kaldi-align/curiosity.wav | Bin 0 -> 22576 bytes _static/kaldi-align/had.wav | Bin 0 -> 4550 bytes _static/kaldi-align/i.wav | Bin 0 -> 688 bytes _static/kaldi-align/me.wav | Bin 0 -> 2620 bytes _static/kaldi-align/moment.wav | Bin 0 -> 9702 bytes _static/kaldi-align/that.wav | Bin 0 -> 4550 bytes _static/kaldi-align/this.wav | Bin 0 -> 5194 bytes contributing/code-style.html | 1 + contributing/doc.html | 1 + contributing/how-to-create-a-recipe.html | 1 + contributing/index.html | 1 + decoding-with-langugage-models/LODR.html | 1 + decoding-with-langugage-models/index.html | 1 + decoding-with-langugage-models/rescoring.html | 1 + .../shallow-fusion.html | 1 + docker/index.html | 1 + docker/intro.html | 5 +- faqs.html | 1 + for-dummies/data-preparation.html | 1 + for-dummies/decoding.html | 1 + for-dummies/environment-setup.html | 1 + for-dummies/index.html | 1 + for-dummies/model-export.html | 1 + for-dummies/training.html | 1 + fst-based-forced-alignment/diff.html | 182 ++++ fst-based-forced-alignment/index.html | 159 ++++ fst-based-forced-alignment/k2-based.html | 133 +++ fst-based-forced-alignment/kaldi-based.html | 816 ++++++++++++++++++ genindex.html | 1 + huggingface/index.html | 1 + huggingface/pretrained-models.html | 1 + huggingface/spaces.html | 1 + index.html | 7 + installation/index.html | 1 + model-export/export-model-state-dict.html | 1 + model-export/export-ncnn-conv-emformer.html | 5 +- model-export/export-ncnn-lstm.html | 9 +- model-export/export-ncnn-zipformer.html | 5 +- model-export/export-ncnn.html | 1 + model-export/export-onnx.html | 1 + .../export-with-torch-jit-script.html | 1 + model-export/export-with-torch-jit-trace.html | 1 + model-export/index.html | 1 + objects.inv | Bin 2059 -> 2144 bytes .../Finetune/adapter/finetune_adapter.html | 1 + .../from_supervised/finetune_zipformer.html | 1 + recipes/Finetune/index.html | 1 + .../aishell/conformer_ctc.html | 1 + recipes/Non-streaming-ASR/aishell/index.html | 1 + .../aishell/stateless_transducer.html | 1 + .../aishell/tdnn_lstm_ctc.html | 1 + recipes/Non-streaming-ASR/index.html | 1 + .../librispeech/conformer_ctc.html | 1 + .../librispeech/distillation.html | 1 + .../Non-streaming-ASR/librispeech/index.html | 1 + .../pruned_transducer_stateless.html | 1 + .../librispeech/tdnn_lstm_ctc.html | 1 + .../librispeech/zipformer_ctc_blankskip.html | 1 + .../librispeech/zipformer_mmi.html | 1 + recipes/Non-streaming-ASR/timit/index.html | 1 + .../timit/tdnn_ligru_ctc.html | 1 + .../timit/tdnn_lstm_ctc.html | 1 + recipes/Non-streaming-ASR/yesno/index.html | 1 + recipes/Non-streaming-ASR/yesno/tdnn.html | 1 + recipes/RNN-LM/index.html | 1 + recipes/RNN-LM/librispeech/lm-training.html | 1 + recipes/Streaming-ASR/index.html | 1 + recipes/Streaming-ASR/introduction.html | 1 + recipes/Streaming-ASR/librispeech/index.html | 1 + .../lstm_pruned_stateless_transducer.html | 1 + .../pruned_transducer_stateless.html | 1 + .../librispeech/zipformer_transducer.html | 1 + recipes/TTS/index.html | 1 + recipes/TTS/ljspeech/vits.html | 1 + recipes/TTS/vctk/vits.html | 1 + recipes/index.html | 5 +- search.html | 1 + searchindex.js | 2 +- 90 files changed, 2160 insertions(+), 20 deletions(-) create mode 100644 _sources/fst-based-forced-alignment/diff.rst.txt create mode 100644 _sources/fst-based-forced-alignment/index.rst.txt create mode 100644 _sources/fst-based-forced-alignment/k2-based.rst.txt create mode 100644 _sources/fst-based-forced-alignment/kaldi-based.rst.txt create mode 100644 _static/kaldi-align/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav create mode 100644 _static/kaldi-align/at.wav create mode 100644 _static/kaldi-align/beside.wav create mode 100644 _static/kaldi-align/curiosity.wav create mode 100644 _static/kaldi-align/had.wav create mode 100644 _static/kaldi-align/i.wav create mode 100644 _static/kaldi-align/me.wav create mode 100644 _static/kaldi-align/moment.wav create mode 100644 _static/kaldi-align/that.wav create mode 100644 _static/kaldi-align/this.wav create mode 100644 fst-based-forced-alignment/diff.html create mode 100644 fst-based-forced-alignment/index.html create mode 100644 fst-based-forced-alignment/k2-based.html create mode 100644 fst-based-forced-alignment/kaldi-based.html diff --git a/_sources/docker/intro.rst.txt b/_sources/docker/intro.rst.txt index 2f4bdb3f6..f3d2b0727 100644 --- a/_sources/docker/intro.rst.txt +++ b/_sources/docker/intro.rst.txt @@ -34,6 +34,8 @@ which will give you something like below: .. code-block:: bash + "torch2.3.1-cuda12.1" + "torch2.3.1-cuda11.8" "torch2.2.2-cuda12.1" "torch2.2.2-cuda11.8" "torch2.2.1-cuda12.1" diff --git a/_sources/fst-based-forced-alignment/diff.rst.txt b/_sources/fst-based-forced-alignment/diff.rst.txt new file mode 100644 index 000000000..56b6c430e --- /dev/null +++ b/_sources/fst-based-forced-alignment/diff.rst.txt @@ -0,0 +1,41 @@ +Two approaches +============== + +Two approaches for FST-based forced alignment will be described: + + - `Kaldi`_-based + - `k2`_-based + +Note that the `Kaldi`_-based approach does not depend on `Kaldi`_ at all. +That is, you don't need to install `Kaldi`_ in order to use it. Instead, +we use `kaldi-decoder`_, which has ported the C++ decoding code from `Kaldi`_ +without depending on it. + +Differences between the two approaches +-------------------------------------- + +The following table compares the differences between the two approaches. + +.. list-table:: + + * - Features + - `Kaldi`_-based + - `k2`_-based + * - Support CUDA + - No + - Yes + * - Support CPU + - Yes + - Yes + * - Support batch processing + - No + - Yes on CUDA; No on CPU + * - Support streaming models + - Yes + - No + * - Support C++ APIs + - Yes + - Yes + * - Support Python APIs + - Yes + - Yes diff --git a/_sources/fst-based-forced-alignment/index.rst.txt b/_sources/fst-based-forced-alignment/index.rst.txt new file mode 100644 index 000000000..92a05faaa --- /dev/null +++ b/_sources/fst-based-forced-alignment/index.rst.txt @@ -0,0 +1,18 @@ +FST-based forced alignment +========================== + +This section describes how to perform **FST-based** ``forced alignment`` with models +trained by `CTC`_ loss. + +We use `CTC FORCED ALIGNMENT API TUTORIAL `_ +from `torchaudio`_ as a reference in this section. + +Different from `torchaudio`_, we use an ``FST``-based approach. + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + diff + kaldi-based + k2-based diff --git a/_sources/fst-based-forced-alignment/k2-based.rst.txt b/_sources/fst-based-forced-alignment/k2-based.rst.txt new file mode 100644 index 000000000..373e49f3e --- /dev/null +++ b/_sources/fst-based-forced-alignment/k2-based.rst.txt @@ -0,0 +1,4 @@ +k2-based forced alignment +========================= + +TODO(fangjun) diff --git a/_sources/fst-based-forced-alignment/kaldi-based.rst.txt b/_sources/fst-based-forced-alignment/kaldi-based.rst.txt new file mode 100644 index 000000000..69b6a665b --- /dev/null +++ b/_sources/fst-based-forced-alignment/kaldi-based.rst.txt @@ -0,0 +1,712 @@ +Kaldi-based forced alignment +============================ + +This section describes in detail how to use `kaldi-decoder`_ +for **FST-based** ``forced alignment`` with models trained by `CTC`_ loss. + +.. hint:: + + We have a colab notebook walking you through this section step by step. + + |kaldi-based forced alignment colab notebook| + + .. |kaldi-based forced alignment colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg + :target: https://github.com/k2-fsa/colab/blob/master/icefall/ctc_forced_alignment_fst_based_kaldi.ipynb + +Prepare the environment +----------------------- + +Before you continue, make sure you have setup `icefall`_ by following :ref:`install icefall`. + +.. hint:: + + You don't need to install `Kaldi`_. We will ``NOT`` use `Kaldi`_ below. + +Get the test data +----------------- + +We use the test wave +from `CTC FORCED ALIGNMENT API TUTORIAL `_ + +.. code-block:: python3 + + import torchaudio + + # Download test wave + speech_file = torchaudio.utils.download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav") + print(speech_file) + waveform, sr = torchaudio.load(speech_file) + transcript = "i had that curiosity beside me at this moment".split() + print(waveform.shape, sr) + + assert waveform.ndim == 2 + assert waveform.shape[0] == 1 + assert sr == 16000 + +The test wave is downloaded to:: + + $HOME/.cache/torch/hub/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav + +.. raw:: html + + + + + + + + + + + + +
Wave filenameContentText
Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav + + + i had that curiosity beside me at this moment +
+ +We use the test model +from `CTC FORCED ALIGNMENT API TUTORIAL `_ + +.. code-block:: python3 + + import torch + + bundle = torchaudio.pipelines.MMS_FA + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + model = bundle.get_model(with_star=False).to(device) + +The model is downloaded to:: + + $HOME/.cache/torch/hub/checkpoints/model.pt + +Compute log_probs +----------------- + +.. code-block:: bash + + with torch.inference_mode(): + emission, _ = model(waveform.to(device)) + print(emission.shape) + +It should print:: + + torch.Size([1, 169, 28]) + +Create token2id and id2token +---------------------------- + +.. code-block:: python3 + + token2id = bundle.get_dict(star=None) + id2token = {i:t for t, i in token2id.items()} + token2id[""] = 0 + del token2id["-"] + +Create word2id and id2word +-------------------------- + +.. code-block:: python3 + + words = list(set(transcript)) + word2id = dict() + word2id['eps'] = 0 + for i, w in enumerate(words): + word2id[w] = i + 1 + + id2word = {i:w for w, i in word2id.items()} + +Note that we only use words from the transcript of the test wave. + +Generate lexicon-related files +------------------------------ + +We use the code below to generate the following 4 files: + + - ``lexicon.txt`` + - ``tokens.txt`` + - ``words.txt`` + - ``lexicon_disambig.txt`` + +.. caution:: + + ``words.txt`` contains only words from the transcript of the test wave. + +.. code-block:: python3 + + from prepare_lang import add_disambig_symbols + + lexicon = [(w, list(w)) for w in word2id if w != "eps"] + lexicon_disambig, max_disambig_id = add_disambig_symbols(lexicon) + + with open('lexicon.txt', 'w', encoding='utf-8') as f: + for w, tokens in lexicon: + f.write(f"{w} {' '.join(tokens)}\n") + + with open('lexicon_disambig.txt', 'w', encoding='utf-8') as f: + for w, tokens in lexicon_disambig: + f.write(f"{w} {' '.join(tokens)}\n") + + with open('tokens.txt', 'w', encoding='utf-8') as f: + for t, i in token2id.items(): + if t == '-': + t = "" + f.write(f"{t} {i}\n") + + for k in range(max_disambig_id + 2): + f.write(f"#{k} {len(token2id) + k}\n") + + with open('words.txt', 'w', encoding='utf-8') as f: + for w, i in word2id.items(): + f.write(f"{w} {i}\n") + f.write(f'#0 {len(word2id)}\n') + + +To give you an idea about what the generated files look like:: + + head -n 50 lexicon.txt lexicon_disambig.txt tokens.txt words.txt + +prints:: + + ==> lexicon.txt <== + moment m o m e n t + beside b e s i d e + i i + this t h i s + curiosity c u r i o s i t y + had h a d + that t h a t + at a t + me m e + + ==> lexicon_disambig.txt <== + moment m o m e n t + beside b e s i d e + i i + this t h i s + curiosity c u r i o s i t y + had h a d + that t h a t + at a t + me m e + + ==> tokens.txt <== + a 1 + i 2 + e 3 + n 4 + o 5 + u 6 + t 7 + s 8 + r 9 + m 10 + k 11 + l 12 + d 13 + g 14 + h 15 + y 16 + b 17 + p 18 + w 19 + c 20 + v 21 + j 22 + z 23 + f 24 + ' 25 + q 26 + x 27 + 0 + #0 28 + #1 29 + + ==> words.txt <== + eps 0 + moment 1 + beside 2 + i 3 + this 4 + curiosity 5 + had 6 + that 7 + at 8 + me 9 + #0 10 + +.. note:: + + This test model uses characters as modeling unit. If you use other types of + modeling unit, the same code can be used without any change. + +Convert transcript to an FST graph +---------------------------------- + +.. code-block:: bash + + egs/librispeech/ASR/local/prepare_lang_fst.py --lang-dir ./ + +The above command should generate two files ``H.fst`` and ``HL.fst``. We will +use ``HL.fst`` below:: + + -rw-r--r-- 1 root root 13K Jun 12 08:28 H.fst + -rw-r--r-- 1 root root 3.7K Jun 12 08:28 HL.fst + +Force aligner +------------- + +Now, everything is ready. We can use the following code to get forced alignments. + +.. code-block:: python3 + + from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions + import kaldifst + + def force_align(): + HL = kaldifst.StdVectorFst.read("./HL.fst") + decodable = DecodableCtc(emission[0].contiguous().cpu().numpy()) + decoder_opts = FasterDecoderOptions(max_active=3000) + decoder = FasterDecoder(HL, decoder_opts) + decoder.decode(decodable) + if not decoder.reached_final(): + print(f"failed to decode xxx") + return None + ok, best_path = decoder.get_best_path() + + ( + ok, + isymbols_out, + osymbols_out, + total_weight, + ) = kaldifst.get_linear_symbol_sequence(best_path) + if not ok: + print(f"failed to get linear symbol sequence for xxx") + return None + + # We need to use i-1 here since we have incremented tokens during + # HL construction + alignment = [i-1 for i in isymbols_out] + return alignment + + alignment = force_align() + + for i, a in enumerate(alignment): + print(i, id2token[a]) + +The output should be identical to +``_. + +For ease of reference, we list the output below:: + + 0 - + 1 - + 2 - + 3 - + 4 - + 5 - + 6 - + 7 - + 8 - + 9 - + 10 - + 11 - + 12 - + 13 - + 14 - + 15 - + 16 - + 17 - + 18 - + 19 - + 20 - + 21 - + 22 - + 23 - + 24 - + 25 - + 26 - + 27 - + 28 - + 29 - + 30 - + 31 - + 32 i + 33 - + 34 - + 35 h + 36 h + 37 a + 38 - + 39 - + 40 - + 41 d + 42 - + 43 - + 44 t + 45 h + 46 - + 47 a + 48 - + 49 - + 50 t + 51 - + 52 - + 53 - + 54 c + 55 - + 56 - + 57 - + 58 u + 59 u + 60 - + 61 - + 62 - + 63 r + 64 - + 65 i + 66 - + 67 - + 68 - + 69 - + 70 - + 71 - + 72 o + 73 - + 74 - + 75 - + 76 - + 77 - + 78 - + 79 s + 80 - + 81 - + 82 - + 83 i + 84 - + 85 t + 86 - + 87 - + 88 y + 89 - + 90 - + 91 - + 92 - + 93 b + 94 - + 95 e + 96 - + 97 - + 98 - + 99 - + 100 - + 101 s + 102 - + 103 - + 104 - + 105 - + 106 - + 107 - + 108 - + 109 - + 110 i + 111 - + 112 - + 113 d + 114 e + 115 - + 116 m + 117 - + 118 - + 119 e + 120 - + 121 - + 122 - + 123 - + 124 a + 125 - + 126 - + 127 t + 128 - + 129 t + 130 h + 131 - + 132 i + 133 - + 134 - + 135 - + 136 s + 137 - + 138 - + 139 - + 140 - + 141 m + 142 - + 143 - + 144 o + 145 - + 146 - + 147 - + 148 m + 149 - + 150 - + 151 e + 152 - + 153 n + 154 - + 155 t + 156 - + 157 - + 158 - + 159 - + 160 - + 161 - + 162 - + 163 - + 164 - + 165 - + 166 - + 167 - + 168 - + +To merge tokens, we use:: + + from icefall.ctc import merge_tokens + token_spans = merge_tokens(alignment) + for span in token_spans: + print(id2token[span.token], span.start, span.end) + +The output is given below:: + + i 32 33 + h 35 37 + a 37 38 + d 41 42 + t 44 45 + h 45 46 + a 47 48 + t 50 51 + c 54 55 + u 58 60 + r 63 64 + i 65 66 + o 72 73 + s 79 80 + i 83 84 + t 85 86 + y 88 89 + b 93 94 + e 95 96 + s 101 102 + i 110 111 + d 113 114 + e 114 115 + m 116 117 + e 119 120 + a 124 125 + t 127 128 + t 129 130 + h 130 131 + i 132 133 + s 136 137 + m 141 142 + o 144 145 + m 148 149 + e 151 152 + n 153 154 + t 155 156 + +All of the code below is copied and modified +from ``_. + +Segment each word using the computed alignments +----------------------------------------------- + +.. code-block:: python3 + + def unflatten(list_, lengths): + assert len(list_) == sum(lengths) + i = 0 + ret = [] + for l in lengths: + ret.append(list_[i : i + l]) + i += l + return ret + + + word_spans = unflatten(token_spans, [len(word) for word in transcript]) + print(word_spans) + +The output is:: + + [[TokenSpan(token=2, start=32, end=33)], + [TokenSpan(token=15, start=35, end=37), TokenSpan(token=1, start=37, end=38), TokenSpan(token=13, start=41, end=42)], + [TokenSpan(token=7, start=44, end=45), TokenSpan(token=15, start=45, end=46), TokenSpan(token=1, start=47, end=48), TokenSpan(token=7, start=50, end=51)], + [TokenSpan(token=20, start=54, end=55), TokenSpan(token=6, start=58, end=60), TokenSpan(token=9, start=63, end=64), TokenSpan(token=2, start=65, end=66), TokenSpan(token=5, start=72, end=73), TokenSpan(token=8, start=79, end=80), TokenSpan(token=2, start=83, end=84), TokenSpan(token=7, start=85, end=86), TokenSpan(token=16, start=88, end=89)], + [TokenSpan(token=17, start=93, end=94), TokenSpan(token=3, start=95, end=96), TokenSpan(token=8, start=101, end=102), TokenSpan(token=2, start=110, end=111), TokenSpan(token=13, start=113, end=114), TokenSpan(token=3, start=114, end=115)], + [TokenSpan(token=10, start=116, end=117), TokenSpan(token=3, start=119, end=120)], + [TokenSpan(token=1, start=124, end=125), TokenSpan(token=7, start=127, end=128)], + [TokenSpan(token=7, start=129, end=130), TokenSpan(token=15, start=130, end=131), TokenSpan(token=2, start=132, end=133), TokenSpan(token=8, start=136, end=137)], + [TokenSpan(token=10, start=141, end=142), TokenSpan(token=5, start=144, end=145), TokenSpan(token=10, start=148, end=149), TokenSpan(token=3, start=151, end=152), TokenSpan(token=4, start=153, end=154), TokenSpan(token=7, start=155, end=156)] + ] + + +.. code-block:: python3 + + def preview_word(waveform, spans, num_frames, transcript, sample_rate=bundle.sample_rate): + ratio = waveform.size(1) / num_frames + x0 = int(ratio * spans[0].start) + x1 = int(ratio * spans[-1].end) + print(f"{transcript} {x0 / sample_rate:.3f} - {x1 / sample_rate:.3f} sec") + segment = waveform[:, x0:x1] + return IPython.display.Audio(segment.numpy(), rate=sample_rate) + num_frames = emission.size(1) + +.. code-block:: python3 + + preview_word(waveform, word_spans[0], num_frames, transcript[0]) + preview_word(waveform, word_spans[1], num_frames, transcript[1]) + preview_word(waveform, word_spans[2], num_frames, transcript[2]) + preview_word(waveform, word_spans[3], num_frames, transcript[3]) + preview_word(waveform, word_spans[4], num_frames, transcript[4]) + preview_word(waveform, word_spans[5], num_frames, transcript[5]) + preview_word(waveform, word_spans[6], num_frames, transcript[6]) + preview_word(waveform, word_spans[7], num_frames, transcript[7]) + preview_word(waveform, word_spans[8], num_frames, transcript[8]) + +The segmented wave of each word along with its time stamp is given below: + +.. raw:: html + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
WordTimeWave
i0.644 - 0.664 sec + +
had0.704 - 0.845 sec + +
that0.885 - 1.026 sec + +
curiosity1.086 - 1.790 sec + +
beside1.871 - 2.314 sec + +
me2.334 - 2.414 sec + +
at2.495 - 2.575 sec + +
this2.595 - 2.756 sec + +
moment2.837 - 3.138 sec + +
+ +We repost the whole wave below for ease of reference: + +.. raw:: html + + + + + + + + + + + + +
Wave filenameContentText
Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav + + + i had that curiosity beside me at this moment +
+ +Summary +------- + +Congratulations! You have succeeded in using the FST-based approach to +compute alignment of a test wave. diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt index fb539d3f2..d46a4038f 100644 --- a/_sources/index.rst.txt +++ b/_sources/index.rst.txt @@ -25,7 +25,7 @@ speech recognition recipes using `k2 `_. docker/index faqs model-export/index - + fst-based-forced-alignment/index .. toctree:: :maxdepth: 3 @@ -40,5 +40,5 @@ speech recognition recipes using `k2 `_. .. toctree:: :maxdepth: 2 - + decoding-with-langugage-models/index diff --git a/_sources/model-export/export-ncnn-conv-emformer.rst.txt b/_sources/model-export/export-ncnn-conv-emformer.rst.txt index 93392aee7..4cdc25ee6 100644 --- a/_sources/model-export/export-ncnn-conv-emformer.rst.txt +++ b/_sources/model-export/export-ncnn-conv-emformer.rst.txt @@ -15,8 +15,8 @@ We will show you step by step how to export it to `ncnn`_ and run it with `sherp .. caution:: - Please use a more recent version of PyTorch. For instance, ``torch 1.8`` - may ``not`` work. + ``torch > 2.0`` may not work. If you get errors while building pnnx, please switch + to ``torch < 2.0``. 1. Download the pre-trained model --------------------------------- diff --git a/_sources/model-export/export-ncnn-lstm.rst.txt b/_sources/model-export/export-ncnn-lstm.rst.txt index 310c3d8e4..ccf522dec 100644 --- a/_sources/model-export/export-ncnn-lstm.rst.txt +++ b/_sources/model-export/export-ncnn-lstm.rst.txt @@ -15,8 +15,8 @@ We will show you step by step how to export it to `ncnn`_ and run it with `sherp .. caution:: - Please use a more recent version of PyTorch. For instance, ``torch 1.8`` - may ``not`` work. + ``torch > 2.0`` may not work. If you get errors while building pnnx, please switch + to ``torch < 2.0``. 1. Download the pre-trained model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ diff --git a/_sources/model-export/export-ncnn-zipformer.rst.txt b/_sources/model-export/export-ncnn-zipformer.rst.txt index a5845b0e4..51fc6c8e5 100644 --- a/_sources/model-export/export-ncnn-zipformer.rst.txt +++ b/_sources/model-export/export-ncnn-zipformer.rst.txt @@ -15,8 +15,8 @@ We will show you step by step how to export it to `ncnn`_ and run it with `sherp .. caution:: - Please use a more recent version of PyTorch. For instance, ``torch 1.8`` - may ``not`` work. + ``torch > 2.0`` may not work. If you get errors while building pnnx, please switch + to ``torch < 2.0``. 1. Download the pre-trained model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ diff --git a/_static/kaldi-align/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav b/_static/kaldi-align/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav new file mode 100644 index 0000000000000000000000000000000000000000..004a33532ea2547c10c0074b967733ba91edd9f8 GIT binary patch literal 108844 zcmXV&1y~zP*T;7QAqj-wu5F?2a_jEye(UaX>+bIE?(XgeHR>(YfkJV2$nN)>yx%j= zZg$7#%$alk=ge%nv~JNN=%g(5Y}}*y@NrWD9VJPU2@4wVFjtZ^lA|L@P6Ey=gLwN3` zX-?>>>7c2isj2D2Q;?=WcGQ&7IB5(TdyQGnmh~DJO`aSnhs&YzCHaheN4_i{miNf} zyVx+gyLn%c1A$^ffOBNEAV`c!?SURBSi*VOy!QFW8LSG}R$QtzlQ)!*d&t$rb2hFZuyN{v^oq&W4Dny)%Z zh3YHvsH#cIQd3n~(n^2TNHtG&lY%50$w?|JRhELKl2UQ0hSWr=BQ>Q*U8L4hEADNi z?ow}QhO|_gCXFR5lvYWrr7f2GG-(d+>!fX@kCG;GpH12}M!THc^Q1kDc!xAg+8~{h zb}{bF(j{oIR+<7e4ik4yI&TT5$hDCcrbxqSYc$kZAuVId7f@z~G?V)}YMVpJIno$v z9wZHsI?~5FQZ1>0RG+IR&-IAuA$4LL?u@5~R7%o8(O}6zvX%^z3(pRcGh_56-kN7$ zC|*qRWBeIv8ua+Y^$yxzP!Dszp!{7R*H&Ar&DDBpS+$tjK<%k^QU6s(lB)@Mr%}&TLKn3iH4Rs1t7B<>nmU~}*3jcC z>UH&=`hpSsf`{G_BGd=)Oq80X=Bk-+LM$AR$^56PM!3ygvgIl-Rgp?dWu%I5U?5a$ zB6Wi!%S#QVy3i(2DhFL#NR6c0@IqUtT^nk*C#Dme(Zj+S9f+w;?xvJ>fu<#(s4wM; zNv@I?EvRsy0s5!YgKzXEA5Q(EekR1h=ik&s;-iT9K#!l&;~VNJXnq?y@8kZI+1RY^ zS5GhtThwLh0;s;2@vem8gQ4X(sIZijb?P?4MkqgDodI<_sr}WV?qRuSSUG}`I$ob;e@Hg_u}_Io+k6$QyoUB$?9CfN_7!+j)nfCn1`m!R3ql77PHcx zr)s>{RNYh`)n6^HdZ`|2MP{=YPZiWwY8BO0bySV2s-!7)svog>HC53O>%`@umQZcf zze$R}LyClpD%TS)eRZrYaMa{z@;Uw=!Dkp>$NbDMOS& zy!BFME1Q)q$|hwa`DQBfl$FX>WrZ@I5@VGy7 zr;JqkD1DVK)IXd$JM-I5nW8Kt|7K+mwXIk7D?637w6cO8EugJ+$_8bJvYYtLw6}r0 zYxUzmDR?~ zMpfuupZRIP+UdkR4p0X%cY-rU!Vz=egE_p-V)oa=UCWu@O+1}bFR4%9z+38L*3K{W zBjG#0ui@2iaOgudl$fV*=tZPyEPVSFIh};O%~q3K?B8RT|j-m0U80+HIKkmAjeEp?FD zK9UEu1R!zBlG9PrOD1HA8_y=V5ujPwE^#akezj)LnY*+s`^3`A$`j; zl8W^DAM#Y?*HubXQ`8()^v9Ey3e*BMhIa#P`_bpWNYOZ?c@BIQ3tzn^d{GsoYYHh5 z>Rb5h30UDcQuH9RcN<-H7+$*yauAy0J{#vLE`i@?;G{>a;-~6!E}<3U!9{tjz0c|!DD{bvMNxAhqY*9W-~cUDHPIhm z`dJd4_7B`rns;~J>hWBalu~eO4{4}0P#P~yVopbcMJ7p$2+O4TV3U=go1NU3fM*VX zgLX;Bc|RrHlAdr~l`eyao=UHzQ0~u2J1N~D=AQHoym(K#P0BCn5BCr-WEA-E8wfI< zD?>8KT3I9OWgT}PaHhL#BO7?v$_0`Yan^FKlqMxf2~s{+IwjJiSblSe%aC%VLMc*u zExn`0DBAcT{pRVZ^g{Yh_#)k*{qI~Sq~}tE^ca-(n7j|cXa~S>*THFz=+#^4rxYjs zrRHSXD3StXmER;wYq31V(OM*R=Syy~i)_nP4qR-ME6A1Q;yiitRnf4Le6+Mbc*Ng6qyTGFHf+WID?THdpHkE8w{+>;qq9Mnl>6z`=l#`K83o|g90 z*S*kJ^zyNEmiHsldQj*ZaN~I9X%b-&Yp*Y>uL&!&JTqC7-%8+`e#~S`sU2xUdG0_; zRbqQs=C(8MU8NDyIPmSi)YFZety#aVscSs>dy=y&SXAJlMo5;n(g10g)S1v0L{!&; zo}00EdJafe&miV!CUov=>ETRP%@Us4 zQ+ARx0jps)z1%{NmxBIxL7xk(uFZ^dJv@1k)pLRwpT}s0t+0R+y_ktMwA%^VH>6)a zNaGgFLNg?C5UbZ2Nn=3jyCBbu$fHVNRV!q$gsfFT$>~UiSl;rHeThhmG~}9)O0SWO z&ybWM$eH&@p4VvaP-Jfs@=n+bN3aWaB7q(uSx=&~Zz6e~@O+1yFOfeV$$c74zSx4& zFOlyX_1q!6BJ~UyAPgz~hWjge5KbR{^K_s1x9Hwaw0(g3A0oT%QBw%Lxkt)-;_uPk zaaz7ko#&ABN5RP#E%xF|;%=kCLy&;SD1V(^?zSN3&1nB^^kgTvXE{&H!5X{CvD<=* zW`YBHfnOVepZj2qlmk=Mw%8{1)w0_qg(k zyaLA_1mP|w<^;HOD=7H@NO%p{cRHAR80fq!2zrPz5KKK3q}`7&j$Eri=i|ZjtH9vn zLG*h;$UBtNVA$)R-UyIv2)(>T4@En-l`Hi24$rYlhVqx#-%5^>tc3HPuVisgfx04O|-i^Oco(`cl} zAY|<czfXuif?wl2QfMbF&qSWh zMDpxLGOa|yO`?T)$S>igSb)^qMEl#3;b$$9`G9nha0$u%gIYhMxk5;}Eqy>6hY`L= znP|--LOkJ*^bzeAN1O?L=_C81JTB@;v!~d>!A_8Tqul7w^?IIYj;;f0tj$FXadFE%_!st^4w4`86>Q zNxd%Llb^^RhGeJpYli*Y=IIr%(!*2_!ejq(OcoW_HA z3Hoo87s+dwn{9XzH_4mHu@9=>An$YeE#)s0zmw9pxOU2`R(3F&*NpxOZ>Qz0^kgG_TSk9o$%Et;a$UKl++1!7 zhN}cu7MESYeLiri8z|KoF0DwYO1zisB+KBwR4E%iF90bUMn|7Q79O{F8J6G? z9D}E+8(OvuvbiL_BP%rsUFf1}R5KDi9hsh|m{fOks!>&xB;@-y^g|TdEE!#ptmL9g zQ;GXV%x8;M6RAR{eZWKVjkr%}jK}Df`)HEe=&TD|_t0MF@GGsyCv$?|HE5)5cvqg1 z^8#_#l;?z(luxAISCoB%SLPJgS2Sh{IwwmhRN_egO1|5qoZ~u;c0GeOTZAWSlrjSC zwpCe%pJ+W^pk>MgbmC%S_FCFqg2!nSVHWyu6CS0-Jk8@ij(julL$y@uD|NXVDgP*K z@Nsoknkv3Ya z*mC*MW-Hl0%Ec)$@MI|A3Ld=|)cPErdx4)X8cr3+EL(9@WiVq& zyr^ERh(b6`PmMZiN~Deq)`SDT(*n4^(9%{ey>V4js39KCOs1DvpuaSNmbP<1f2q`9 z01gO{sOwgvUH0AJMs70XZu6NA3$EZA42cLE!m zL2IduD<9AAFV^;NXq2r;7Rp&sBA5P$F*187tY@6A(78~tfx^y=$<;#J6w7-3zL_I-(LrI$r>f4Q_ummsqV&3L+{R@ryQF0oV!#t4R3MjJ@n(VaXnMO;4 z@LTq#4`Zph8T4(zTT^-{aDNqkYw%W{(KtgJF)}A+$e!^@*a#}LiASmlG%PUjbGYUn zH2I4>{0+~9z@cy8sC#hfT_n{@5c_lGz49Ge2qattPkcpkra z-LL8Q%XnV_PToVUi=pmrkn$=hIfI)1 zg;FBF*mLN|oD5(-yIFRAIzi8l@Mb?!hLdkNDedXcf6Ui>u=rJM%B!?-5wG7Rw9hVe zJD7Yo8t51{=~;04ZT3{Q5O)Zx@ddW(Wn$0L<5Rp}W3S~j*5X~P*qhuRQ|1!3XE;{u zBP`Nu+#g|g3aj=l7O3#9gBHy3K?(V%KIe;}8~u@MJH9 z$7ayyUT{Dk=r$a#{LeD-apdYv=*+0PSuDPPuuZx$-X4sy znox((hWTp3b0^|jkf*67wHo@h1fdK(SPFUIjzn<7(kzMH(*!%S9P*$PrP~oYQmQNT z9F1Rn9z7pH=tCICEY78m3)Iz&YZFvG40W#(PC&D**g5BkIR!<&La&?HI$yAKj*#aD zGKAW;Wu8*WV{UtcrufC3xVolFH%_kVfYyG@Oz4#vT)|* z0kyO_`ElbePs`w7;)615YJ_$OtqsKkz{RHg5so11q$9g7~;T;R2ypOFXJgzZ#H)Xt= zX}H9T@Y(vvrLpMz!O5N=S{HsD@s+CJ*(`jclAHiyO$MKS{(lSc3s&nR=_R=J8!6f3 zkU`6~;9P-%bHTPw)K*L`E7z3kU@Z#IYAJlK&R}69m#`#DfSUb@txTSBwC)Bbmq5&3 zAonsL`G#@>xecKMc4Z5>I%gaDg7Le{J>CZvxynrQkg%W4z z$x6;?%#?>Qj=_XBa%;Jl+*NLZ<=hObr7<>iHSCu`jIcT5Z_2pEZ-03NCE9bkqZ>JE z%dMb6d&>U9Qx`%imzft{|+YH%pkUA$SDlagCRU((CT@ZW1ld#bYpy9CLV@$J11DjOBM0 zG3&5UchQU8mar3Q9)hL^X<-vF!dks*nYD9Riszv4Ddy%PPe+;SS=2OxK1`&&NsRwL z+FDKT#V8j+gO&7by}W?8>ExLx52Q~mnT?^)U?Md87aEAZPL%t}J(;H-+$YdyF?(H@ zi2>y4${f|U1i|G^<$Cx-%3~Q?v$FD82T2x7@2`|1eP!Le#?$gty24r%K4RfF7W)GG z@gi@+v%HQ~IttItbfnS*B-MK2b`!gbr$hLcw{hNN1vZ~p%`5PrufSiufHgjv_l4wH zhp%S>GHVQVjHM1?8xBFT%^=SdQrD1Y7dt2y@HU-ckKzRW>ofR)j`4hvrxW;<9?;Ga z(jTzPa-H@40t@sa@fR)r?K7lY$J2ikoAfsOM<=;|vPgtbe!pVN#^R?6WpCgC`$tb0 z?Rz{{FD>JKDcvXjHg(-Va@<22U8cO)FWALM#91CO>hVbXe%P@6kj9fp+h!T*Zs@a~ z(QmMfSe#ZGz&M4+Yc9{*7{_+#xt3fTp~M_0whSuHL>Ek_=1Kf6fdbP>+dz(u$p5{x zeHhQ#N&H@iD7}ZbP2^fmEy9!kKUpbu#IDfa?UdO-y72O?v-D#%)E&cYO{WLq1eNf! zZGg5%(KVy!+cd%ydLZ^1`Z2b}lv+h!Cs9u9>9j(pR7Ddyv(x9m{$UY2slxX!_Wjb3 z^wH?jKj>0P68iZUnpm8|5~rxXp%1R1OTZWo$AowgF_kpsIDUhHn#)3aQ97DRBi z^w9~NAoiub*kLxZ<6H?n^uMz>EiHPoH2cybRqTuhl3I;DWpSFP8oFNWAeX?uYDW%d zN;{y-yvgUtJ&4m#eqaS}LS=S*YJ&&FUVTrr_fWKbJG69NV%wtO>a(NL7Jiv&(c+UW z+%O(`iybDh^U{t|L(%LLp#2hNU<5hl@!OUCn4W0*0eDjWCI3R^WUxg`j%BU{mkgqn ze$+dklB?mnRm|}QIOY(XD)z0G!vovkl6|b)qn7hxhlyE9{z;?zqf9{qeQk2EZiDD0AC?4Nk7L=mh& ztHR=T1-sS&#TLhgDvo_pj`JN=K(rbx!arCpDN2!Ii$zYqXAD|GK3=5)LZKp4 zsvIJg*j?xd*8i8^W+454v9z0F%?twT55txg zp0N>N`axKabFdM_*)DPJZa*`29+bV0SvY_`#MIgf%)9`)vUIsRsosWAm3~^xllv&N2!oto9g2oesV77;Q2Z z=Nmj;Pq5Tu@K$^#MDlwN9=Oc;rW1ty%=#(za?bEB{3e(2r`%@OXgfPa=PkasYn*C& zNO(`_cNTj+jya2mc2@ZQ^z2w^EOX_~+}UC6XDE7R!2xf92`@z;^In4a543nE>R}Cu z-I;-0y|G&U=XYoYB}c>08{p_!1Yv)!!Kzw-Ez=JkUxC%K4U6Qw#Rj~IP4WqA;|x^Y zi+A!UX*;oF)^MFeYF&lK;>5^3D1Mr73ORQj${*+VIqT;Z^RS8;TFdV_>O5gtU3c+& zzNY@u*q3LKk58D3-8|hzf(m=`DN-;3YsZ?isDF{K;v7{JR}zvi1%?w+%!E9u4bJwk zoX7Cz?!%g{KumSwJ0mZ;AvJ~|ZH6M5YO&`m&VIH>ay4Pkr~^C73oI7L3igmkB724* zDTb4`FZXFkpyg;eu?yXknEptmI_x>sL_^f(-i3M^B1eRjEKaL_+>7z-3H}$7C5ZDN zRj@_8k*GGDNlCC+ayeLKN!V$5+{NjYLa6YYQHoPL-;wrzko5oC;|)jhzd<926T9)G zz2Z3n?I3oEUn8x4b5i9yHpy3F-ZMYn(Gs7KV4r#W4z-dw0aHjT!t%35p4(svDd?1V zcGJ?ae*U+M=8G1n4rLlLqKfpl0Vk^(VdJ%cQsRtJ6Xd^dl-SBCq^($ND?QIyv=l)<<7rd$A`A|C!mQqhR}N$Az9!}tTyqW{xJ1km zEUTMbM@ScI_%iV!-6tT(|fYzKT;8D_NXg4TUZrp~@eNW{$O3&e@z~E{8Sf zglrclOiME|p_A${((1_n28>B)sp?pXO_=S8%>5Yj${6rXd-PKm^7drjhog6fqQ$0L zY}irgj|p(d2>4+TD5x|1($Au;I>AXzp;lSu-Wj?&L#5KtMS&9Hly(N=7n(dB>O?_< zJ3K$zrCL$vz;xQUTN?US>mHjVrZJtGTPNYuZi`xaAFR-pJK;@m5 zm3WbLc$VuTb09oC|2sJ@xauh}7rBShUy*u|75{*-h%qKJ)--tXE$Mfd<4?>2d z6meE8nf0e*r5ZqaE__6gPJVHQPGCS!q>4EEXUEyPY~+p#kBN61cw7sQ={Z?eqza@| zo)urlB7Fqrs?9nQCw{~U`2on44($9i0AC8MRgNbiAxg7~6etr)W ziW6(E;gYvd={B=)lTn^TF5kA`&d-c094fwJ4(^ldK9oEI51kbUXauT72h4V2*TB zg*R5lr=Lj<8*qn_TwZ9&K=gJo3$}3Ly#$Cu_>}{wS@`tp@>~mCQ-`PK+$(}|nu9mQ zx)EN)HjGM~hZWePFRN!Rqo2>(+zw?nb3bK~U?-WOCs6VV;Sy9^%?uoXx&lj{44b8=V!FE=okcNk#`C;a6Hxyn)n(z-#gTf@Mq4Vgz$2XV`K*z(E<4J4D#zMt2%`hBy`SKR@gU- zG!`o_11m|K#tmc*x$x`9ukbMHuv(Jf-AIdG_=`*wXF}f+!jOnUDvHykVes~M%gK*y z)<-xszvFtyx)#1TaV{j1wqmH~6)XKARKE%*3;w@=Y&wN>x=uasn321z^)G~y}AaB+Icg zwqb)_#U6i%^?nLF^AL8cc)QN^g+1lJcp75xHT+_CIf}Cy8N@^rCr)of;eCiB&nG-} zVt+fCJhAL~%beD9mOZ#zvtw<r^Q%LJF%M%;$;w?g@g2bCum2UNfBOJVV5nz zvR(x;nn=t{bfnnP9*IVrfGs@*4cHrGB~B}MMr(?%LFz)mhWrZr&=h(KI@Ymh+UDHL zB1bjgpd2V4iN5}fWDaFULs%{6ExO>Yh39u7c{aj{VsB&vl4=2*I09}T!AfiaClBSf z6_TSfQlcexNj)r-KvrxEo=dZ~E3wuEI`=_#=+zADryTYn9k6?TVncnzrV`%}h?88; zu)74({y?5cF0mu@hV*w>Vc&>}M&hJmw`40Ob^%h z><149hb$dN1(IB`SCEG;wXEK zHG7|MiIpo5#~u3g1j%xe9*A@0uegg7*uN?DlYTy9oxdZOSkdBi`VpwHp79QVn*A)h zGnJ9-!AN)~ideevDz;Mw&rxtd0(wI1{fd)?)|P!lZ)UZ$`VSf)2n|sQOSl~G z9@Jokr6P;#44P?dK<^nVtg5A@$6l& ztkTQKoZYPB=Y$7%0l(qpdr0at-rgZ`#3{5eR=+qO_M5XaKZz9{z-Z)-I60Psgo$V8 z;4iWv5s6b|*+;NOu4wosF~K4^qDe_dKBbY{%#J}4zltSa7P3j4xzQn$bQXDJZ#i#n zL{8ZgoY_b4MM^nwy2pgnGLcJ_Y)J7%VtKKnP=%d?a_lQq;*57)xxU;MZ*Dhy=KTp> z@UvIP(_V*Nhx&NY>#*}sf_&wv)t+4sZ+d99NV;UCTpB&fq+hAfAeMfMbKt)iTRNwL za_M~}yC2b{Bohthv~`6}V(-L@{?}*sqX(Yz5%|kHa1FvMJ&3UgkN-sc)3Yrnx7Op$UWosE zEpPkqzF%Yi;xQ-3qB(gbYxD#i=gn+1D(Bj?8aGa)Iq+?%_{KCy6HF+tsmyt{ikjM* zdYnuvr>Vu6G%wPfIp^li-N|yM&Xr#~&bVo*Ctvoao&d`^wtQKm$*_E-YNZip?Xo!E z<*fP2IkrEXs7vBBSvbFcIJXzhS+0BRmprxXtQ=vlMC?5rq`x=unNap$ zF0ku!k#LYU53@UPoV|iW#NME`edPYl-os@mHkN&j(>#x6|6mwl9Qy%%@ccJm2dV}q z$7;b{HQ1jj$=41JmL02N%$pUwkj8p=!92faMLfaJe+|7SzO>zr?{_I0PWbURV&yHs zJ3ZQ>>06=C+Jey=U>R4m*uhmn@0Gy`VkcI7lT@4)EWS0WL5>C%l+c8|zMib*+7??{ zoQoGBm!fYyffQT#u)<0Lw^xW8#AyQ4Ss2+M-j1 z?ktV8C=Q15CXazuD_JB(J6isS_F7r|n!;+YgB@R!KK<`&scQ7OE;dRv;)-EWG(;*p zVt0rylM3)hXr*t+CtK-0Qn>_QM_os5IZM~jGar$-+mUCn;HiaZo-637wb)q8&{JX; zTj0g(NW6QXsT-i&gJ`WyV8Y|*qNZw~G!NbUhHr6tqq)D4V-C9NFM56&lKUFka3yUV zLVj*Un=L_li*Hlcqx)u)e-XcPEmCzGal6oCW63`c9XW(l@x|I8^3Npf1dR?ulMY04 zc0wX|M=tlkQ`rzCUy**)$4glsja>%MU3n~kKy-KsBdb zdyUWS1IXYiC$9J7p?iu4_db5Q19<8#TfDZr@!D>*`0rkV67F-N+BXHJ+LBsC2kbc<3?z#R`Le-HE#PYox*C5g0to!__k2*W@e zKd3iX30C9DD^A));`PfVB@WMND){9Nu|`R{yk zWrJpNXzL60f5yWse374tyU+7y%PE&f^hfmTHFdwHmk+>0f6I~ zTl!*YGT^J0*kSd#w*n)r!Qz<7Z%;U5KOESew7cloomeMJ;LP{n zhvo2z_y+eAJl2-Hhq3)LKo$oqXe(T81RB|e7vU_Hy0!Ejq!C38SHU3;__u=C`>2C& zr!5+~1aD1PwQbljm}J>i8Vmk!gjVj%N*8-z0j$I($cYu~PVEFG_hDW2;cY$=WG!p9 z95pUPyPN_!w_{ghDhPWy*26^POn+q0Njy#B%c0Zgn5SUr)5xV4=prN9&r^Ou$*-Jn zHKBXl(ReM6+n~ z5Uq%>w#5Ge%qQ1zG`ZNjJq|S|VW$m3p0A}X(f%9y@&r5Q5?0VcT3*Vm9i#MSTEEOJ ziQUY-+$Ye3z08r7<{2onqI^o~FMn6-N=xL;ps!)f_90rX0WIcJ_gQ+=0o@|@waz2K zhl136EW1-p&>}stc-GRNTb8pe>!|qwmeg+UGq4SBS!i&S{@;XF&%qqxo3tH$P6x{z4?IgZHy~dux zDfGuJw7_cc_7&civBuxB=1-ufPLXmSTW6MKPeFJnZqTCmzGO3+>k@N18~bcG{(&WU zLg%43W>H>vIA$SB#JRHBXeOaqdV}&u^VW;|3@p!?2$>%EtsS@V$+mh=TDFC%nEOrtR^GTi_j3_#BL(;KLs8572Wa@S+Am5=5Q+e5MS@_ zN1Crg``zPI_9^t&Wnxco273hOfmgAQwV%Dr)9hvLLT?Dkf0-DeHxIGTc^6&uh^Mo} z??5-6BYqP)aWCO4rLJ*;_$nGGoD=0|vB*zS`UtyV2PwCQ^h?Bw@BPn^>ysr0{&RbtcrYVnc0QJi*NNd!4dl@H|OH;c$I&w^nNkYDUYid~DN=&60Y9|BpOqc-s+;C=4m`~D3UkD54r zxfJd`N>7e~tJa{`PLZ~ka1yO`oAO6UJIj3+rLVw$Az0uav8sQtR-VJ>H!PmRJFLYI z;JL5Zq~dGtr?hyHw!}`|S>k_UOOMqBsn{QW3AbZ^0J&|_y>*J-?BH;2h^JZU1qUb(%4(wt^CIq0M$94Uy76N-h6fU zT3M`?M|Muc9_nEE-yb{8zw!?07whpiUm7&z>%0@JsL}Z5_oL@-$xeJlRE~cFYOaan zOR8A3cCaK)0iIzlUm?|2Vo7(zZuuqq@kLQjO$)wF`ijjno3mjqXu)CZH?={&u38LGN;$ z0IUsy2tw=EM$6YHR^W;l%SobF%*}hggfWt2mZ|gO8^; zep2zzJNwXLJJCPl|8|^^=t*i-#@q(`X9n7_ExRKIDHQH|25()3^Rhv1x8U;gaM?M0 zOOMbP4Vc$SAh74GosF#HlI(bkQ}U~@jQY~5IAygA{t{pNHNpOR#yqb?IyOeqdEuj* zt~Q2tf1!x57wu%UE$dMQAur{dN=H^w0$g=jDhbk=MW1zY4jR!Utz$1>fm$3p$r&r_ zu%zYGSt3?(bNQ_0l+*!Qt&CpV%^Ghd4U=0*kJMR`BRLLh{596{Pia1OtG|2*Diopt z3e~sxTT=0tRAwEl(_GQ4)+n+k*7_T~0joIW)?Vt5l+RFwueKB@Z6MqtYx1#!Z}Wv) zN&EmoeB(A$?kt^UU8W#~%BvSxL2cFf(nv;kAMeLa*;UgKzeI|3No}aK0$o>B_7ycX z-{e^-@{;nj=L}|>4)O?dbEO0J|5YhXxoB=)w8cD19%vOMoh~|EIM!?>Pqyx;&Cwi@ zs>r`Jf2@{R#mn=RiG{kN5OtJQoYi{GQr6fR`LR{DW}aHXyvN*3I;Z(z)yXOmE4(6H z*GscW(_R{3*3t4vu*eZ=!vdi|8r`cCA9n~$h znPYNy&vm_JENdNDG$M0TVtB&Sw2e95xyd=Z%##g6oMKGxba$=G*_77n4bAP|+rKh4 z(#@5{*VhAz4rhm?y~vC&x?^+LIL1M7*x}%5DrxL%TSNC;^O93N6Qw?yJMt~{p}A$z zmcmsr}(+noNF1A-~zZl0F-`Px-j+uLzPZy;Zh8N9MdZMR?!k5j!s`HeH!p=o} zzoH&gdKHw+JCn63y?jcmvoY}!L8@FI zGLw_@V*AADlJXL&M*se?G+g<-Jh6lOp+;L8`UE_cWOahk&f%zPo%ti}US_4Vvnj(f z9kZ?e+<)`#&5xusW4_l@*JPKjKCJ_Lcpq>Ws5@tlNV^n2EZvEJQ1MFdAC(?GFZFzG z)7-?|_Ub-;w1dv;cks$`*#X<^D#@R0&Nv)*sA3(KV@|!CQ9eJWAiQ8?(Fy66R&t2& zIUShh>1z65`_#C=G0Drw8#8&PWHr{8bG zr-VHV-T89P`xSrpJKbrtyi=zdon6X04lLEK(jK2ktN6Tyna}u;DJ#bN$CZ$pcdkBL z9%(G9r~hWR(BY3ya9LB8obpQoeO+GatJxTI;oACzKNFYzX!*56WV2*lMqF~Er0|@f zc8&e?B`TI!Sz=$wqot;l8C7;x(0!NDQnT!OIavjHh5zIS=S?%O*IuzN=F-QtiBla@ znA5-BzXBY6A2@Heonx(0f9KaN43)cR8(O_nZ)*@*#V18~ zi20M)Io&sLcy!SB2Vc&Az7V-2dzQ^^{dFr>X}NW#-64k#MnBDw!i5D-3tJW>Wa^T( z{n-$`=5NomtlSfYQwz1`Z)#=htJVqDU#y?&o7-=-?`FHqs${FR8r__d-S&E(^ttWZ-fxw!ztLEQ-Y>LVhcotq#b=o-F^`;=l*$&n1!)#Oa z1^OHMe4C@17UpO9ee=#`jmePHYiG90Dv=wK^*Q}x#_#+N{4bY>vQXWYe=V_HJ-$J6!Cw0soWDeGNNezmU@&^=!%jFH@9cGx;8D8kR>DpY@Z`X3JyId!@g?WT{)^uOw za?k0JgSTmeX|}z;ZJy0-n+f`MhHd&Mx=uPzLpQ@Y{aBj=Hpw>CZH8(+wb52r&<|U6 z_YLoD@-(qhh&r!uSB^RJMb7a8&d8Xjq@Rer6*(bpeD)#TW!p=dUHPZen#V1Q-ktm{ zZ${qPH2cKUk-a}{e)A!0bXdZN6TeUXX&U2^V4Yefw#%=msVzs5e)RK_XV>AQ1+qqXU| zajdDIQw!(DuGwy0ZW`xPrah*M4tE{Qrr!37VY+o{(HP{)VsmTlFZ~6Z;?l8#vH5?^ zM%_!}0i&wV)>f2n6&%i8l(jtLREkfMCiO$!cFmxov5B$22L9=v{>kjD*`L2OdGz0u zsOAw(!iqxQyj=dt{k!_T{LlA4OaC16J?h8axT55#sn^rpGEb+!OfhC@GI}SiOwyz{ zraGh-=DOvL&aGH5tZ0)mPW_-4d4s{-nbjr=4yMJcB$> zyH|IA;?mcYY+Kp*z!+$M$!?0Fzs)qO(bjKmZrD7rw$I-cPf(s1=o%5Gu7EjJgc#v{1eR$T1oWzVZiRBaTrM60(_H#gZL_}!B z%Fp&6UWAQ){p?-auj{{CeZT(W?eA_;AELeD9;90rjxAi1(=9DMadMn%?CO{wi4pKr z|EyZ+g{i+X&gIwCj5Kt#9cJUJNwV6fOSbK82(-Sesb_u4W{WOc*HyPtH`~_QRM+X9 zb9a}fE-o(rxa@JZa@=8@Vmr-lguTh(AEe6@eOW_+v9IG#r`paloq9MOcL`?P7aUTI z!|i)Jlr;I;IUDZil5G0wvh>yUOLca-6WT%A?$+5>e%2kdx%xVGVfqI)vu$2#V>OMm zYivU0vw0a=ZF1vtvvYc9eM#Swx<5JdZ~s_*(tjyG<5ol;`SJSG}+g} zh8%ry!*QEJn@~fdoxO3NUSoBYuZ;W2r)&-wUmJrBSLNjeM{|DXx6^E~Ei^r_o|CNo zeLiY^!l;~dB_#J%SO=WOT{imh&NFbxL;f-=tH?`_p=*HAAGdQX8HlP73?+|PU}Y5WLb?i7ZyYm%~3Q`b*n?V zHoE;*5E|Ppb`zI_0)aX%<`JkISE7anE8u#5u%&j(-1Z>gT4P zTSk13`&JMjtyH>YmPjj||J`PRLxx?1_JH+m%_Qr~$}+5q&enzK#Jml6OnjIOlfG|GK<#>EV3O_)3><*kx;D`$oUr zW`Himww}`@=aQz{wqy0v?3&vjvY&1js_$kfv^CpCYIV}Rq7y|&6)UN%c~|a{%tcw( za?a;W$ts?CE<=~TH@RV<}-=UtHUB=sA zv#V@pu={8Vcf8=x!qnB#?9{-qx@m}MgQMR0kaHu)xyEO9Z|v?Giff&e1|4GM(6ZRNkM-d-B|D-sb74jywcY8x&S${@N-u2l!bAgF$?3ir2aAo>WcJMQtABi z1!H7K(_7EKzUzG40t~@@g1iE5`AqYf>+cX8SEgxjKc9-OXPvvdUGvQMa`*o08ST}^ zqnB$jmzA!YJ%{*>2pkkR&~KR6cDJ3blid%w-*Db-|J(MCF5LQvTv72VaLehE6_x%Z z?Q4>A;>-BJgpctxWBbQWjcXd$?|1wgs}SeV_2D_u!(yIA#r`Yk(mN^{MW6DD6$Y4FsOxg|$vFvwQ&X}A*chdgOS< zslRK!XG!0IexH1gdQW#h;P}TlRR6}B)3JqRbMzU388MN7YJHp)TI_z==b7J)iAUnsCmv4yCwFU3?R*DmjLFKUqi;1gA7caU~EXpw8^cqdkJ@)`&rLTzE=Z&1_lv8(l_O4E$F4NrRx>a}U@3zhPkm-%F zxN(kdzLb+6k~KYP+@G~SpZ+ZKyJV!}H_!KrU*?5u2p#xp$h+is+n#1W*zs&k#J1$8 z>Ry|BO4anN%p3Z(J}>>89B1hAG=Wy1l+k$yQ`f}bO|s4^TW~MSE5$KkT*h#akr~wvsg|mSdv*eq4A%ckyC!1 zif9$~@p0o@KWajA*X*CU#SxrI19oO0XaMv3dLXS*LcaN%;8L)HylbNyiD zXu%f!`(i7qHLPkAIMsAVyHB~8`z(I-&%d97!uLge`}-_L{rxaQt z(oDaf+Rzb~qK;NMa`jlpv-@wUucW9|S@o2p!bw)G-6E^>YW%3~i!$+EuN>FfEX=ze z|1x63+XpY+hn)zEczGq%A*}Q7!8!d5%iJn^&kLwlVpOR;rH&Qr>pjYCvGaJ-Z>@V# zX#SIeNlJmW>YVAlF7QdQ6UB>)c^4bvzt+EI;P}AiJ}z!oZ3k*M*bK0L?o!z!(M$Et z_AGM!;V{b3OS39}SDI^7kFeoa#~g6qI&0(aeaii}QQwN5V-7x6++3emp4EI`%QFq1 zR0%3k%RS0!L{jc&_m{I?<-R}qA^6Ss7m2TbMl49#W8KVkXt9Q6{3|}LxV?1uV(q+! zxGGL{>|fe!EvlM5Bfp;VQ?uU~WVC3-%_y`Xt@!ek^5^!&1%S?0qj^gr%2In`I_vA9UPO zEvr?NcKw^RXq-|jr)*Ex=)9-jn>>hkx3|`e$y{+W6F} zaIDV1jZ^EzRea=s($&hr$##tOd1ZcHa88r_F6O6Jadv%NTKOF;S*85@^2f@A1>N%R z=(^d^N?DaRH)mY-ysY?a&-{X-WO?wb&#fpxtTW+ZNIbf@~!Pi$IqeJh%$a>-XZpn`U@pY0OCDzFH zwmIVYs-kO??d>154y=8rbg1`M(;n--%J`z^MZuaGHUo_(jpKE$`mrt_0$P@@QKeO- z%jK^JS$kAAyfR1R`xTrhYN;8e)mSZ;5Awf1zDm2I4!QAh*WOLORCko#=Hu38Z~V(w?%B-+`uZiRU*{q#qQhRN_==c;$Gs?q}nlW|E|fH zq(qpCf+Ff)YGvDUQloLzCkOsx-^Z%4^;7LT-Au>v-WB|3It|ent=gFKeJ+=pP%)?C z-;%kWt&Fp*$`sbjNy&|oTH9LLm9ieIBVbJczP`s(&8r!@8KR=Vf<-wb{n@W!!=?F#!Eo|jA3sItCx z**d!_jtaHBg}pOI)>f6KP$BBw}vtHky#NhKN&x^_-u;Q zWL43+dNr(Yz5a{F>uSUXFY;;Z`=r#|s?}pqf@JEHG)w|WYTHn83wK7NC_na%a`mm%r|*7a!U_fM6eJ`NvMuk7ln>(Z(gF0~1;?_j#2Fsga7u4?jF@A^8S}iAH2S{|2;e|Ixo=q zP*A(l-%8XeUcF3gh3eG~HgIn~z3JlGhH}pS101sCO!GQ*jK-+;&cBkAmL8S-GqHAB zouUl=AJ>(B={_5r8(ELcPLA#PIreePb)TzKu7q7W^8EPsH%W7nH~mRUn_;-@aj5j2 zY7UK-HQiaeedUh6ldbN?zxX*ZHX)%(eD+`K=$_v;y!j_&#?z6{++IY6Z%m${*y$@d zj`y+-EM1~U=|?p}noex_u6a!3gEhC59~Kbfp6l{|9GwMp6v-Aqd)j8E$2BfQ@!+<& zEG)9PEbQX$?(XjHvbe+I?iv!3K-@j!-a7Li|KxCp&U9B-Rad`y_ddU3yreIA8Q+W; znQV7U=PPH0FGBQ~TBqJ7uSG_R8n_MR?=$Xv%y@VG9rt$0`xANH%!STEldJR}ODRtf zOZA81J~i6Zq<>PwMtpp><^^9vcSh}4DzaPT_TO-4LjizYsYBj9d-m^}f;2XNZ^_)M zrmpLB10jkys2`NjyK#2A#yw(t26rxRaj{Xix-X)~1g%sLQ9L8p2!D8|+Mby1TONCU zN178e$<~rflDGImZn5P<(aOy1@29^Jp*p3z zZ@d^bHY8M|CiU1+aTr7cTrx^^UVaRJ$$fBDSGOt7$-iDSvEpFWz{Z7sfz)%8zg#(SRHODvbnP0XR@52g{8INLd!!REH^w7s;|vKE;pSHCP@U6x#W zz0_TPpyF$l-Binb(Dc2=WghLYc>DR!!E^dEDo2_wt$?WRdSVN<0Qcdy@M(BoOpcz$ z`jW$BQ`P_KRv0E3UB+F;d-_t{Yn@wv(zqn(g7LV%P!ptHsM@JIt8AngD;psFPTs`S z$RfTCTZbjMhOFRQ^@PLoz7x7JnQM`qn%p}qMd?$SunU=y|qH?^K1e4k1YZNkw zga)azG{oJZ z2$$1!-QC%J#@*jt?0V!9xkq|}eM{)~Og(Nm-wa%Nbs)n;jyyz@iN7R$q|KxgrC+2E zsAO5DqPF@E?J3s=>YZ`}>Nv0ky~jJvgGIUM%`=M;y{##m&g)T;fJvnuLWF0KA# z#_YWuhn)@FRqo{;-rdlX@2TzW=37gLGZl0ceSnT+yYUzNzah=h7PykE7E_XI;yL1% zVwrTkbSl+EHedEdHd@XrvQ&pOBeV~7W8lfrq5q^QR_u{!sYGdGacwe|$io{E(@A!DPr$EI{7F zp3VZ;UD*J=(+NB5iIC;J0-cTR#goY6;?0tkl5>&^(nGQViZUgkexe?yxuE``Tq8G7 zXT@5wCGi$V@kZEckp^-5FAD^}gWb)HU^L7y`hf3|ceW?bHORTo(bDmoqmyH!W0Z4- zv)D1$ame1${vGZ=g5$Ysw>#0(!1LO@(A~wo*-d%6d)NB}-$&nR?=H_<_Zat7cY9B& zcLe>FxyrWW5PlaQ>>rL?Mb{BZ$!_X4wCjC^Qc*6SC0{A`%kn7|bw#>Es-$*Nx2bAM zBD)}KCO;^fE32VKQ{Sakk|I(M*rly;oJF?5Aw5M3j3JafS?-SDmU#jUpF5xmzknWvuaAJuhpcR5-m3^ ze_Og(R$7eK8`k>v2_TpczN2F>5k3=NN<1g)OIlIa zWKZN@<#*&M^6iQ($_=XS>c{Gv>S5}$s`aX3RZlgmexRABnX7)Od?Ghdj5JK@m!wOQ zBrftJ5sSA+&mwDq>jH0Ct~YC-(EyV)4$VpUk_hh z?>P5j*C~iHRXEZdg^vCX)N#^&!al?P*q-aiciwZ=b2o9v!feyhJ=-1PIpB%+N_tGi1-Xe> zg`=1r4Irxn2mN*Z3xq-ZTXqdIfIjRKd;j*#bhU8~v8P#wS!SDg({a;bQ({J?z7 z>@y#=6j_Ja70!3A@t&XFD7q6ff<4E%`91z>1a5PB54A(kxHkssc>1MEQczfddUt`M=7T?jnYu{sP&YWxV}CGj z>7zcIcd2)wXN~*2%j-&UQSR;Tj-DvbL-zvrQMcOD#FOdy&l~V*neOarG=rDTZs53xktQCwTBfv3ra(zVhM z>L1vPK27+sEyM@n0+E6jW8Xw+kk4KtB=aZuqihfQs;`?b;2GsEb4~Fs^5nZh9iMD^ zSbId<*4y_wP0n)XXLkmSgPoppz7TGKKS3nL_mQ8)LnTSll~iY$O1@XITXjj@ST#=J zl;u*Lq!E%U;^yKtq>X4y$Z->pLpXW??gHl^ciaY<#j_xr>k@JZ3&CFEy@`3GNt`cP zCv73SAs?q0seG@Ts(PvJr>0duG<)><8jo6~u90(859vT?k0#QU;s;~}Iw-Ii@~!Fw z@`R_tTK*t2*Q;^;=}=f+R*$YqDK!<2DqLK+plEVwu<4Qcjb&m*RmBeTd*^)LRbdZi zmmHJ(m9JFW)nAn+&A<>ca%#l6uqDAA4M)^#VUJ({_5paJ?V=Tamfq?*ZvV@^!2X~8 zzT>WEt*;Yvhpz3zeZkBj;XK+$(nPULIZvfjw^MIW6)2XgC+QP|wgoQ_E;T0USEz5R z^s4!)D%Dj@L)}qzzHF{!AvqfIS{{>ABp)P#IENfatV7p9CZJlR#7gi{_-%Zv=(C^W zm(m{3ad&-prqx!Nn13MM{k6l_?%(4w{>a;5KJQrLTu^zaLTbCgyCtiPOJfElhQve2cYOO^Hed6v$Owg~OqC~mu7CM=6^RNBq1P8Z)zU5x&%i#*KGKE?9 zEwpaLiLlziql_(ryup`3zlKc>{}Ga>>!}zeR*B|;XL(29he#1P%DwhI_D=K$xw4#d zJS}Ovcdhq;Q&BA~wq?#rdy#DZdOeNKJzErPel}=*XP->5;Me z1o=gB4AK_;LmI4}Eop(6eICoZ($#r`3!juVF>iHD^SC@a?d!}RZR2SiT_K+nL_{~M z^&z}ZP#g6P?O$ZZ|rZTr5eaa+I}=YonbBv+B-EsEBkL4`|L(P0;I*myPk=eKPCuqOCu#e7p3e z?Z+w4?>%-re(`+q*SM@VW%JNlluWIl#wfDGE;i7#INyF!YoXa6wHJhRp_Z_?<$ift zWkvOdf(99VK23Z3^xgO5Sy=-rTlnI|3f-6xUnmxaN3}>inKZd^L8JS1LP8J8PH|Ig z`Q=NB_Z8JDoRi-zbAD=O^61n9nUhMt*jKlvs(qEM zO{eX3nB~Y@u|oaX@Ly1Z(Wd>TsZ#IObu%Pum#Ipq#iR%;0M5CQC<1FNb;#x_M#_0A zOny)CQkkymt-h>@)7(_ZLIO|z{wJF(gwBkX5Bzs6Mmu)JZPf`uhM4Ig|emvV{$*{udkS9_1Zd`>zfYQ*7!P$2FN=ahD7Ao zY8AUBYF_Y5)n#cj$Wuy0S$@CAVX9YBmbbCMT=HA>TKgex9H~%tP`}VE4LTaWBKlYy zBo5R`j-$h#YB6~}aR{=PHv;F-L@4Hta$0T@H{Y*A$4OSpmnaidW%4J~F=?3i5}AU> z;1AG-fm;5LTqC-jFV%V8o@!lMbEV=yNlVbIt<11|&U=MF#nZ2nvX~}OMdCjG15!fO zQPU@4M&k6kogyw7y6N0(RQB*s7I{a0iVL6Gj&rr}KKeuPz3QBa z9Ic%p&BNzlBPAx~M44S^SktBG-<*eO1>fvxIR(#a{%{yPv)lt*3tZD^1D>uq91FXd^{`3|Pr*({ZNHZ4ul*MEci5?rRr(&f#E|DP zzt!%MV662aj4&k0HW7cI2SkgI?vUNoS=3DkX9_$Ad;%AZ;CKf98G8&_!-~LDt_|Ch zo8w22}q;0j;ajpB^_$v+w-FZuF0x3~O3 z?QgNCiQ{gDuSa#%jEqQ&)5Xr!)`Dk@H{PMS+dl40=~9|yer-;#dQ~zar@@a0g;~xa z=p8IXQeSH~_S0OG{E4`QMaWI*Jl!Kr6!y`wu^1_;TNGV-vSOdv=NRlg#=K{$eZjsR zY;UrKQ4~`Ww;ep*qW3l58q2nxNf)yryOSCKL3PrNgJ1f48;hjb3q5ghCxP8!hQ17uf}1&U*` zp;A6cgoiOugrk!yUnE6asc zTFpQ4wlpcK>$^4zx6rMk7fch&kK)h8^Q;?%Cgh*um-stmQsBJkI9iF6i{#QEZNH!| z`lqtte#SH2cRAoCr%KZ$5Aiag7qgKq=RRWchmK-N15)GjEKpZv>cj7ssv)nV!JJ&vUXRn;O#V>(sjmrWeQ5L!w|6NQfE4AD7 z3EFllmTCsiD$AvJBnjki*kq)G{~Nc138JU_UeOe{nEz8~!sEg~zB(`tYeFs~((s;G zHRQZ!q0i8fqF)A}w7`7-T24>T@UHUZahd)SA&K4T+3RfN{KqvPq8STazq@C-Cp#Zo zwp4K?&azZKpexf4;Llqar;QK7k1J<{9o26mA7RA+bDZKSJ{X?s4=+4gBp zJF}U)hQ5KU^M1lbZVMJkMxhh&jnY$+-O?4H2VEmM7zjn%i91N1$sg**s_Nq^*f z!b@%#KPhk=X%grueB*ksO<6Oq4NUT{5CU2p@}2!FLi@h)aZ>Op(CWQHPorS5NM0+3lu{2E+xbivZ0E`NdH)<=M{$BMjdEhB+Z`@ zSO~|8!OCSdT2FKui2=&i7dS2i0V(k@5bBrn%{Z1-bG`YE{yRXLDn%T!0o=!CWVmQN z_64uN+u*&iW~cz1Bp-N+j0Pw2b5S(RWWRi=4S@=3g(hM;ycfO>BQOpvK|4c6=3=5P zF#=zTMPc=^Bus}{(OKBv@Qm68Z-TW&*Fl_S7o6b$VjbQRZ$~sC+mWNl2=VV?FS&`l zKprIXiI&6!q6hH??~l*HC*!T~=a>dlU^!R<-WF?$ZU8685z#92GS(gcj_pA|p*?XP zKY~BSPGP69q4)%%0l9#{_8MI&>IiK0GN6&(1!y46_XY+a!I1Z}3;7oq zw{+xJ)pQ=n)S~}eacT$F0;x5^-`ig$ycZIoj#`@kVc;|35Zy$RIR@=xg8rHURMZ3@sMJu`y$`k-k0V_8 zd^{U_fn{N_cq2Ry`+{-Ub?g9SD`x>m$X6S_2Q^p1vQ9 z7&bVrHRufRf2;;Z$peH>3|!Ara2S0AN`Dd1X?9>|eg}tknJ5-*hYm;2pe8g5y9qXs z$)ZWfAs`*E1(LuKGYpIp1HcFI7HHCu;NUrhECG%v0(>A3|8Lpe1+|n5ZJa~Lfxi(s9wJcm0%HA7J3p@! zoWTUBj5SqM4cu`kP)aS((Wn);^rMgsuoT*OF!Wj+Sf6BnSHDZxD^&8yu!9f^wP$7s z^@S!vUm;i6?e73A$S7dLJ|lxgDL{{{fd8MO{}AbTKJqshf}DXB&>J$q9`g?Q8_4wY z&`%x!FE{Y>Z8>_rfmVbt`~6LdSKdK0`?g6owGuQvhAEmgoV=LXgTt(1UN2WCQSdk4fdCLtApWhCzIz2QYr+$TCq77-M>(J)l0>Y3S)~ z(0S+|XajT~%m-C4KMcZD*cWKO)!1&VIm{Amv76Xc7?+9I2lNPvxEiX<+Oe z$7W+L7-L!JbCgD#!uO5X8T21?3@~ip;MEFI2KB&*-v}{f8feEw@Gje7PU#CynUA9G z=tFoPDg0GWtO3kF-LWZHM=Sx0#=@~8bOBUY`v{}(H<1Ufg9#ixcY)a71|#e}@U7J_ zhU!CW&Ig__1(@qyz_LCEI?^GV`3t3=}F*JybEMvYnTa#gR9^f(2ZY#_ge{+ z;#{!L--BMS5|u)$)B$So8TeyfK|789zbU@9=ne4j1&BhF0fvE&@IIFj8_da3B0pG? zegjg^38tAn;PhDmwFSz+M#BMLp8+feao46mK*TqpyJb`$cnJ0h+Nd z*aXhQD>nkWOedHL+CpUPm&JA@^sHaD|G&WYwi?c+1da+r^T5ZGAyT0)zz?wi*!?3w zYo3I&@dH=+80@Df;Hb|+FFpdt&VsSQ0~}&ApboR)4!8`)M-lL&g-{QzG0fwMFz$v1a$^5 z=ES3pru zhu;0GZp%>U=fCX3g961+bL=iK+&$rpUch&8m{pF0g#`n4ek*Xv7r^jw7ykV+ROUf_ zl=?6tt?+p?jIm$V$bmo{zJQT)6o~9!rnTFFp8xM92_h5lr4p#*+6VaAGH^wy!S8e& z+B**j=Yw!m2v{6!(EHMXg-2k8lL%z#FIM~t5ct2CXFcrBEQQxy3G=xm@B@4(_uz~? z{+2+7ZUFa)9GK%yz=?i?V_Xd%8~@LOPlNdy9>o12;AD9UbS4GdPb}0b>*((emAK-e zQrSLW;Ew>Soa4uV<}ZNR?FaZ^p2JryVTG{(s&Q=s3jPHU{!zfh{;KAg2zG!5fnW7Y z3xVPl*at3JUk#Ma0f#T4DbtVb8+1=2_Pr&uF3ckA$)=9&GY~2mK^DnzF_J0>r6tvtN z=(*M4EIAB4s25PVabWrT35@RwFttR2%b*QVyjnQ_snBMt;WgUAdtQNdRv<25%m=~Q zxZ$kKKx&@?>i-(l8~Xz)lZ61Wy$;$T6g-`Y;PH{c{k%7{@F}?ZzbvlzVO-S$`}R+0 zsVexrUtXGYaOV8Fe|r2fu>8z|-mw)%TLO@#2B7<=15ph5BESmAK*cR(APzo$@x^km z1$x0Ka0_Vm0$9n#fETXv|5luAuq1>+8+V4eJ0{?Sw)|D;?hI7JI|=@R{9mgQXxklN zL)Zs@UkI(80uJzqKr{I5C^+J9IJ*PTzFWX0`pXOS5q_EvznKDlhVF2MLV%+W1?OB> zFh?wdW7`M)Y7^YYTSII0hH-ElTJbix2L{5|Qn;Q?!Cr70erp(;lT zck(7Uv-w~`Y7g!FAs`3G<`0+)ewlQ4!WcLJ*Ek$}CB4BwmjEpv2{X=Rm<7IoM>HUg#zoZ0V7po zIHD}@5qyWfRRDeG9<;+TxFcMIe>Y&&^vfVc$L5<}6SXdc|@ zj*5QyBKrY3eO(BLig=3x^Wj|_LO$MG2lEQTYX7k-LfLl(#- zE?z7C4r`O)NTz5q_81?CX|YnMA^Hz?26}v)h(o`Ck*6{GN)+#3A83!ALYF}gm;|%x z5|IR(Bh&~HXj{bUWo#*=SvLpm>6*(mfz?YN{uVdIUr(ql+J9xJkT4^b?-cZsL{5f$AFn49s{L|c3&`Gy!QS`CbNBXT+Ha2Q2zvF?G3>>^|-cYw1L?hUmi= zaI3K6qIkB_FT*j>X|@P$EZWE45&j}hh+m58`zfi0Y6vT|A><{zHClwO!rT~!S%mli zjnw1!`%BojqF4ASpHKJ@=)!45z1Y2siH=1J@P6DPq=Tr8wF%uM$B9|&O6G`IA^DxJ z#TOz`k|ShuVAR3?EcwDN<(uLW{22BxSe44zqChk32-}IB3v^a(<{ke~x=VcB|3vhP zJb^=PV`P%(fq$@QkvPV0p}+C(@m%y3@_{p=ThQG?3#>P{Sy(5Uh_>NRiRN>=14=BK zwhA-R3idN_|J(T!0hzy(h@cnH%|uNJ9$38pI0QUN$1ywpoA@NYLwJiHA^#@U;!VgY z{!5@+9EAP|49Dkj7yX<0-!Z8A%WbFaeoU0Z&t$Hk`>;g+GsY&`f%Zfy+1sLlew1wo z)IR0^D2zux3wPPyAR=>$%NNp7To{cUML+ug;`?Bi`49APKS_1KQs_bcLh&Z1g1d&b zL$c9vh>3fJ++`p5Lr{azQ+Vp9+1~_~d4jYi?zu*~M#>W8PrRqS`-nZ_)yO{2-~PK~ zF+NoI$sXfbQ7X2~<72zxs{^my5uA$@B&EU-yPGS+%(#kQ$Gj8zk=2--mwG}2l(eU) zvA2#N?uUGyXb--M+sm#&0Nm#GaBumSf|zcMWRXpfX08X`4HA|t<7#|Px~=FDa-E3s zeX{QoJrG|JI+{n?>-h`BoA4Dt-^NP_!)7Rz)5DWPsYB-&BT39P4DHqz$)t~ZU0qp!rzoT>@Ntc_MmnIohciJQtk=*kEiF-OQ`RK8mYE-Pu)K z9lRNlgcSLTd_(+Wi41-!6XlyEvY|WK^RA)ZR_Fxum6xE83JU|*xS8A(PE7an)5r(x z6I<8!6XwFU!W+>pOv2ygLq%zUQ|J!<0~g9a!#852s2w|-nFs!s^T%rFR zPje#v4?Y_F0aI9%|C{X~@&}^a4sU4SFQgfNl_?Ksv9Ap0?#a(a{^Df*V&*1yh=wy&jpKjQ57vS_!Mkb@(>s2C%e!0uTM2>0vA- z+9#}~pL*^5c!;kIV@`;+@Q7!mcRDjDFc~)md=8oO0Amhp77jAqJma}{>_{)?t( zqih1(#nZ}{%We{?{SZ-fR52mw7c^aHW1nx|kFx4%L>*VL?IE8DYuhsD(<_;9zRWvV zh=X{o)vI-P^R5yQyn#^azUq6!#&B=EcbU%oP(IshVU9C1nBB~9;S9rZ^LbP_Q8n(@TK~_Y!O|??5A_- z-M(4OPx=GhnMw7?Jr}r9foOh#;~&cic9zJ;lP;OFO&|=t&a`wExzy}+EC(OK#=3j^ ze)7sd0=tL3z&{k~unT=>m|gxx!UJXweTn(WJmiAd8@}H>?}ajC0-x{cNN4*xcr}ch zdl{I+wDgVg&125{{$c-NQkg-pCtcxJb2e`s$hp$7L-_Whbe8lwy~o)Wfm_HBp~#!) z%Vz!y+z<-b0FIecaQG-3qIf=}a24oK0gp z@Jas8%q?eKPo{81v{snGEb*-IPGQF|7x>G8gQEWIdhbnF8U2aPVKcZqZXjC&XTx}# zF_*lJy_K|$b@`8TbG#16d-pyzNVqJ_VOx6py9aw)_{Q-neGl@Hfe8O7hzs39 z1_T0Nc%3F}^dEzDsV$HUehj()2BHi2`FebC;2QP`xx$Tx9k4uR7NW1dqFPFch@3!gkzh1v@Oz_ zV2gEyd7pdYT}jq$rstMxj&<&dz7XFI_d!Rxt<3qu^9t+-(OrnM z#A7QlH$20op~G>xv^O|1PKjIM3Z7*39qHlp&WJ5)O=O7aSS zh7$M#a;T&jDCXlN1qG=Z`|qJ1d=1_P8;)?oHn@Am`djgfgy|4ns_pN|-C=ytrmI;a zpDB=ni$3UX@b#^D4X4yskV~8eDp! zxKTmdyk7Y&i$52=0H&3wJW}zl=AgB$!|HC%ze45sQ1X-5rg)-}8HnJTpz4r+!sbNu z4;O{yhSmwQhnxwS81go_ouP*&SBWY&E92D#%7?NOWDTw+5=l4YPLz@#aT;}qe#2?v z2)UKCkypho$xAAOnjq0h=1|?`bLF(`3>7M!AU;9N#G=7VcpmuG{%nALLx+3f?TbvU z&4;YBZLiJ!YdTfUt0*b2U;cM_?TYg9<>fO=D~cKw+l#sv-zz>=`nGI9#coSI?_?;k zyv-VK|Bbfba#>qtnIcBLjcgY8W#0DZp(Wt-%euJ-``-*F>tEuOvXPwXHTkGrZJMB`s zaCdL|8+V1j#?OH4jZKh$$~Y$3*V|uPMV3JoS;ek`Lxr!aG50V|aHm#(F0Cp5=1dYc zOEjv3nuUsT@cQJVw9*~?S47va)yA$yi*BCghkTQ)ND-p$t1gzk7b~!5fg0|+?@#Yn z8sT%GRkwIsx^=FdF0;h>vf-k(!$n7ve8fDRwnMM!zJ!Zm>BDb zu8DjQc_8|0)SQTJK{|DBDn!~@c3I(-2irPvJRoI}!qMqsG`R ztOETPYRV^Ik*F!~l4Ix{o)(TM%gdVRDnqF)zhm~GAMV0)*4bPXea$?uv~S66(>wP| z^0=XA%#5ga`p=R_#1i%O@WOaLp^%&KBfUcp>DZ21Jv1gQt_# zYl<*eTN}GFd~MjJ%zB^SJ=8asE5SNa87jMOe$d#kff0jib%-4h|0=FtTuA)m_~6=2 zYxD74YrPF~8XxImwbM0SG*i@nDI3T_B#XuWi6=-NlNSj!*;yPfeJ1$`dqL6CXVNgp zb9BoWE9Wcj$qq|DOD9mR#VTyMU&V#_UO6Kzd6lz@b$LU6W~OfZzPB*d*-xb4lI%65 z&WgI`aqLgor|6jtBO9dD@@O}xM;d`sOIVd?O$d)qsP%7fXI&dbq-;Dsk{{~6ZJ*(i z(1VzG_b{s+atf^F^J*lnSKI(xA~uP)lB1|&YDv)Pu$qXDwf4mxO1N12LEWcy*VKL+ z7ZF()Tw^#I1bUBPlYXUoJoOl30_*%!L?@hQuMrm#Z^;qTgR&vA{o?te=3F0NsIL#*nt8=`7giwSu}_3rx?jFT zwN`aYaas0JHd4_|T}wC5U^5Od?$Q0L3;|QibsWJ`kf%a8JK7uL>S*s`Ibdp7Wh?nN z?^ee16#C2c&n>@9{!#^*X`S-aRY~sC+!@%X91BLX+k{fS)rd#?6Rb;xT3#vC**u9*jwJvVt0*YzXg2gX1otsoBB`r zi)Q{{Xc6QHeiBwM@^sV{5KzCU)4x?tYj|U9l6BGe6w7Q9X{)N z>ofDh8h6Fg;+DCuGCHMHd~Non*=O&kurGP(cMHc^6Pcrdhp3)dCO#m+D5**pyfbP* zoIB=QbnnQ6k$WTBhobuX@{hz2|01u(-r8!nI_#V+!^~G+E*)1qy7<2mt~{y6Z~N0T zn%&{=hOLx*Q}oo9=<;=h?myiI{VBs4R~96gd(xz+kZdN! zWVy1NiW}-U6}lmGbMR=rQWYa!tv=Gw$#~OvNxxlvL)Jy? z!<*o}@!5DEd>hQ}P=^zuu8Wa)bOv})s`2^c2gz(%Kc!iHPdimNNk?njXemt{b&@Jc zIbVKD+Dd!}zYV*b69ZNulpo8i^|W`KvwSg$Oj~L^RUIlulr}E>o)eY%BVGPIEOlS% z&mWBoL(DUM^O1YxKU53I{tc67D6VR61zid25&ktSGW2GMA>?w9+91{>%P!#-uCeQP zOHR!w(>QSEG%>Y+_N%CnRJN(Q3H2%RaoR7M zeURn7Sfy0#rH)CCi{;`tvW?*#xAnA9E9mZWtXZK)j2iGYuKvsm9;BQly9qOTD{UT+&RvBklDhgA|~=r z#YgQvW6$6%!G@sk`eWM58j*IPcC_}mx?0glR#$pRe2UB=G6?GbyTPkq_n0GSF+q)! zHIx_1dn>9HCzSQn+qF;h7X3%<7iB(`EDj~x5ts1kcnBT~r0a^nIKK=memD7Z>`C7x zcQ+uj=G%MN=h%8#57i7RpIkH~cU-0+Bjo#-lvk;TvRagXa_&nSCRdcJgW z`LOEVHjP)t=OQPG7t~huLBsrzf5SF}SB7;9{Sx%XfEqd)dK)5iQL0&#N}Prd!uFwu zP#hbAHOBU%^P$J)66Yj`srj;G*#Y?{MTBarx}i2tcU0d?hp9iyP{|cyHQY7FLaNwf z+z9rQN+dY&6f!?Lv86tjyNT9dRCq&(f-59$s>QY#2aJ+tu3YTh8J2TF4x_VLB^3uT- zAF7+1jMXp8h8OM0PstB0uBi-iY-YQnKggld6xkfrJpHraOJVgR7DX%#-yeE7*c((o zxKps*P**)vvJM%^r7}ag3;q`9JA5ROj$IL51^25>q$S!)&QWgp3l*k2W!Mqq4-y59 z)EB7cP<_co_&%bAWD*rCt4rmGN8`hhdti`h#WZ1hGamXAJ&kTjGrlBPTWxc`vgoU? zmzwg!a{FeD`*A1zMOwei8zti$a|5yBrP6>nA6o&te)WkmB^J6U=0JQ^twUiReJAx~ zIW4}4i35ISt-I3ty{4wRooSkRbMJ#uc!ZP*O@(9rlgMcFCb~vs^~du6 z(FeVQ-J@Jr9FJ^$%rRBN%Kj=U$<56?nx2(9F72=En-y<7lMpG{gUA=f`48|rk=|0Z z;cOHdUoUQ1WYeINn%W8pbw#`cXONpbLPxt@_Q|$Qmgm);($D$ooT8j>g>2vT86`oI;2$A{VNnr>!>dCgjC-}Q z>Xxcn$}h5El2rT$_%*-zTL;vzTTm=?;7&8E*vrBM^c?v@vPhCb4ksdr*W@c{m3*X1 zr(Ul5sTd?bEITVZF3Y1{NH0oW0$Xv1Tuao&wgq_B=dE;AIfmNLTSHBkDq0p_%ANUh zcG`~b3x2dK$f#-WX-jK7E9@U^J6tpuA-x*3CnhGoFzSIZUG-U6pj{9=CM+oo4}Ps# zBHfErGjeZJm&LZvL|3k=SW@}5YD!hFikPxGrB}<+s*-K@eFgq0*fp3L!-(6`)|!{W z7b0dxjfrd>ekSB)P>N9zv@mF%@x1Poda81ne5O=S{Ed)8Dnz%WupjXZ45>%?DAr29 zU}FNA*cov=hWTQA5?o(-Bl};1@ahKg0!#Xw75A*U}!+Y zHt{^Lue79_Ce%EwY*7-Kdpcu9>OZM}{#aS$HV^R3bDpjlUOuk+pt}=xTr({ENK|ZC zjLxfQq&gcE7c(VsbKHaQT(G1}mkh_tMI_Q+*h#N&wzCYb2~_DT*OiVgnpM=j>_l~p zb+9u^(yCZ@^5)H?-SAYwdu3Swi z#UvrdXQ3Yg3H&wslJ|l4Z(7c+5@z}53kSIX`-ty=T*miHzENV?Woi#KSoWLZrfRF^ zie{<0OzBiyQe2T=r%s4*T!pZ_mX-Q8x+<-*8cW%rqSV~)ng3)Yr3q<(5HuJU{m@e^NlsL zOW68crEm+1z~z%lNrq$#Sg&|_Kq*)MsqO{q{8sYTGMi)@*&W-9tn)A8o#W4r$`)lhe}2vDS-zs`b+I@5Q}(9PU`HCChc}SwB~I)$G6#R73=4l5JGa)o z;Cq@1)k=*`J3sx&n^G*Pw0K#u@LLpZgBz;m|v4t*{^JA$^FvXm0QhQ>1pB^vSZ@|n%y$kn6FoxP<4wsGlE>6k`C3><9hUc#UzAT) z+*Rbs9n?I@WFi9HFFa(Pc}koW_H;`NxWdsz>A4HDmjC?r<3rBp(!Z+umUPWp@guh2 zgjq{(hWmgm5Xar52MYZpOAYSun6PQu`m$uIT*+$}1B2dJ`%H0ztc7^F0CSO9z}S5k zJiA<>_IEX|@{eU3E03A1mV1^=(}tS)HGM5{&K+h9$!<90m^tP2-3sjDGQB697p#P-Wi@3QVMT1GYS8ku;`${A%e&Wf zvgw?WF12f#YlnLdJnwgCohsWdXXUSfR63-+XViqu3fiHK0glrzZzeCI5bCRh zft@0XpT&3Z$M^%BgRb&jrQb6DF#j=Oe14!1?Ap5^gJl|K#%|yn$;Z;GvTKx|jK{Cz z<6wVo4ptpFAav$*z7Fowz$)A}wJ5(;a3=RhZsXka%^?koeL|7II%bb+ zkHubjr_2N6SX^_cBDnZoeo=nkqPAsqtN#W@WT~~xcE<6WC!K4GRZA*mVTxOw7 zHAonhp{v5?h4eKv)GpA})0U{k%B`|F(k|poQLb=7ume4HmP=q3)4wsT`#M z7}$e9jnqctaEweNzlvu`2U3W%giIn=ieF3q6DQyq$VC4h&gbJ?^PP8WQKp>I<@u{~ zW@krb`qC$5k;V5apXVi|4E_2?&Rvt!9qt+B8RG5gY36M&G^Z4X>d=nCg1VMssU|mw z4SgMw6x=GLo$-ObX|hZg6e&xP2PF4~j^eD@!$v^+`r6Fk-f#cA?k9qav^{WspX9McqvmqIe8U-zo9m zczD3e)-X?DcXb?n#P=6Hj@ia!!;XrM?}W6%w&45lxkMGYRI&kz-@TImtC%8RNKKPg zN-s!#WE=FW{}f-wMtRRU81s^<{UzCXY<6namz*?9%sN)8ss79B2{Rr;uMgk`B~AoDcPny4+|rOV|L)mQYZf=`8wh%`o@ zjQkq9Feu(Q!T7K7o&JLQkUT-U9lsgy@@0GrVJA0@Ug@R1&%LueD?JbCj{f0jZR`%@ z;=RSMNXE-Is`51k{d~Pu+e5QSGeO%~TcuvFoFwl--6w~L!gz#P;7jr>am1P;%QEvH zXWjpCAw4uLkW%kk)09!!c=@dA-Nh4g8x%dVe?xXtCzT_#t@W6GwSH#st;i}XJg_CB?hSON1$1lo%(HLWW7l%JA!A^)F(s|Ch_p?R-zrsj4nNGipvKUxpD zXR(6=uh3>hfw;SDmHLa33eSmH6W%uDz2TK^px$DbX}qY9P+z3dh=%BiK&jALxXwrM zPWBx{qT70x`%W>@yfbhc8&AB%6<``_Lv2+4ihgA28yXP9NPT_%0R2cqb3(U!lHfy%Klzz?*X2-I)a8&f0xQ>F>eA8{yhARssgTyPOKV_A&EfgZj z0DrcDD$E~l+*S#O#ENXl3 zd5uK5S20-8K~YDUDze#8SO+(A5C-UvC9?9WLG6K@SRAGKTPx)D#Lf-emh?)8KNhaA=+-J3KQaV?k=hw{gjV$!v>Q|-6+0DEHQS9VgQB!|War58Koj3NOMJzF($VExD+g3} zwAONtb|yOxx?Az@$;;|Wqc?nM?2iOrd`X-;c3G`^;ezp&wzk?MA4+WgA4g{y7uEK^ z?b*Gjn{H4LL{SmDySod!;~ZO$-K{@6j(O}3EKF=f!~#J&hw0w4bDs5oKECjcHRF!8 zzU#iPi;tl1QmLMHt`DwoAIl@iMSP`9qkRlMc1Uy^m$>Qf}NU%vMz)l2IgAonZ3?(*sgO#*b^<=OrMO^=BGBNXRUue zIZYm?ITmy(ykDd?Vs=QEz-)bY-A>hg`F8n6nTaw)I)TQ#}k}bq4j6~x7huJ}NBi~!9l8R;) zvtwAVZ@GJ;BhK>N*tG6M?M#EA_FQFf@uOeaUq*gVXGdG=Lszt|OELvL3SHDVpn12b z0CjKWmB7COtJIN-&iFFxq=J^84PVLpoZk%!BPy~TmqiB&i}bDRsl<&{6EEZu`pkfZ z>Q_=DIhss^lH8}OUluO^J)~q_^&oSmdnR9itRkPtXq8fTLQ|vUR6Trf6 zXX@t!y$?PUdOX|{`Y~Xl;yCdb?jqX9cjxx7ow*zARJJv<9z4&-dt7deYDDkxU3YG< zcns%jJr%J<+}9}|re<||JwH3jJt$t;Q`s)D;jP4tX_akrqpK9_;gO)V<$)duBYYF8 zE`8qj@^KdN*^~F>ho@wn^Ix$ow4~vOqt{NxkSMy^kWnv-z#NL0#aV z<-b1V8_KSO^CT6qP(3tceN4Cbc5&B&9!T0j^Mz9&?HJAV0V~h$zKx#6F3QQcE_$^B zBwZcUA*N|udQ8J;ZPbwvt?DL`haSZe@peR}WRA+B%L_OecsHbZI3GSV>`~~x(9^+v zbSq_bs8_h`<6OUN?`?lwlek5B?y>K)#&a0gDXGUTA@AvsJdB(RL zpPhYit)@-Ls$R>w7c@~Nf9l}ut7|?$*V(hkEL7%JBvr1cYE(4)7S_zQ5k;Z*FaZt~UFAp8u&Gxr{-=1l) zHEv``hH{MmX3gr{E?FP5mVPZL3#+%AjMf-$w(uC+O$Opg*kNL~e7jB(>IoUD*v#8) zcEgUU`6aer`QKH4=9)d+WAdFkIrv3bNi>qsEQyG_6Es70Rn}P6i!6d3aZ7~7aAQC& z2$RfHCF$dXS4BLEo)>Kk-=+7;R$yQFg|5fO83xLD)!u;W#ovaL$;;A-(*BYaVw70y zKj=N+Y-gWq4KwU79r9~p-m=_r*+1TuJga}kmil!2yT0tXySXl9V7o~@`ZfEmh_Zwf zSaN%RNy=;Tz0a4(k7vHfO2^o;TrST;s;dZ)$YT?l-$)}{)WuhYI8}?$Kel=K32&D@ zpZ+G|TSU3fh&n=;a4b-ft~x7Mli}!ev=~=O5@ct@BmMulo|ud4SJbpF{qg%@VPvJu zA%*TMdxVUPPKzJjxI?pyWPS8d?Gec({2r9fO<;Dg?L-gJ2gDcY9A$=fn{KUsdEnll zfS{@R&+0r`9I?}H_SV}!SU=ilde*T9D1^k7Yjp$la?K-|AN!A;?kF{Kb!1JSvPMO= ze4?QHul~8G-fenT`c`C~8Qrz>wGQ2rt*IH^yY{YY(g|Br6ZT_e?y@i9Tyt)d>;<3a z74$Y|u{wSLSI-Y6#|1S@_>@xBWO<|b=nlbmRcSC|dh-3%8}e1r`vpIbl>cXVXWPVQ z$+Y@7{lCh$Vj6Hja?pw3q@|VM^-i=KtmCZhjUB6AmW`@9WuDD6BbR9}gx5E`&~#f` zb*qA=|3)2DPbKpFV}1W~w6L{ys<_oy6Zs*{x4_iUYa#yz*9I2q1$7@qU)eB80vU(6 zIk)c%H47x+Uh#I(4>U*OQjO4M0`i#>Tj0}KlB)|!r~kh3E%r;-oa~&$?60r?erC%D zK8(~Q9Yig%n^`-)>p#8o%orEnqWa&0WqAv8|9l}nr+*xld#-mZ={xJu9x{ShBunC4ET#t||Uh`_nDpPxa4&uLrV#zVV41h;M@5 z@dw$SzVEKZjx9F9yur|+wr|}f;{)dgzPGe0XmK2$ytZY_HXBmACu|BSRE$ExyyHyM z>V}x~9-IFZnWRbyQbf*(`4F8Hxg_MPPO9Rh*T^hvKiooS&u$0Z;6Ypj4>IMD9h)lo zBD*AOFTQ|o<6Mq?bw^5}g7n;Z@5g2ReBSkG`wZp#8O}D1bX_lXFsB+j4;W(a*CM4O zzRfhVr1IDB@1;5MpC^B4{^e`w-!>bg1k5iEnkAD*xEk+CEpJ-WNZa65R9bK_mT4UQ z{oFgvo0@l3U$j3D|7l+D6gq0}gq{h*1N&>5DXPU|u>-;@#_hT2JnvMv#yQeVLu!dy zwdsOmC36-Xty~oHI=+8eZimM094UOv4lS7ac~%*Xm0PQhng=pHNslHXtSIJAyfxua zgGrHdgD8y|oM#z`N@yb2g}zO0!X_?`!E=k9s>nZwH8{al-K z@=edDxp#ZsT9et*UB|K?9y#(Rla!LxtIZfaD-#^VM`0=E8d_5+3l>>vv zguM$c2-u?;s|0g0s578xcl6A4&+zPYYRy%KP{4P*?QX&Jf$C)6!wxq3ma@0Sgcb#j z=S37Mn;`4F697|sOMQyB21%2fv_+vAaSa>&8~-_GZrBF>TO}YcN={)%L|xeNRBLas zw+ie}ixCYnvXW)Eo`Q+pXv{v+d+w z%|?tLk=*{Crp$e;68#gIUzt~&tNqwKM^)U*SquA|TK;o`m0jf7leqV}0p zrE|Xz%OT#Ke4Kc#`a;1yrY1A|ug+7tsya;VojvUK@CO~}fFIs%Ri{fv|G8b5_-j)( zoqec~Gy|59rw_H13lb|L|7m7zd!fzymf6iJlP<(`mP;K)g|*;*kNo;4|9tU{^4X@j z{;%qskfgA@-~mAggD;0X(a)FbvEJ-Y=Of^_8f9Enw_s4#pJwg1@l!VV})TjBR z)?ZsMYDz_}Q&4_|yQ67qZO7_>dWCx*)LAxGw;^nI?8-*kCa0T>YCJ!li+U3{QQiQV zK=H;-RW~YT)acFc+!n4WIzV<$U8!y_>j_itb+tYI9Q!^oJM(q($2C`Db?wzN+6iA6&UH=V55!eSAwpF7ZI)$0@}fN;(Zs*&D2dQ#?V| z>(*0_B%`^w!;g^#56g$ueynv?y{>KH3=zMJ`qgY)tIlae+OL-Ln(dETPlVVfmFj-? zE=nwGR=%zjt{QG}_;$j*2%Y4tJX0GQ`aUW*?o`b2kk_gTvO6@3dS;2OTT!#iI!1_< zwF&GPb+cjPMmY(#gxRt8gR=!1(4(V*y*r%GY*$S~YZCta_!^%T zo3T8zTV7}PY~|tT6OE20&rY*8PfMr|oQDzY&QL zUsQJst_i&xdL#I9zKt-tXf_lEzr#+_~r|zbFDh(rYkVc~OfE-=m$pF+z%9ZT=VoR|; zu%EJDwH>slJ9gWfSrqjbDmoUxpA~QO-W|zZQrzFN18Ew|1)yVgWn(A%fndKb{j5%N3=jc?{3*1UF&s|>vU(2YS-r57zt*V+- z8p}JEC05i`T{CZ@P`@A`^h72{_&<+mYb2BiM!rBPs0Ur;-{k$znc$GSMtcrXp=>sA zXmQ|~-B4Q6|#o9m%I1f9V-{QyMRTw3Pf%EUO#;a?k zi&7m{+>mXM6-#3!fY?C{Cc8+z^0V?o(k;?R`EU7SFcIoOa`*u9rDT-6N`64rKoUx} zB|f67AS1{(tr8wUZ3&fRgIFgvlZ(k7#6!@OZzq}z8j#CG6X7plQuZF~D=#t==?Gs- zPgh$@OJCanTfX&$v8MWNIbGbLf~$I3om#!HYEs=&Q;7AAt%)nxyV`r!cZ3TUw(vih zZ|n=uyS~R)Flu@t)y8wgMYwi2^PMj}TDFNujo!i^5?{$x;!R>wq9?=9LJ4+)NUhp2_8aJ6e&s=9G_!3?BEwu5DIon)jdT$(HG8%6f|1#wo zcNmT4Jo_HUbf>`;EM7)#C(e^UrJt0O)Wz!mw5xPlO?SmFX%|_R^u8Dpcacn#4wPI6&Yi826v<@i zUT|OQ4uc0Y+>s#inby;b=tMrwGaH-1KziQPrD2} zK_^phyuYcrJ|p#rR`Fd#&7ni0ZpdM5BvFp{5Ql&SlZDuiZ^uG_8T3B5fBr*6;QpCK zlHv)H!SZ!#t$v_x1~?Hosti?GO@jYo8lRyYazT2CMxu>-QjBlrUTX&!C(b z_{84{4!)DWH#jdG2D^lF9LM+MH!#mx4S$ANNo}PTdY(B)ft*pL;+;6u>8(0%_v(M$M0qzC3jE@Ch7)5II>G}Z$?DO&0G@K*o<@+otXZRB0$D)vTs z-?=7HFf)kSLN(@R`ReJ0;v9UHrI#gO#6i^sEwJ% zwSWwK1l61l=Gyy|t_SwRp3l^KV5uk(W`i!(T&_KIQlR*;FpOvgo{QyL!JYj5nZrIO zg!{wU4Bi7+W$B`ASQOxp&c#+^&9N2882>1!Gwc-Y^FQR0fzj3ljl{koG}Ib9j2t6K zsewo$vc-j%5AZs#psBC|9f8H5jlh|0TP()EN>CC1p*k!9-$Ygu({V4fNfJ*SVuH9N z1jKQfdERND<#Ed$Ky`zEBkh?r-r2|$e3b8jYZ#K|&vs||?s`+Xj>2e1D`pmYjf$iE z!ZIv_KJ7CA5-2OkeVN_^{7GM}Sw%hey|(kdah^w>Tij$%dp<{$Pi+AC+89N(;+rkklsj0LCINc4B+I zezvC!jtG#5ppuY_U#8{}@}4QG}g<+}M9@+)$g^JCy1gL;!g z72V;R$O*hD`i$2Dddw@s08?0~w92 z%r5?&+QG3P`~<=Z3PeqVvFG{uf}xFA@a`14Sq3x9n!=99JWH0NT}=&(<)7uHGyu zYU~ubGW;#EH;zTzTj_nGr5PDRdw9NA4_4AX|6LeKJdV1h+FXacsNHVU!MRQ3)%*){P0 z2qShA{|&n2)X>GqSJys4i!^j*fWGP@>ngt#N&vj~HT+LO;@itCBs#ezR6}wpzt8)e zE%O(#TA@F?)_W1V;Un$a#N+5>VL5gbaB@TNRO&J##*ZWOy!Xfzz}PyFT;zfA<4{L5 zlPe~Uvn}}^#4Z*j`rvQa4L$(L5N-(*)T2Eu%v%CBatpk6&|RL1kAV76dTyVz*1AHNC8=>u z6d6#$drZ_FnQC=&|De_OE~3wH9kmObAK931hO^j3csk&sE)vb971Z!}Z?P2OHFXhtf{pQvmL}pAp69p?c@FIp<}-DozmcO{u6I2CU3}NK z4;{eeqN|a?R1b62yz-^@mLbtf}z9U2k`;wlA zj`b~OJ3^_z8`Bj(?MbHlfsXb#x|n|nnusJc1cullya~IQ`elGmOmh!~1tr0_Fzve$|%6y5gD=M}<4 zH%JZAaXvY@lX>WV$tQ{Lo39dE=~L7+>3C`fe-Pdx%=YhQ`r@12qX1dxB$ChVgYWw< zVKtsaelE6`+D}a5uJCP%Ok|;VFSZjt?*9$$APpTMnkpaaOZ0z~a%>0D7(4;ScotqQ z9zq8~JJF%o32q=X2({otc_X?=yoPQgHL-xqh`r_CL%-nl{_*fm_#QFMQwv>_#QD3^ zr}5_gW9S{w{BB65GPnHY*mlt%|3pBS%En^20(KW*J=Jn2QA$t&hRA1j2j_>292>Av zqI~~r`X^rMPovM#gJt7A(~x24ZYo`z=qIQwutv5pdjD6V1G9!YB-i@Xd;xL5tAbDC zQqKV7D0GhQB+7tYh}%senDCkV$xJ|U7zWodorHz(H~&$`6x9Xxnzyg)un;YLg`49W zyqDB#1qYLX@5H`&BgL0xsqQhvee^slCO+}IgY|5jQNBR_Y(T8vq)|o$w(?l{;jE74p_7@(7{NzVK_lT8TYod?vl6(M|8k@1L zd{h4&Y>ht*s>0)8GoOd9fCB*O;0JmMlAs)s!Pfe7$+aZs6wpc7==L*p^Xe)LPJXHLG zF7aQ4v(SZJx1u5F+4U5EhKBJjygk-~!=z&|Bi~M51J%L-{3|?y2qPy74@KQ1El~*0 zfxDu!@me-ku?;#7G9;;ZcgQ9#gYKfG=y-gEC`H_reCwZ0oFwAJ*|65%kPzbrI0n6p z)?ohwyI47}7&ZaBh$G|x>O%OTjbHD2hX~;m3jxX^InYy|2IYCDDO@3;fGs zo`8E{cSXDKh1hs{BUvhI>GlfOWtRY5>lU$!JO-$&{XhzaKzDO5px5$LqO~By`hYdv zapS{aCq7n+O5DMEp>w5Q||eqT6=|3zLx%7u2QSa}KmBpM~&foTa0A&_~J?UHqf z6LU&GN>;!XSiQI$4k0Va1bhITkM)$9LH{QZ9V2OpXCoW%c6f-m0R4M~VjZz0yv~0R>w~RBydWj7B;Fto(34mWVnHI% zx8S?8L6!Jb0ut4ux3LM>|DYB~0xkzAoxhyXr< zmqK6e9KQolqmJ`acn|+rhyr{78BMSYxsJ?BKA2g-Y~tQ_w3%P(2<`qn+ z84%x=;5q0P3?i1`|4NpK3&0#-C%>;~B5kVZr}8NpgZ$_(<#W{zMVMl;GC}!D)+&#c|M+a>m12A#jxj{mHcmha{gL(j^xs!yfj!n9(2WxML?+TrGlW}E4e>56%{ z{fuL+w;4Yb-w9~=kE92r*Q5<3Udea4OF2(-K|4m@1+AL$>qlazA7tir2H2UES>6ky5D+F@Y{%aQA1)|#}U!F5rv`u3;G&R z6Zj=ybU>ScN=>v%D@(&S`Uk-aggx9d-pl3i7rmD}F6S3J1RC7+_7vwO^L#694YI7P zxnHX_w5uLg`lYmOnNT|C=es}gj&;VVrb~ul<~Odl&P3}~mqwTl{TBC@kCLnw)5HvH z1+h}R5WgjkRyY+)l*L@TsB%7Y5AiqyF-73tPk>QXRF$aZxg4< z-XsJvwfzvee=1u-*ZI0oGd(>#F?4hOA)Q2B@xJ$psmI>eo~y2TZp`7aCs>CVf-1L_ zFE5Sy{q+0Ry#6J(>q`vX%LbM{tzzo`uIo{E+PH6I)SXBV@XMA9*?ceV0b9@92GoR9SB@nCq}}cH*R7rG-JFOgg&G7p{gJ@8bPD`i zCL*)Q^%9@>wzy2XN>(SkAsa4N=>`Nh3GN-p2RzpWsV^%3lV!{EWF_FLlgsXjV~_#< zR=nI_26#YK{?4L4&`!}<{t|tRen$6U(}g4aIldov#<$Mnb~Lv=uDf6Bs+Lu)Ej^rH z{hj>q>|H|P<%+*6yBAIVonKgid;v-EPm_jLDn zFC`oyQe;EqZg5U|i@Ym)APbiT$ps~%i`Fyh|Ea1~yX2Yjp~|kxEAmN_Y2e8cPWDHK zi3S3ejsl&Blmc?#aepJ|B>V`f6nWr{$T-lDvmgb4s`v^Jom%t5d;@{Y_`2&*lMp13;p8D&R6@Oa&aa0u6G&ejkL>pHbsM@gFsQMsh zC+`&Y72HtD%T`IEBwI<1Y=K;*MgzJAe+ar723d%@nKAoh_v z$oAM^ugWMrSXh+b?z`br{p-=Ms=g=XZ~A%fQ}^6izdGax{*EcunP>ZsGp(UaI9q&1 zWJA^}ri7?MvEctAk+_8D)j?SrSaV6STi#NpRJjx7NH%5|!38c1Ira8|!ZpP-)_cqHg) zs5&e?C_dncE=`xD3X}dJTS>jL|4CYrS$G+k8!I3g$cv1FA3$4?V0<8^hPR120Cttw zpCr8Wr-JT60pN~&pk}!K*zQ{5O(}+bRS9L?{+!H@%$xPC?)U4`+eKr4wfH@;=u+XM z0!_(>+HV%fp6*ezQT%+y$@~Sk0cP(kIi!Cbd?TntpQFps!+4PoQ8| z`T|-a8Vu-?13}Ar4j?i%_OB3n2wefgu9fgfmsmiVtsRV^t{z}$Y zCX*SZX31ZYv0^vT4R49fM;9W4ksE-$ngFyl!Mgpf+0Ipt zEc;X2Y3l%MhUL6D!hFp%(A3yeZ(L^DZdO^^T9#UCZ1e1YJ6<>^xxaWuQ?2M)CK9Z9 z+WBXSt^$gx8gU|nu|VKAcu&kB8;F0BiQ)m`G2%FJCHaM%4txhwh=#;Eyc|>2hS{*~B7!s1Sn_mU&h-m<2k zKh#cfM6p2eR$)~XDXu6iiss5T%4N!QWq|T8MK0)L#LHI#Q`kR%l8#7H#Sl3QpMX}u zU7(%*Is6hpy)pRWss5fWt`tX_?TlruIny-Ml)=*|eqnJzsk zJ0p)#+*b4jrm! zCB6&)LQEodqJN<4fZIHbZ^@2h8qj%EXKx$#TIU*v&aSf!w?fv-7Q~WbPBpK#EU}ha z1MHXWh;4!Ol&dFI;ghli-<3CU!NLmY6*>+dLJpA3kznGxWE;>c?IxwAL*z~5KCoWh zF0LSt;8EBntPRE^d5~6gN9f2kXO7Tam||u#eb@*2HdD8}FFhB$BYoqU)9iDuiLlsz z3tYutkQew9u|%dfO2k{Yc#>?Hk}Iyr!O~ zUZGdg*9&m-?x!>Gg#_O$c$GM)` z%$5PxJ66(aF|DlsTAN+-r7qO?(vTl?GW_C@Xw)CFb}KN@NZy6?@fIHFjR zBljya)LLyPEvG)G>aO~tnyR{>{G^a8PDwui3Qz^461jMR9nXC6f$!JV(!Sh^TK~2@ zw(PXNx6Zb9xBjs1us?Ff0fUi-adTqPXyhl6Dci03t%=tU2s#uR6A>6SFlI~~+&~)F zB6fMq(CDyZQCE7ZthOesenVYMT@Uk3 zTbWH}7r7U(=Y#|NCebD0yL7#H2YFk56s(DU0$M|&zO{b1`l@1sDogXXvYTWhI62A$ z{U9ILmha0o^%-2>9K8L9)nJ-o9Ap}1a?~%be{7s=`kyJ={L0o75OPrOYkDK>B2j4* z>2`UtCN@YP_AXM0S{QvadU#CJ*blMCVz@|ERHvx(;roKffYN}ofla}BY@hO+yp^=6 zxFyLDN+Jy13vYqfKt8~yo++gI13)f+CFtkae6u{G9Q&;X;;oWNi6%oC16y^%)bb=fQVPU$OIwDw0(v)~~?T+rE| zi2+estLCQOs)yBq@*m)YTZ29nB?^Un0K3oA39MW>%M44AX^N@PIMA@J_GT?=XlyJt z{W0IMmfI_wue~gH2-*HUd?v3MCp*;7GtCwPzENVA{5LV{Bgo>{%^j9%jJT&FU&~L$2kjj3dh~G4#8St zjxY|YYhII7xuEKM^^%$>g1C@)CH>n&I8V zn*lT6v;Jm4l^zb50s0 zc+2U9EOp20C6=4+S?qIvG{1=bD0s;q>WIJ_0p~!zu|7~7x-~)+ zof5q#Vn|46aBOf5>l+joT9nHda!q@Vs6nF=s~`Zo@A%Z z;dM@P#XGy$=9(wfH?P|Y7!PpmkIEvz?bufxRvS@uv8+jXT5UG)iMF#WHTSnNjv8+O zIO%x^2;P^WYY0S+kbhClSNBqpssdH6`n0Y<&+12O@2YB*(dt2}s|p>+NX`NV(vpekCAx}TbDaO!!c3z2+n~a{$snq`S#_s;cxlUuZk0iG&#OR6;Los%{&iEq zXG{kt=T+9m&H>&LbReKhwi8_wBB5i%Sb46}B)=;AE{{^KQzP1oAnk8cT~~Zni~vpI zY;aZ|C8;OdfQbT$-bWC4xBn4X*W93w(wBXO-Wqo?uz~e-h#i~38T19Zn3?1CxH?iN z{QU@#cr$KA-{Yigh&mrUhokgb?HYBFdb@r~usp=5zoDL?c%|5{ey#~nB}mTzw`O~= z16qdk7MVaNyQ?SEvkdrBW8FFSv1XZZmazi(&fglF*BPohRXnYjT;06(o#AzLbj7HW zmX*&9?`=hvp~km$PSbPyG0z{WoPEc&W$WoEelL1kLdv$0H*u7_BQ+^jt1hduluLn0 zX_?fih*ULJo|C*GEOO=vYq5t zOhCJXj&lUyz^-NHQx;EOZ!+L|l{@BIi-9-MY`$apX*yls+R(4&eoa@y5yKXvqAsas zQDw&(#&Fj9#g=RCX}oA6?1Md9sp0f}<{0x4^rG9s)%ahMn?wX2ft$tE@*&FUip6rJ z><4fpc9ks#=Cpp2b+`xn53G7-<2*VZe&(MnGz5+Ezx?Tfgj-Cv2J7nCET|8$Qclbr z=2!BA{cWKEXbNt@cMvFeqi#^N0DD^CKmy#B-MX{-RRQjRL&jt?qf%g2ciLd5p&L$>qR}?TrV8?w$tE~eK8gphtcI!%96BFP6IuBg!0TK_U!oWJ-guh3+|CoO zaJS7h)V1Gb@W`mPbSb@s9WC5|E+eNwKEADNi=s&NU0WOA3@Q()2fOwa&2kH;;DZUiqK-Xg9FHrJCN_HoA8KwIPZyPw2wX1EI<=WoUJ9RZvzSr5~%iukNTkCwn7i zaRqow{`Pw~hS(6T(=8R2!L~P!QJ#TJg1=Jq8=j21 z$b*VS`W?aZ!{CUokr~ndi*4GlDB+*P;KVNpyW?-fuZ-6;oEQs7>mt*`e~07+2J6PD z_QAPh&izK#SaG-EB@ZHLRanXRZEK2~}Ju`=_);siC+*@ulL-k~fv> zsvWie)NHJi)HkyxI5&FVFr=^%`h+aNadDRHlX8GYtSi$m3u+sBCG!e+qJ&mbbzDNe=5aEEx4KKxDQYx7#Gs_#OUa9Sx?b>PDOwC4hf$ELwwfc&tP*bB` zshY3UDn($Y_CR@9S*XAj_hk>I7D*=wDoGGGCnpkLaR|7JMx)~pBRm!Kt29u6sFT01 zu#bPiwdP9L`)mt#B=eZ=Oj~_dePO;k)I7jpSO_?b|53ZCgVY78fX<- zYrg;a_WRcQcKIIqvVALP8{LlK>0;VR&u7}P*Vt&TJNJ}R^KM`mI_KX3yb@+;0^A3Y zp?$HT_$cCU5(16q9Enf*OSV+5QVdhXDsz>xIPtz^oXYs`6O5A&JH0<4KfOg(J?1lnUDDI}sl z`cC+I_}cn{d<}hms+#&uS*UnlQ(tf2W?z;soZd?JX1cL)9L;?PGYO+#3?&2GM;baD z>x@f?JH%u1lz6VBK++w!cpJ)&$ueYlvQx5tAo-Oo?JGSaafv&LH*9h}L8uuy-$% zjFN7aK9N>QJIHp+p2<$i2FN~21EtF)c_4}B0qLyn*d4%fRzUUslR_$g6HslFXo>H$ zcfY5rJHRD4ID3+PnC%YOy)L$3mb>OJ=1|KXOOZuk{nt9xw$pynan zcw#sXNOMRvbPzbj#t2H@4W?J)nD6u!x+9%T4+13PlXL|0mAS`0<_dWnkX(;I7&uF6 zh#w~^$hIIyc3t*aeqFIm*%|B^!__m@ufbZXNS&^Jtg;An|C-O4aMKZEFQe3Gs}D9FGxjzGm`lw+EfU*u zyT{SaH3Q7va=b~ty)@2ti4S_$%4If4tqnW4}80Ryv66`HD6Dvct5BpFS^M&Q>7Qmm1fBv+(|WHaQw!3<`Z^1ITltWw@l{tx(fL%}5GynKu7k<=|w zNmSy?z;*c!O-E4pvZ$^9J}>3QFn4|3DAHT#KJV({blYoe!M1(YzE+v_mF1S@q2-&U zlhtiK4NUh>?2{ZR&S+N@pc7kwqxvKD4)91U%nNoBFcuBv^ZCxeK5|@mB~$_%#|dG( zFdIxa32^!l1#*>>IE1^vhJ$HWJoAB0r*XQ(_sX}=w-S8Lf52VRoL&StA4$wECX&ry z#{yEoa=sbxhJ5lL6-|Q%!z_Fq8G*te4blUDi#H(75fXAdd4_yXa%8A@u=sEBzv5rw zGI5Fcj(9#GZWfW-$ToodJC$Gobq>Q90NeBgV6JKl64T|t>hc8m9G3at0$D1w5RH#q001NQ8Xpj*Ej z@YFkir&w#?OmG7FnjQgm17tDsA7Vr>@H@_+HE45eG4=uzuoQe0Fq7TDf8#LGiWmxJ zQX7f?5!;9bL@MFNzv371aduwONU`ipvl9k8BPa1`^EKH(cnHS>1% zjB#&pWjZy^8IH&H2(TVYwSBg3wf3>bS;bb^stG0$!zsYaG!i5;w!xQyjjI!~3VDJ+Xm?=Ol7lp_9a!Rrayz6Ski^WOe59D0ZM)V`D;)(bb zjKD^qYmm3VM${HsBzgd>HNAy3`~}X*HfLurTj`6SsqOJL@ox5fa)-OOxq@Baop+sk zojsijrv!XA4V-b#Nbqx-bCz?z^QSY#wbk_;tm)>vtKDNgWu6uwYyQ$3POYOdDI*mO zuKTNCPTvvi4O=l!m?-u-JCHMR8+cM!22Q3A`kMhy&>*M)S^+me9w6O8nqd*fVw3Ra zcvJ8>9}#(kkC2hg$rj`kkcXc~g6AsPlN?9>LyjdIlNgytTqe$d9|wu?L|Z~b=m;(N z(TZ43tR@yIq7*&FR|$$tk!+SmOO4sd*E3Y$(}0wQWEUIHlbt)|_mjz0cju^m6`2~ptkZ(pymP(A`BjP^dq2dg2 z8*vT!o0tMtwQZpa;ctF57YLq@ceppKh%Ezp_*p)+?+3Nn_kodtN$_J)5}+inL<_L- zL}SS;`2*Eq%~4&UzIouQprs+FL({_Ugk2497m*WjD)(EFEXqbt_= z+qTA1P(PvWbR}G-_#-Mf`1APp13!BgpDB;3Z2TwiXTXn%zsFV>>h4%Qj%?3o_fqg& zI7z4Z|6mAMb)QiE(hkt&Yb|Pza*?8m>Ljpb-qST!i)BrSgTV1l3T=6g-@rZe`CYAS zTJs;{2-8H}2S)kicL*V4c2N6RcjK{GZ~7 zyaz}#OpzGL{=_#d7hQq80!iIF5CO>B^Z3u~Nv0>5C+AaIYK(V^r^e~9xy_b(mEm1Y zLDl^7c_oL6lm%fw)OjPmuglk#d@I>d{HZ`zpeTA!HotbKWxF%oyNUWtp&&hH_UGbl z07BL%OFWMNs@>0g(wam^GEXK%x;>Y z9e~TQo^`Xe?0mK%uy73LZ2U5zv;P6#g_m(jj0mjw6y75)spF=NHrap|I=-T^*iv-t zmp|`g?z`_le$z#Fi>CZ+kQedIoqwieU2U3aiPdOt;rQS@;~GYN;h*9PMWuS3ri*;N z^qABjUjZ0Nc>(Wr(dxgXM~E%RCpZi4fOLh|_`5QzTm$TLEkiATSx4J)*fG;c(`$C(vrmYiLa96$x+Gj#!njUYxqyh z>hN{J2LeR8gX)2b2GSkG3%F7+0PoE;CW1LYJAE?hhwJsq8iwu`3Db)rf~Sk%^?{g@7+zPgvuBhY%;Ep@Wy6S(@;OJ4)0<}}Ge zkm`s~!P4Fs2MjrZp#u96#15{hI zv-Fd}e!XGnqtJU1KcZ9OMmI1vyc}B_`75$8YG%aS(0@aA24@EK3T&)xEgK-7DA^^+ zkZ6gg@J!JOU>jTNzvAC6bYWe5e=rRW=0yCzz<=5W`VVB3)&Tq4So9at8fpxjLjMAy zq6;Lz1G!KJrKkF&)H~2RYvu|E`~ENHC#EL#g@$8>hjlY*cGT>x-C3)tDXr*IvABF> zMSjI!)uRpn)Ei93x@L7#45#aHKn?EX>g}zgrg%#|CRey;jyH_XVKaaStF`bKuwT95 zcL)Wdw@4Iz9_(bUfOX|D;E?%$6rELg6j{4Q%dOozE|5Tg1b25Gd~kQS!3MX%-F^6R zcPGf;ZVALYuH9+Z(zDN#+g!9%SM9yO_gyQJu#-{DeOW!w5Xz@kG7i}WWwmOE#;4s2 zPMNl8uW9@0UKuwS()9;SY}jM{G-E%b&2ZoN%{WOvNSAE<4bEsjYy9f}DOxN3m3LFW zmOmjL(m&}n=mBB@umaV`HshPH8E`jbFW!{A1ucQT5*v_Q?lBxBFXA-c8&Q)D#QFRa z6i2S|6?_+AtT38;7X0F$8~DaO4CQ$yy1sb+=M7Ykv5t2B;k;PgrD~MTP1po4Lkfv+%)jJKKr2{I zF9CbnmhxV@B&NIUx#mwmh<;Bskabo>s_QE_`D68UZ9`cf;<=(+269{2U}X~>tvUu6 zF>d05;=G(hi=hm4uBH@PjJ}d*%G!&q;8U_w^cVR}%!MwX77(@2USJ)(gqesRgYD=u zenX&2xa`~OF~F_3-@)#}LE)g|l#{oOa^!p3xTAu(ffKfC_BoFIm28oQRRzCSK5>;x zCmoHfQ4W)9k>{HKX|Mvgb+-8vys5swgXetf*!}DZ!2=HlHmw&zd0=KJ2D-~Om3k2O z_@P1+B#C|8nc`I043OLY6Fx+L7k_v&kShuXS_{nA4;6{bB{09PfaB0`{5WtS-qfE{ zxPuvdV{H}HOI!hWR(#a<#M~hSBD8zu575EVC+3v=Csu{uRbP?n5bf1F#RS->`d8MU z=8-X65&;lWcvrXwkI~Kb2lzgokJ{UEQ1}n6qdkZ=5EfF&wCIi?=ikFk_%Ylss*{J*|^JgjC!oujoxy!RP2h}?pYr=CHtyQrxti75>&VmM!8w? zm!Ls2P$LWFii2VvsJnYv;yXD){tS}^tjbu;7__CYA=E6ah49@TEgNAxDPz%6p&ztL zTS~-XbM5DlX*F7-BkhAitl>F6%zoH+n4d4ZLLRDG;9gFTMW$4>wQ|@^aN1$_AE~|$ zo#a~i>)W8BMi|cgXLWm~`D+9V#kFN~@w)+xoz0D7T`b49Kwj8txLO5V@MtFFj1Qvp z8h$)oD%7vws8Mp3{pNnhbx^m%#`tGcqR1#&i@-Fl5?3_9#?a9McF7=p$4Ze5T+SdpXMuUb~UlC@9`;QoZ&j&WTLn~}5r zB+&U8fZf8!1=m1_*h7+uy@QoI@xZKDxj58Xk6WtJLFl36>%K zgu$UyLmYbmog!R@4usZLe>NSo-b3#NM&qgFyPV%O{({BMWXxFHQN@;YFS}*V;Xh>G zVm4S4#g}mJiUolp{cg7=bb|SbO!Q{@J;vjqHS$yVZEqAdMy>UYflg{Hpm{OJG=|^h z%GTxahXRzegC4@S7Bhn#)D8)CHzrf+D>mup zLx+{8_yEyNUJL51LD~E2fbLOYC$kf#kvE_p+!Wy-%?4~?newg``mi3ts6tI710$|V zu@FrR0q=N)5_nHOmdQO|Wo>-Noh$uMxVyf;kPeko0u~amFohwuNce;NZ?9PHlJ8*r zj*)?5O46xSR-^8mvM0<*yK(}KX(hqcd(2rI16EJ># zV0iR;scxu|X07HcHvwM9e>9hKGtf4`6k1{G4aZtntEZT@cy#bSY=CSy)~@UgbSvDipCn`RAJ1ZLU1EK5kxnfUjr}0rm4Y+@Nfs1vtp-W|>Lh@j$xKF=1Fx@#^nJI;@?ZXYK{+Qns2JZH>q;KZ?ur_3-=1jAZr9HbYou=X*jl& zZKq7($`FnpBeqbdyO&kGN%`fkw1`n)9B+G}yXo*kh|ya84s!t4Y?gSFs)B10NzzdH zG%P1DMKng0yLt*;>SR?0#h0dRhz-p&y$yvEvz2==k2qadC58(rx)Jb4?z^J5&=K3I zyun65f1-^QSoHy>mC_RWEGV>5@Gxw0by(IH4@MFXf0?^5iL z?qOEA1UU^4S2Y0C^@Z}|p(Bb|DUEwCKZ(`^WPM7~DAK7?|KDhH(|kpNob55sH`mNMs~^hMx+@*fy3O&E{~tWMb)YD?~g5}0X$QA|Ck6J-q^#KX0y z>nZt#DD+0icB0LEy@)V!6JLNLjEU_^J>u7+W1;Ef34gSzpBT&jEn6iSxI=iV&>3`G znxQR1t$`bNh zf4-j-Bisd?rNREr;fbEH@Sy? zM70mj_tjR{6$XR`=#Tg_iN^3B++?Z_yi}Z{nC;b2YTdpH1^Q73Ci2(}%@E%?zgzo- zo9yeZz07xVuGVLUUV0hX9kIW3)Zbdsj#GrfWFPETRrCF`@m8>#Z!1kA{s#9X7yJiw zQ)nR#Bf5vuh`s!A^ptm|P#!>tlfqr%i*%ptznNlWh|pGcK2TS&ReB_J2gZ}mP{7w!H7^vBZxh1;^Hui% zcTd6&ieJGU;S%*G_ydQasa&;oHG3yGR=$$@<$DQ#rW_b1EfDsr()^k5WB8gd7(2x@ z@UGLOh9V>*VF70femFop3XN7YcE{o0NQLLEkfnIwd4WZPoMow)1UCvy#vn)tZGnu^ zL}UZ#!L}k9&sDfNa)N7zS-I`x9d9sUJ_#WhLCrZOZ7+M>N_O^z6&gbR0|V9ifJ>CZnHA{DzzFEI z*cfVr=t83r5i1U5ViQqq;1fR7pTZCvhU^kk5DT2lU4&MG=AQ^$?hxEc+(R7a9UQCZ zFJk;OGB)%W{wZJJ30L@~0bH_rZSZflzoMV#nOmL>60LsXHbEj@9T>v3lSKz+ z!Zo12!Hw8WxVF!a%!A~<%k&l~H@F3QPb;`SFt7o$72-@LUs%MgrD5Q&tCaO(4dQg{ zqu2w+gf79q$P2K|dS252>t!j@Zi6>hlRB0EKj$#xEU3IsS6m5fZJnsD75hxBKqqUxu*7eXca2RxRwh180(VqMQ#RU@d%XJE3h#=)ad9mxSW z!gquQTxaDGylVxd9I8efTcLPWC-D%Z#kvGOfh7DXUny;*2L)zxE49`BWl}%oQSlFm zK}T@|nN4)9>S5SWrf0B(U4iJxi6AL51GtVe#EDRI79!tsT>_{gFK|p)i2oFt3txE? zJPw?P-sB!YG`^1CEUYDmim}0K)O>I@|)orh#WQ%i-Eg&E*d5M2~R=a01K%NZG!YemkLqf>6WB@ zU7QQmNB`p+3npngN+3l-IGhK#5?R6lj0f)9EkY`M5wuh@g#=)Qy9m7!E2U>pC9sm5 zm+WFYXpq<%8iWKvrhGjFLtFUSuuD2FREZ0LeR~3ImL7vNdQUJToG8=)*45_1Y>@iZ zNiz{O{I_%rS_JKp-om+%O!@(rNoSGz;Av6~vV=wi+n~;p-%vFf(yXG*q(0-?9~@Rnsl4=UaE#q;XdpX zNIkLWeJ~H23MhW%$W-J!l0h86E}%WJW8j&y1yy5%u}j!Yd0vi%3<<8Jei;3Tjf3pW`;++mcXx2GhsD)6H6i9kRI7;3Na>pVJnnf!zp&F0FHNu}oZt~7zth*-Iy?7OTJUScx9wj}|BTLh zRMgv9DAc9ys(b4$g^7_(qWXrf2wxNNI(%06ePc+ymA(%D8JgkRQnjRPQ7KXZ4zmKw z@j)6@cuc&kj;}7A+^=r;T7%+7M!yX&H%`+&mj6i%N8gBP>@GkH`OWTuno(C|=Vgr* zTNRCDqj9ijVc+{!dx~8qR~z?n|1x$j+a`G3_lIkaHM%$_qwGVs7v{&a@BO~h^vUF3 zyMm`R7ULDu%fx4m&os?Rp!BU&q;8culNiN+1iY)-)%8kFWVQJD_Uj*CyZzjsTUxQ) z8-w1`eU7_VYkcjDT1-N6Y_sqeniS9y8G{}LwqMpc*}AKueQAw?p_ZCO|5mnlZD8l( zpOq&~0Wm4`m-m%*Q0e%5OPS-gNyCUDq@QN%6swqjE8}`MENNBLY(&be+P7ko^iC>5$nvaq&2uWMTUy&!>@QUXS(U+q?MR_Ao^D6C0xrMX?uj&tKoouagqq48Exw5yaQel!UBah;Z=sU93 z%qF5UK7)8kpP<^}SJ1IU9eSPm{_G#mNOy-pKqR z`CD^yvuatcmQVEzfjcPDBmYbCG?F!|Zg{WO&G0PwI>7~)V<*ZIOM8`RE7#kuIu^R; zdX(PzJ}7iV{EeNKr|COIC}OgrVog0&3keq=aIdhos;=oDgkIGyh`v;NWW6`_9JTvJ zf6~B&jqes56POje%np`rW5?;svL~_@ijK-->SSF*<0JEu@T1}Xm}+Yd(-vq?P~%eC zHdhU{Ua&oI?)3cS8|?jM>sS0OGx^JdSG6A!x8FTqS9)Fb+&hi$)YuWnTfYdQ|by!j2UKyaxDxvgW!@F)Qo*Q~zAO#x<@PN6}-1 z3*H;mQ!DCL?6+mOga6M?yxgBBz+KV2lZep4mKG+ygjKy56-o38MS4LOX z^&G}lm}b<+_haA0~jGOng4zw4S5=UgU<-3^#S+YW-D$$1Y zd4_$4J^G)jH8cl(4Qy~Ov5m0(wzqU8dtL_^eg#-*KXW`Tb>JyZQ_LuZ9pNhY`hD%Z)< zC)p>{|M$7Z3;3qv{D=FEOPVOp)L0aoS95*KH$7xs4%FHpFBDpW6W`YM)WUb!>wnkJ zJyE1C%PKM#>8m>nlVq*+DUmG_@Z@_b;kAQdRk8#j&bg`dcwTb0DaTxRwz7f4?M2vO zfX_4(4kr?1g~}?mpiMJ0FmzQufkp3Z+mP}mB~W>WuNg5wuZrtZZ%pGxjdGLv$NphF zz)TXm1z!dpv7{gu20(w2Llu81^MP${yFyS-P!sB5ip$g!v{0JDT@GCJOmu8^obc=g ze5@G0R0tD}ahA{{*PV*%`OmVx{@nZS<>R`ydf(t*v(5zLjfCMfwMkQ2U+SLPF1kh{ z)l_K9?eVR#?kGsf8JFqLwUi`P-l@1;RqTC-*|p1}X2su3I8i$#@oL0JSp~nx;VF*K z6SEd(JMy2E`|Vx5UxO3CivAJ&1U*IDRJ*k0x^R659jfj|v<%g?Z?BwD`9DV-zlVNp z!sAEOJ>RfR!(g3pvAvBwl@)lhm;mx2b;ME9AZQZOmg=dRt6iXduX(9`toyC$t!zah zNHIIh*T((axzI&>=6Tx(Rl;^C29AVM#a=Asr>lDx-pOq7wes!E)TmqQZq0tpRcUo! zYwS-fPB_%$zm8kl{ZaR^rZ>ilVeAW6Udf+XTYk>{J|-h4FQcel#ZmVutk^KC#)3M@ zbw4HjiuaorGT+!K_HiXg^J^B2ESgz%t_pQn+~fTU?uB>+T7$KhW$K!Qhazr=Ei?R7 zX^ESmA@+F{HLIq0S4qd{mAZ9NP{NU-TD~qU?oc~mTCt^y0^L1?i^oauw(Endr{~qDg`n0muF|C-EuPX{?CW+ z)1E6HpS`!}(T(r3#Q(+Du0Olh$eI=P-ZXWkoQ)bL8;3_Cxk6!Ji|uEA+|R$iz5IQ_ zvb;oXT^fv$#YKhcl&18l>#lJ*j8d&b-2O$jJ;hl? zC($D`&y20Y7K9;&k&1lm5})Q>>TK)zn>&i8%I<5;VLc+T=$bLbQMJPF8ao+2fLW8k zECGA6UR+`5KhRMe1Z7j4>Vkf;sjum<{+n_*y$`)9G!1HfG2ZU}i~!-cc^0_8y5D%? zJkicZ*7YU7v$y>;eY8A3_o(sXAzvQ)*T!6Hye5T@9UGUGfYo%GuhCy&w=@ZKzqWI; zs_$h}-xhp-k@a6mEvw}1gNKa9+Q%Ej)^CsyZ)yQdYh$E}P_pZWb(Hll#}DUS>+h1~ z`4Rd4vUJxp;U`f~8E&i&kB&HG!c_6(TM1*sLkGoNqA61cWb_ouE9%plBz-N@Xp>+X zW^NgF+t@(Wl~^P$uz6*W!J2t7GJK`X^(x*~l4cBUy~-(S2x=bRxLgonZf2 zRj-UKxRZOwl3U)&+W?s)lWA7!9%=h%4lBRO?$dLr_S8$JAkM9a97sbzRAcD{ihN~^q8mubdht^fqS&ikCI5pwj?@=Q zyz^}fODgiBb8@o|EFPb4QvgM&lcuz3jv#XbA&dKfg zSMh(Lz21SE)TeJ_P*-pKB-%+9Zh%F9v_|%d9g;98t0;~ zh3A+D7-D60`K48p((k2?xzj6^{^2YMxGwXn@dSB$?G&(%*b;d%etpuj2CbVcOuiI( zf?Vh8QK>6>m%l52X`xj9(K*oP3P8bn!QH?=zE^S4_Rk9CVNS~!CzvFz&U1Tq#L{w z>H?>O9BC_IhJT#xa>4xX*Iv-~3U2nkD?DA3zJqNMz9VL#yfrsdXsY}Xu`|JwT&MBD zWH|CSannN~7 zU%m)`F4Yyja;?~pd?{27d!&3(2lpeCvcrmaRi>H+NzN~_?*srSz+0fjNKfofz{WfZ zx8hg&OPp{el^^~q@a5WD?SIo=kzZ?;m69tXfpbL~?XQUh_0wX)lZG|Os9#y*kvd6? zbuKQx_&YVjP(00k&;GG2+R`GUJmXX06xU&Bj%rN!wV2&;RQ$c@wWfb`%?wfDM0BmF z%{mtC?f+zJUa_lumGzy&=y?^0;17vGs2f&FXP9c#ay9za#MhuADIu<>xlB_>^;pqL zae~IsRQ`;=pL0`nBWKs(WvCRtK^>FzQS4F7rhg;<6X!vnk-)05sSU(S3n_0{OlHw(W?Ta7!lFu%!O80x9Yh*hT~w|Ld^b;^l|#nc%7qKmGI zsC?`Asb#%Kb?4XFSZiF(4e>|g0WCYqt{p|3 zSh^ysUa<+{F% zc{BaZmQOu1ld42%zx+9I(X+Y=Og@=y5wnuEHyYEVyl#!ilQIWd2N{F>z>?@HB7t33 zc{V3KEg?NM&sl-H-v<@kw?K^7<{u%xpuZdSH7?cuQVWR>H!o0XnQ_cHS+*ipS%g{mGqKCuZztfHQJsybR5W>&;bPMDPxozk}9vy?T7esi@f4HL1hq=FoaH%5C& z-$H|ZTReBXUjpp_t?{l@Q+mve@F#k1dV2cb01nDW*R;yRxt)Jp{m|oM;9Jeii=|j_ zFRTpRsk&TtHn>9dC@MZ-V{J0=dem{vTq;OSllzo2wNct_j6HO(Vv%LAg)Dh$Tj?I} zY2x|mEVS*mmN^Hp0sN|ZxOqkR2U7#BgV{pCiZJ~{Q&(fErmO4&YT-Kj>-$ZjoT?9~ zLP^LIz+yF#g-VxUNyNEmF?xGcMfhan6>Ue|1mk+s9NlKcD6$6vCKbXXVX5#h9~L_8 zJ>vWuG>;oPCV3|LZg^wecWldwPX50B^~L9^AHOqg`TNUDeDm4Gjxhyw@=tm$D9^7}GyWNV zLB2*cT5%F^eJ@hAmGMSL#Ir~&?1JW<%tP&>KGOfmXKTJ_R>@M(KSA<73#mcY$`#-Vb4v3~S6gdV^^s>W8rfpTOW@8TzEk112!hlRo7tOY;A&?uVZWYY_7+syxi4D+P}56!kFObz{6~ zlfj_Oga-%z_GWq;1Z%M4L!Z5vy;;TY5^qUf#R-Sx9S1mSxsq}h6-=PKgIZ^^-2a2hqNYR|qmzpzTf;BG1+%>M(Bp7B# zc8+}$Js_-(Zj^E{Q=hKGOk|97OL7RdNUFgu3M>sh6AnQ0A(1~69PZ0;cLo%KCxKq< z*x+sVd}~7Ko`P?=m$DyZAIo#+?z4O<(b(!&bjx<6$qJgduLxVm&^mSjp(-IC;BR&BrKHIQtqM0LsLKx%^nc_CUzglA`kVYI|bJ(&ra_x|3P*e ze~RnDriV7MDSV-%Cw|CJ>mQqU8INdcs8jULa3SVxTtwWDb|mV;_i|R4GgsKEt)hag>AE2&Up@wU?er{Rd7#t`ahOp{y|*Nap?%R02ojk1rLUlTn0NDG};Wo z`vJ+{!9Ur*FYrBp`aiqX&P4k~+ji?z>p80u@G>Ub=i92P{x&rO69MFk)itWa> z0s_YW08Q^Yc!G_=gZMLI47rpX4RYe!sb2IKx&e51TV!VdEjgMo(+#P&WIEZGdI0`z zfXsLqXa_im&xAy5AZt=}sGp>n><_vDv%qTc2YL&c0Ve>~IXDsF*Rb)SUxB^;#l9!r z1n&b6>iOlq<@w+~=pN)T0`|P$pAzU2xEYukXa>&t*9G&zb(PND<|cBhxkBJ&?j~4; z3*s#4m6R&2mu#TRIT-MfN22#oAKDGOiZ#ZI@ms_I@+%1eg7J0o5@`g_3Sg-wn}XLE z0u-+Tsu>-kUoi19k!c35!gPwGw$ojh7Yri1%-o|f`U$n1!l-Sa>rj_^Pwk;H$TDIw z;DR*8`(b0zT}Tx?7#;+D0lVfOTsy8BaB@_kPl4P1-@atvA*<^<v559s_A<5_i zGy^+Mw52rQ{(pzMN8P06gQR{R%16xx{ggD2)=#1aP|qkG{WtxJX6Xn<1KMic>8|v4 z`Ul+?u=~~m)ypqx2o*yKq?wvReWiX;J*ipbVWI*bhquD(;@MafhNAiKMo1;)3d4kW zkQe`(OJtt}hX#84ulmA#hrKagt+$uAq4y_93)k{~@W%V*`LzCN{!#wf{!{)wfwsZ! zp&9IaE}6f@|0y8iBalk-LnDy>=r?o#X2*8pm3V7{Bi@r;s1x9Q9HyRwK3*c-lx|MX z0}YEgG)f<#W>AAb>)-*Urkl{usR(KZ*@YYqh>J8el-fvrq-3C7R!v2M9@_-E4_!qa zpdzV%NCS9EE+)DWiG-YZhI_CtD1n|vnj<^lpHMx}`|2;g=6iDq?5Ge5dO7og<$zQl z?H}XI^1k)9^u6`<^uO|3{h9u~{+)i-|G&V3V3$xF`;m?3rf?-(D*r|JE`E`Mpf9x& zaUiLn9R?8%$##^I-UeDiYiVFU1J9gtx{}^Y>*!;ETaQvScrOTjAG9F0gWrEwM#mJ> zw}5Z;A$<|FjCk-K2UC^66#t#fA?@IM(NmwuWb!?r?KC8p0kRHFPA8_|tuY3TLpH&6 z-~)i4zd(!vq%)1KMhVz0$J(rfkPdjv*-bSkZ9Rx<_6G(e2oCQp;&AoF@kUPt~=woq1Ewt;yK zI#Y*%8~q`{;xq71fQ6w!laS%?Y$#EBDRkm9*%6_lz$E`K?=a6rm(Ka!9$~*!?Xuad z&Z@mtp{kSC(Y6b=C${kF-u77MZ&#jsBtV>w^yvaOf zKbicNyjor# z8~nlGWNxF-M>+$2ge7DW;8MOIZjd{vWO^JumwrmO1Xs#aK&-DV>n$4yx|FHRcqT;e zr^kR_^IAF$JV(ZW)=>`QV!kt%nN^IOc@Msg8q71Msq7!XW%&kbQy(|qcW6H$R z9%W*grM$9YOx1a7c=b8^A!jRh(DTsuZy-6entjR57ivq>pnqX6(gdrlL)#`s?a_J?`_)8SOHA!GrjSP82E=odA~O7a9n&=k1$sF^}$4S1F5 zviq`Kvf;AbGErug|D$NCyrcxY6ZKI|Kog3nBshz34t^KXNqiv-9M^m7#tDdU5 zt^BQ64X7@$^a}DFUWAr{>HQTxk#z{q?6YJB;@lG#O93r6I>x7aOyOPr-B z_gJnvZ&%*)yyuqR1(S<+mewmzsk~urWgqB_bEkNF`jdhMp{ZO6KVMWq`{5{bAvOyC ziSHz4lZBv5c9k4W{Y@_e4Y5be7Uo~@%q=C#Rfo%8#*WksJ#4wv1nm~SQQ4V>}dRZsH& z5u}0nWC2KDltZb=G;AAQh#QF$#1ybXtx1gs_m@|6L$I2QVYEzV@EfcnOOt&BpLHC# zsyC}XsKd0lZlUhH?t?B{*I)0`FE-3JBp9~qqxAE1>$Pn)oNAHsll(b@(sRkT_%`$@ zv{Bf=rhosKiE+a9a0S8xMckAEi2mJs+1(jQxaw;-MoQ^`J*mrA5((lwb+Oq48H zW(0S=Lox*T^vsG!impmQ`3cZyDQyGY2)(FpVQ6KT3aAk4jjS=&WHEL(RvP9SzUt5D zMr$qV0jed6qq6t3mAs38LZ(a2_-UbY{tli$99^tm$}g8JE1Fht!!pVO2&b0n+_yP@ z=S1Yr&eZ{v=yXedL2_}s(*5PTs-{<8cARzX@SOL(3A_z0=NbyX#k$ZJxI5Yj%f$Kv z-fb&jZO$X7QUhowJ)1cT*3j=5NH$JZQ+^-(0_DnFlOP&;2fRoedS*h%HsYN zno7GM6Y>hh@NB##@s2n}wx=dh|55AdVayd~C%7v5Gas2`Su5FG*)Q2kd8)#rgw*{t zY1)qZ(S}=qeR|8d+ceO8&-}>zulX-CZa!l286%9C;f9XYd{rG&9G1PJmy)lsGjI>F zAJ;E<5g2AJ+W;)3Y)&y#xGA45*in#JfLNB~w#sdpw=8d9UVlp{-&j;#94dWW5o6=* zVXlwvG2SEoL!r(52=O4;sq{c1v59ymqJ)@CDyS&hPRD_^_Zs;G#URCTc~CY-o~HPv ze4;w7R%^rcMTYvO8Rq3-`@tZfP=R{h<3&Prjbu#ZW?$PUYUo{@p zQ@Nk&g;&E$@vl&k*X^ubeWCn!K~>hzUu)8TrS1E*D8rI-B4I zByB(Ft(1oJrK%Ob)KfIa)qd4t%@zHmuzOLBVm?P@N3@JM9MLvX7io)F7+DzEHPR9G z+3;F>0<`vHw7oQMl^M(#;wZWTv_YG3^8yb&^_=UheM`>dEzC;F>XS7jd$i?Y;f{j% zEL+;ptY77s9+PjDZEX2pRj=H}Pz3veBc%GES-l97@vV8kv=XFdijbaA8(}p&Hq?V( z3$MU#A>)KgA&7HHb~FiZ2D-%+1R!H5_o+h4eVU-LIHGe@Ol0?PBz#8Xz?k>3Y)p;l z6;XAgCPqa^o(fMezcKx7dS;xg`=81vw}X4k4{9a;0J3p4gU`InT&C*2<@*cbbC+cI z$X<|Dw_tkFnSucsZPWPNXZAgSLu#*xD1BA^7<4)N2w6fjd=#q((rF*1tw?Ko@zMStRmceQ0X=pINB$UB^0A39ZIvL&tZH15E=VYJ2mC#TRHZHt;4(Zu}J0FoD)v#JWkdC=(! zqT{7#E+eqg8*ntOQk6vK8}cUR6lcvV8d&^a?)tP@zb2P8@ke_jD-RS{%g*?_OO1s8 zLOh~q7$G_{3m}ym)SPCEVgK8{;S-cSuG2=f*v{Ze~wIlSlq}{;y7En zE`LdBiVqS}*)E}HK^6Z2*5RWF4Oxq5LMrk9;1r||b{$DYK0{;0yX=jS49w#;OCz|k zfsP>t?4|EYmjHu*3E{$LknQCux_QQt#(ez)gFS3Z^s<8P6FkIbz3k{R&6^=mbc6i4V-@*w^Uc`l3(Iz5DgteRK4qA(_ZRdzukSJXFW-OoGe zV#!L6(tf_km$#xU)mNY275Kx~+}|uT2D*-sSY5ORss=pwTqp%z0n+6H^i({|Z4Kpx z^ujW!oZlXhc@;sKbXoFn**t@^!|q^P2w2ueeMqmZ){<)Edr zOV($1|9R+lR(UN?Z)O^!1QfoG{@jog{zWv#9f%)kLX_aeh!cH@_eS?4 z)1f#(8c_)?kB8xsp)+d@FR&Sm7PwZwbgzFW6?GSHe=jHC>I;)C2hjlV5ZBrXj^J2d zM^~R}q5M>FTEU9^ofXH+!g9u^VOg=ZOdr^TSUAg0>&@UX775Jr{^gq(8V$E2o`Yxh z2Y5E1Db7NAV;GT-42Kp8=Q%U~|Eq@8LWdyj9qpaZs->mu$U%(sosqE8faS(FckDVJ9Gz zj|jLtk?z%Yv~p8%+k!s}c2p%+yvWo2vS;11H4JRBjVRnw@W^&Q^qgxDyyy@42e4Jp zIlvKFjy?yUCXHQ&hhV+Q{@5PK%{S&Y^S8j7Y?d%H@Y&Pcdx-5QJ!4M8M_^U3+eDfc8dLS{^{ow~4HfERinj7Rkc2*m z_d@GQGg!Y*beB8j_74?jikSj!;cn3XeUp3W_dmJk9a!M1HKnku&}SDzbGbLcR)Orm z26jE70hGG`cedTe3edCg0qkEQ4ebYE!WcdWqn9VZD3eqj5d8V3cy4O8Jg)IX}f7B>twodz-j9Jm#668FKcg$rB-=x(b4rD3tKE705X%imQhLi&mZK&J<6 z2XqrTi5|rap)Qk4<#lxz4WkSbw5K&8gT)YOd}m5GoYYln|EGPanXFl_{zo-O{*fL* zhT|R3GN_>-5B>0ta1N-h0PNEzCEF}FiWgLS%fA8R?);*r{^o(vRNS;yl}i%e7IeSQNqTs=^geXY_ukJ7B?v2Ja&C5! zcpn)^y=NxL=F{7#_KFocyWu}WEB$-jPC)kSW@>I;VCrKytlO_G(Uxls>idf0vQf-A z%7UGP+eumc=+GhWGDo6qT4izh@shZFskou7xU4#7ZuYp6lYj!U&RSNosd7fhkBpL{ z!~%Z5xCu3aGlL!UeR4WD&pZxt&F`qa^i@1xI>k>1*2&${DrlQHHI(Lk>?g(Lz|gRs zy~-9zk!TxoDsvQ&Ec(#_#Z3J@@Ljji+x2qOK$FgV)I7zs!GP%>>)PpB>c*=%c@}M; zgVYCH57!h-?9;$N?(G+vSwpivm;D<$5SVEFRr*dpr@JC6mj>H6dW>>)%0!ft2(5O;31x9UWBw~}E6yK|=$2duqI=41}Z$SUp-njcEDbtyYg zbvyJK?Sj?<^u`MiL5x-uDrYHP$Wj#PvSq|5{DCYWcaUk4lY0y3jcXwTTqcYNta0D- zl?vfdA$KE~8)86Wz7)Gi5%Pn~Svp7FUDwzA(=^R6(GYKXZ(bZeI%0QN8&kGnp3z{u zt&h+yRBe!FGT^)!`vM2VDz3;s#eL8|&HAZgaLK29U(SreQrm~p1)0y%(Sl)tZ~PjE zzIcA3oIo<(#jjRAhJdNU^dXl=ea*uMK@&RSRN6SbRCF_T75Vi?VKx%y~vIydX zGu`jp2e>v+0>2J$HUUvboCgmgAIN+RIN6kU(y)g0rbVWIOyTB6=B%*Z5xR&)VXe(? zO_V7f>{w#7RjO>oab_b?6a4|*l2Z9;{^O4Qwiw&+${t0Nb5~|hDy??NN`|F<`QEQ+ zyLeZ;V82`PZ-pl`kvK$6Bp-rvk~R1w)mCkD%@bv~x?K5%jKHSK`m5f_Iw1qNbL=QC zP5g?ym!|pa*lV~t@Y|#yn-qu%9RYW(hVTbsscfR`HysZgm@fS>Q>LklImVoCdK+c} z&W=H0nP%2B${4Me>!P(_->BS6bC?mygrcEbew+WJN&b$2H0E}zAEB$ z*e&zsFnRdx@c9vLkOQ8n+okOQ@>Gr0jJz-P5nT`ap>lCKi~2HMa>s?L(&8qTjXCi- z5yewnN6T;gXz~7X_9lKie%=>bez?5S`xWWSsFbVeYhXpPP?@Exse%=Gx`8Gi(@{); zC1#8~4Yvu)f*-+zOJv)E7WFuLS8H4EIQA~E1bhimfZ*w4UkgV`gQB_mkamP_f^N9( zgt0X8Wpv%h17St5buOK{PqISsIt0PQfBda3+i)<0KFDgEKxLF=~F3uWTKVrA;qzcz$8vbW&sa+-e zMy|sn&}iwSa720w3EX1W*UFt$e*jK)Sn2TGG3o1m1b+NkHqCRO6i@H=DK&3SFdW(l z+zcCp#e!LC2k(-t*NoJsnHCxplphMwgUsE+H_LRu**Hs31mk>8|6hU2?#0zFtj(+b zEpZfIw}%H8`4HRT%0=E}{xFZp#fs`$onLn5D=uZ10m9uQMI za)vQO(_2#$+zG1Xm+8;oTyiv~mm2fc++VzzE%z;VX8j*WR{`C`)~&}gajh#*+}-8k z4i|U1Kyi0>cXxMpcXuc)&{Co9Z5q$`dHa7WtA*9HN#@v`vp=(E+20nA$W2Y{mz14& z{15$WNcs#HRq$U@t#6~!_VCy6AEHg9@a6bOYBH%;2N-Ku>V=MsOf(NC^yDAo)u1-U z0&)+&UMzEWa&32gbQG3uEL{SXhC`XEv@LnPJOREQjx+Y1K8wR`ny!uCcQGM|#co^k_)Bj-V1*(Uy z(i)Bb1Rjk#6JgV&OCA&msp3b7RFsNYq^7R=g^t{myc@-Boj_PAJeJxqg(}zu-pxDh zEj{&Q3#tKrT_W{JXSYfrC&Ly8pAFm_oF36GYBQW*i@-&-b?7ZyFVk-G7^^2R!17jo z7)}^ZiPqRIxk$uf2JN5UGY8-wc!r|!lkC|j^ustBebr!AR~ z*C2mMNoV&}-tTH$5STl%#8g(k_(5?se*`_ANkR<-y&{liozpfhWJXwS@VXEwbXLea zxPoKlP^D=x_d}0aBTYTcGp&Ut+GsN*8T;s_;pMrSzD!|*?3L#5$9+v)Q|EFQmE|ZuDGnd)#)+L)c!=$wAXZ$322J)^k zvL7*&Y)HC6mz@aMbSXK5d_WzeaoS6t1}}0Es{Q*^+rjTK5_keps%gwc&@FWVjG>T- zhgYjXEX39-xsp}N5X?eVez*UF_ojCaApA`{k6dZ4YVOzWOxI`EJxBvryn((%?{aU6 zcaQHbcZKf_inFRhbzwD}STJD`@EJ^?Xp9njizJ*CW0VP?;iQyc#S2-C3CaL8A5F%F zf%|+qs6X35-qAi{F%e0gqvGfe^iX;ReFLzGZp=;9GWC7%tX!y0R@c%r(?kOfq}H|5 zj?)yY>#6?&dV3#O+54Gf>MQk}`a(S>D-etD7Wgwfk{E;!$86Xb%nVxLiD)j$#;$@A zG+y})T7UyeJ7p$R=Dvb&?Pc&S9LLr0pND*N%y0Fb^W?hMcoIEc_W<`H_jgZy-x1#i zpT@V+_rM>(M+xELVW`{&qcTO0E~Dx=MrM=8safDaxtMg5tAP*j7nml^0Uh2+dWmO5 z1!5(rIS3+zn2(>wZh?|C3LJHluqL>IUBdd|Pw`#&2)qtKQXi;P>KJv7ilJwLBdrBe zc50|5s}2GO;3{2%K2I-U1~b2@Yh)(TmY51Ykmc~9_!+D^)(!noI-%W=E#3@WLFbVd zbh0Y^Bd~}fi57&K%%j>sc3}YXkPd*kG6uX1dVuezkp-U+)pRC;xy%$WZt(Iu2TIW$ zcqEptJeNmGBSlG=CQRXr{8jv|{d0T_uvtEOKl_IJ61?>wWhUP5^EtHz7A_ zzr0Lof*wP<(pYHEcGL#y2=$kqqMFMtgt=c;{X!kAX`mUb=?3WVAHe93seiD)*>>t$ z>O;WyD97s9rm7a8`y4~}p!?HyI)N^r8iVJQNH(Fg)HA9k&C>U%>C|;97-mB^Kz1v@ z$u^IEO`in+h6(g#dN3VA4FV1G8sZ>60^5bEqc%!9q+6U2Gr;3>2tN#*?pE?Gc#-?c z#qhs*E8LHxz(qb=nFQzIuGl#I8Znu4lC`J>kbP1a*hZ76s?=8Cd3_)f@%`8qpr{8E}CVbVu2O!_DdkoU{O z<@WM)xtDwx*4}KT68!!Hg+MQq70P(fSl>_vC?T*C+?EH*F|r2qRq4`JNSzFobEKhC zBk2?5RPw;HiBx7OA?P7mfK|gk;H`*NA* zEO4t5NSS0Q31;(kST|$I7`W!6#9iVAag|8MJK%4yJJ@dQAT|LrV&_pMM4=Mk|FwW? znXHUd-oX{~k_J2v%PY+kyHrO8HNLzUk_N^=+GetBQ`Uk*<|5^{qJp*P4w6td+KKtF zd7x%b20!l%d=j=9z9Wl(?mOPBWX?~;Ia4z>>KFO7vha^7I$K+u}|1__{&q+ zBKSNw-W#{#cFd1uVilpHIRmc&31Thr1Na7fIKCQ3z_+sFZ}B^LRiYCSOL&QHWFc{Y zSV5FPYyJRtTnt)^CvFo)$TuO~?zuc)-Xs5z2PwOh-O42;Uulgx zqyA_yQo|=|0e-UIIhSX&KzGkysFfq%mv;5qn9 z{0ROX?g{mX1_a=F#BgE=p(dUKXVZ><0)5AEm}%?qig;xl!%sm!Kf!Y03z8MVbN3>) z6!r)+;L#PUg;j?3;GyqsAp^{=e~?RwMi$63z6D;+^ObM~D$a0SbzoF)m99uH;A@f8 zQ(`0@_i&lDTHCL~frO6yy=?!&Nd z)b=a?JA`1X_N@~U#yZT zzmY2`#mZdeveHc%sPs|Z!~12x3@(IzO@r&52%qPxydR$B0g+oRAD8FKYve9)^UQ8M%PKGB`?4ZmmmA4>QY!dX%#)f*+a)0X$mgUP@V_#tL`sno-f%g-1nx{Taqw}*YvNIO0`>)-{|4i!2lRM1 zd^wyPUMnPcMey*w542Vv)CF8}LSYR*0>66&Ta0~&jK2N&KCCYu3M*oJ{15gEdy4rH z2??CjkQJqX&sAH5lxwi=il_y?0$%GUN`!IKi@1#+Cz}%lQ5)-`bWn`SDXb$Nf}O`y z$|@yCt|bL2^HDkMEWQD&0xaLwcqF+3auE^qnrYe<06c>&uFxzY=jL1;GC1Dx(R68DJ|{64H>X8bd@1wOkITZfzQ zZ&(~!4tYo4rxuoCNc!m*^0R z_+%lLi}P>xP4O-Co^cntPP+Pm$FkMlr{r~U%c60`)f}6gQ(YEkj)QRx^St$%!G-;| zbX7Tyy@s^D0g%+?Cqq=rVGr?6-2uF>+p1TxUtyoM1e~Lnsd_;AbstdMA^H^kA0#ig zfHZBtY8N zH#{3lH>Gq-7oZyQrBuoPnpar#rl?L?clUho3~LN4couV2^#qX4n#>%nU*F9%$wXKN z7y~pFREwD|bSxD}mjPpRDejhj2%>+HH^qC?7sM~)J8(6*hyD%T3ZBirHbOWsJ}%>- zv|5FM+j&Lx0Ik;a1n^Kggb5iR+#8TEDx^;Ez@S^fi-Tqb?6dYWm1&cK`8`>+6SDNG zQ@P|A!hojApJ7h^C%u%a!(8qU^E*r2Ch7rJcSs+=6QwKLl34?uF4636Vp!hoN?}zzTV#9?l8y%x@Uhg|-OW6E-BQD8wGr$o9doKotOkCg^T|6-a4+5vLmGri}MRsWEG|DOWK}+?2Vij zXM9#j$(Yiwj(lgRe>LiWk5u>59=D|!zEfS8%ErpJTIN$0S5TXv8y2GhbZ)9f#6ie> z8p@FPP-(wdQM}@wS>|^5oZB76&PLw8!aDA-cc*_j|4p1Ld{uJDJlesK>Rq}n`d!9b zCN|)9P7o72zz|T3RW- z6WU1=q~p?k;AZcT<_o8|?Y=?onvV0uQhxi~E}5HCYo<0Svpa7(FXr9KKTujw66h#$ zZ${H7iS4Hev4mKMLH}RWg;;4|-ML_dWLWnbEP7d;LB?PX>=Go??@%7YiSMjm1KNXf zkg+q!z1JJXFM<=|HYrd#C0fOJC4pMcW@;&8viYy&kNKr-zAZDLU(hFDj@@ZS^O0(dx0d@#<)lecxOh|;D4YddkjNk8TXGYDy&3|FfC2sp z_o&i6g@3X~WV+Kfq`b&@;aK2yy2cljlq3|HOLFZ;JT~-_tgqXszilzE;71pU;I6juwWJ{G55tP3)4(2s-417e$M`>XD0u9^vJp}CnZgY}^l=_F5! ztAr@Ny+q5;cfm~r}V3gi)Abxd#^D%E>_IUl*&yP|jnwIIu> zJL}?&CSb`PWE*IIsV(d_Ltk@O^J)Ec?Mr3^-dHXWajBnhT&N~xNFm~D-z0Zem*QC9 z+~mT&XZ&k<@U((mN|@3O>rIBU+q7QefPjqP(9nA!Z9_%|PYFH~bTuRuQl4*z`OFDa&!XUGrTn-5b3P1y+8HpQT%>JFqb-2GjukfH8be z8)1kyE(4y_EWKWHKs6l_fZLJlfu}MVPAc2+NocElP%PlPas~cQpt5@}Psalx*-b-_ zWp=5is{3i$=@JYL%mJ34=HKQereTm!6k{Bv-=Vt%NxCnz$?Obf2R)LSM{LBGV$ERB z+YqY@`^WcakvIli(?X=hoZZ`8SRvH$)%9}jnZ8M`6Lz~js-!eOv+#PMrf^FB*@Dud z2H?oOuHa{JJ;*dU?r7v`;Qzrj2WIpLxufzBOT&jzjhRMjqo$m8p|(I`#oQ&eVEJ?1T$LS<6bC=Z<1evw7gAo@9+>1C+t=pj>gK3koM0u@a#Q;#X6 z-!O+&Q`w)Yx{yCVjeQPD6}b#Y>dACqm&HH^$!q!@s)+2;cO_jJA?AZ`^)vn(^!`H8 z;XUae=U>hR`d0YQc=f&+T(R#n-;J;0%jNq2FJaVo+J7E0H9q;HxdYq}Zlz}cH{UTF+Wjc}amOk5C)o|QkE+^NOn1ay_S0W zeh3fcbd)OxdNBxA3GsJ!6UGDNabJdSh$fZ2>TfNiGGo|f;Ht5c+^?=D{E&aKEyTZ6 zH-3irT3yq3N*Ig3$0gCN)PddmNaZHB)c*y`hZA>us4m5ktI;*Qx<7yvwK&mT`U;iX zDM}T26}1YDfi$gXw!GAkFsQT935DWgRBusbu{AeKwUu7XUExOJ2=>W0V0{?{?%8H< znJ|u=Ac2@<)jjl$x6s zLL9dMkCEOAp&CdN7c8b}e318yb{%97jKf+>eM}j24>41Iq%~1`6eW$L|Ej-YFYq#~ zA~ROmM}Olti+e4B-XzEcpr|fNG?ve0qvP~6?-a@lSMsme5Y?k6a+?i{_|5(aDv3>U za`G0YgV0QB!dcl&{Hwn<;i0-KBhgF01GzMlfUMt>IV)#toF0nVs#yU(uR+8@@IN=8 zG-4VSp!C67>qFfV7pW7Zp1wP13L1=g1sh(DKSPAcE-qH=NbG_1R+ zNfE*+@ZSuUF4DK%F(?w7O-J|+Vt?81koqu>xJ_Tj=lKq({a7vO0Ch{P^3NtpXuWBWqQHqo+mPqW7@2hx&xv9VHuOjtgLz!ui=~_yR!{*C>7)aj{C3%si zqVEz`$gjZnpx)9=ES!76eo*R3?RYD$pkmn~)W;mY3`hcsmSlGpIRk4*)pakz%jx@L zKZ|>4rV)#{sRB#c6_>xZZlv3Wf2J=~=6)-ofBOl6mM z5PGkk=U5{|Y6r=w_6$g_y6rcMFW5$&YE&(06d5P!gzNf3L_3V2n=pEc_?m|4%qi?0 zenBzneSS(kLaZz*pOdJg9E2itBU zqqrS!r5>dEApA=_q-xU+%^z13-Ox7D(H{H3v{WeiDgIvWpej``mGe}iT5tE!s0DBM7%Y3_p0Q5%mpIIcfq(`34_YSQge_e z2kinEqt$2?RY30KCW#^)CO;;|3;*C}iErQtdrj5dJ5$%X>=0)*JjIv#X46U1R^<_u z@2)S$Q;UQn&?d?57n*5M36g#1Z2cj{e4(a4dt4X{necvbE+nwb@pRM9)$MmTWUXw9 za#D1oTLz!%jI%DVNPbYKecNyY^;~(!Xr$3dQK@w*r%D(fFi`y9I-)Kj`^(n|uTP>R z^=mKZMV4Jm1%8$isDCE5mq*jDg;dm1H^{$KJ&YW!Y-BciE*e(*%LB)ymNC&ghFPj! zEB6zwQ!f|~s_kyitkzUT7wwNU#$a1vU+?kACEm&Qz07TNNp6p6e9=sh{(4Cy_ukTn zyi&#pNddFvEV0z>vbNVn6kR2{1lIREeKSobnL)n(n#SaN^-J^(TO-Dpcy5J1jQ*wB zC;#HslX2FY-YQ}dEodv1WU5x_rl50Nyw*UTC$jusm^Rb{sU~Rq#xV&{$GSjP7i_u( z!Um{Ge5JH47PDVO@GD^H42HBchF)pectZ^R#|HN|`1X$`^! zq=hn0Ke;op06&1WL(8=xSU!J3y&46nSDA1Vg(t&+QjZb~nHF?$!qz@6$EYC~@q8!0lX ztZMFhKvh-hF^bF?+^i|zidg*IGSEKB>-aS&$1m=2l{7n3t_BDUp{{-nZ zW4Q!wJ>2d8`qJfts@~q~EGt}4=J~d2wh4dvXZSECNvuY0LTkZebQAV~yofbscFGe` zB(WO1h^`A;==<^`)oEol87@>dJQeCo_pxiL82JugXqZI4_9baL(I)AN{Df8j#mp>D zX6=SNZdu9mfG^~1={4$$Um(^CgfyI7B#@f^;9<}ToWEuM09g~&RdwN=guph&Nly(q z--zUc?oeuqb(y!bd$L6@T@mNdd#G1R7P(Ow@1G;~vsa_-?y8GyemWJ;C9VDmF&h^q>f%T{rn z;VNoZ6LUTDmAx8<4k_y;glJ-caXSWFalWy$(OBna)n6*tH=o>%Z4}nyz0@7VIPXWQ zn05Ix;qLPXYX&Rz7Pj^IL2Pnu3#msjGu$Q8m8^iib& z|E~b-FnNy1lEy+!IG&s)|4ZOlZE)f$#7}7ogyGzNauVdP?h;3e3#e*puT)(sRF3LW z(N5`?ybRr8B2g{j5k7-%C4ZNbPDa&;$ZSDQ3c;3*_2XbppvD#;&ecSzmmh0E7B$<7}yTYA@8mb5m1dgDZY|R zFj3hkG?HeaeacO-6PAeD$u9wKTC4PYp*cq3$VTH(&=v6HBOP3`e~J?#&sD!^hzrm0tKLay-5REy5LC zL)|2g;UUB={5Cm{yo5)C&LR*TV;SlnrYhZ%lBv_Aog9PjCZec8_##+WNURl_grC4p zqcj-@Ok^GM$ra>@QU|CepOmjioK#z(B@0wm%SoNYC~OGqZ)wQ}*@7#fX4DN0lG~zC z=z$}!W3(y`a3IK2u7En?p7IKlAosC~vH-JSN8}dh79Ne=f&FS1dAJgRO@eCiAaoVI zhLq3lfREdhwpbq2U-zKCN*Bx}7s=lc2=IWrfSt`3 zd6o1N@Frf;D%(&W>5Ft-E{8tLZIwInZfSye8M`HC0y1|H>fL!#qF7$JuDleR%Pa~4 zPS`DQFpidIOB3WP@*HWJv|YZW43XC;hvehRLV2=s6;vKi6&+fq^g(~*CTJ|$0^Eev ziXDOT1N8I?(65lliDqK^Q4t!6qOl#=Wb8LouLJSxfZM%81{mSxFdsSvyYgPxV5sxn z!p16%l<8;;b_}reTi6EdIbcq$u_b^*-i5lv7QkTCSasm&_JMb+k7MWz))rig=VHOw zIj9v6#2x{LwHqqdyU-wLlSDKPwB$W7E7lt82RLCms)4qmB&cV%Ks~WufOJ9K5^ygO z#@-0LH5LZw{ZFh9TB{7fu42_-D!;2k2+8u;xW=p=d$2*D^c4pK#NEFV3BE7|~D0TR%3a8rh!c!S=-IE;oiX#s6C z90g%@QC&0$>idE+OsRxDhS4zrwZRU+Z0rutNXdNI+Y4H6B>J5D&ffoD~ za8Dn=p1eNbO~KdztQmF}$;gEXC>1z9MrfSba) zbPlpJCt(u0gCzr!rNz>*fxx-Ahm`<^aRaLDZ}7F)UrdL$#OL5ycmbeek04R;DxQp= z#U1z@A{$=_P9?#_Xrc?=3sA|u;0!SfcjA$NFZKXMP(MJ)>VXFS0NRRWV{ZUWVjwlt zf<6KU(gvM_{{E~4p}+DEK$0H8yx1crKwaX6{0T7s%Wy`#B%f3mK%dSi!i{7LC(@m9D{00De6c4}hf0+2l;(4G~QpCQp$AsHfCUswu@l z4a7#Rf}FpD6x^MtX;c(~?M(=tGAAIXO$qqG$qA;S69 zoW}pa8{?(D?_6V@fzFMNb!9io(jD!cGn{`Ni=0Ky$F9e&eD^AEs&AjKIiyOffdc?X zZ0sFT5ftN1RA<>xP^w?k&ecyf1RJlI9+@{<##?t;tJ{v-8rq(MpWa;Sc}tL`g*nQ6 z!Sv9mGk!KW^gVT5wKw6h@d*BAvEACym zvG8zFT+yP!%>{i6*uv_C7xQED`NH6mKSd3T`jl36)N+4yJ3YJnEyRNoc(a0E%?v!B z7(#WS%Y*wtM|DT2)*RK2)34Jn)(3)DaVJ9?;{sD{Q@pX2>57@KGLDW^itjjXGg&$51HZ^|moJeC!eyECtS z-hzBz(aW-tt|6{%o+R$R_!9O2bpQ>!i;p8tkin2(d=yj@v8o{OG0A5)tGlYhz@fy$ zt^lut5$YQ1uk0xGF?B`FWbJd^9Q_sjQ$wt2w)uy-v&9T*gSFP@R>mgSP6o6J_-N~7 zJ8O-#zO#HbCm3rOzUYFr9n_Unh}u9BkQx&Pu1J~S1wW#UE_qfsF@IOCCx^-#ogbOs zG&eSR0d!la0?)JspKEX zE*(wb^k{k-T}J1DmVKP6Kt-ybK}~O&dV#u}x*dG(9qKvi)tU>sdxmi1ALB}MtaYPp zwe7F1eZcd82?1Mek8O7YQUmG*G_^Ih4Y5@M9j)6m*vJ^B=@`vy)mZu@SrL@K55(p? z?;GIh=h#s)r*Lfk(cEe||K72bIht6A?8=Py)J6y<>WZT2a zS~>4|w)oBb2mXxM8Q1~60iUf0`219C7uFE(2`P}Z$v)I~>H$3qYKl3~(nHm~)FU;? znwy}-->Z={6|@eWVyI%OVG4r^x!JbHmT6lPa4F!j?E;MUZPsB{vvs`XmYFeEH@!FZ zG|GBX7pa-a9$=bKtq4CVkl%=n_(b1C&lRV&EUS1(!SGybPXFwa*>djee04sS+dJn- zPE793oN+n*a#M3p=RSa++ly#>*RsQ96P=>xo4Xc2LW45ijl zd#LjC9cG9sS0%8wHBYp)bkRdby-Z8YZ7i(yfHli1 zTc5zVDQ78X-ebx(UV*gw&-!%T7j3-eFgSf2U}IH3=~>iCq8KAlWBH6&U%0}Z@zwM6 zbd7QhExlhDl)oz1k$pKUC3|B2$HEPTd|rHB&4P~w%VAyVTiBpTDHu@@Rg_x##qr)b z#C6rPh}$H*70pUbtOb4@FC>;j=I(a-IQzED#-pX6l!_M4a+0r!x2?OUb6(kjlB~irdF`?%{k`$0&2J&$d&0oq zty3ej9~C?-S>SBOUqIK$%8XjW>tb|M*}?Q_vIsoKdiyIlhuVdbz> z@}6v{5T*BAKU%MvMPBj&5a7^QC z;1>O;z&&B-!p29OEY~V}XTV2x75NlbOH&-n^Uvp|=ReP9@|*>|95wx0`GKMjh0{OS zTIxaIbZXMP&@Iy+Gi)@?v&{rwfj2=#f%5`-TW07!Q$OUbey8I}VOCDX>`~e2IsfLT zmk92$;!v`>F57AepH;3>MSo0}ivIGY5$^+i#;uwy2|N;u0qb` z7nRnq!ct*gY3-xZcBe$8tN+qT(a9-!EuG)o9lS^6 zW$Yzg2i+*mX+3A!Wg$)djMpq*17ib|EY|>GX`uhatdgU>eadPS4b3{9qWxn@%}Rfh zwK#vVW1Tpkz71Y@F%iRJuqwXF*_BsUCMrfpI&24kmwbsB$v<;HbLKglIt!freWcu+ z+@VU;xvc+%_6*+=<_jGj+9l|&X^BG<1HT|qlgtDQqATdrc>$;N@M?h=Z(_VIZR4? z(zVnJ;EjB}=&EN1+1$7^uyI8HiWh3`uhpf7rfSnFpJTk?T3b6^mTCjBPLlk?eVcuY zy*}?E{x{l0Hevc`l1ycRcS7cbHVZdIJ_#Qlbj!R$KUO`MtS`><>@7Q5vMT>V#>Hgf zw$ivA9eds9BcFJsIMe0fr_*O_*Fq}=y$D}7y!gSaA8 zgR3(a&&X?$)$wnqj5JyaY0 zvfQeusEEJeX(8XNdhKrNC2A>bcFU!6i<=g!3nOypW|pS!O^Z%i5%=NKfsX?cx+fpV zteS80UsNl>f#us&4Xqc`{6veD4Y!pa6ll;+#Tt~Lq>*3bk0(BV`{4PoF5a3gIR5cJ z#tB1k$l$Qy;F+)>0uO5z&<50P9n1?1R?S284NY6^e$`zP!@A11d561a$;rIJTx(wU zoYJh#dClzYe52)?kfJ##fCzsVdAD3fg>Et3D)fyiA2vJiz4?UhD>H+fiv5s}iL`tO z8Hp)$P4#O%Yi$>NFDyBtG`ePm>J>Idt0J5sNQU<`#+^A z#d{0gd4sa=rHQ{&zfbv;^0wo`VU+)H|{ofP&s##2pIw_>A*jkZ*~6+Bs& zL&kI3yzjq<#m$Pplu#>f)6euw*xm6XkcT~GYaDt#L>>GrAlLfESfV~g&!$?_HL0fL z7|=pxRd~uL^_e(5raV6UdzvM+`C8le$vkRkLHf|y|U3)XoA2F<4yGnAEj#aP4 z)Qmn9emKZ$Mw&{hhm@NfjQ@xJ;(mGxI{{qDy6Vmvr<$r7OHBi<(*pdq(bgT-m$n33 zSMxHxPxF?2K)1m|<-7b_|4DCc*O0R8(hDVZ3Onb_Ne@Wjes}#b{Y(9iOFtcp4^M8K z)1`EaxLBOa@dC9>^pMP27rhlvTt5Igl!u|G{ z{_5m$U7jhydM#jHU`&A8!s**+H>gLk>zEt#5vD%70GvB}s>U)?=&Sf$p_li&6Dt!6 zFXk@JU07fR@6;W>G^LKZt3@B|4*fib}Q$Z=zzu8wU0_)KIl0S}Sq~wT1Jm$dLw}~n@BjM#t2VJi&c>2F*KoPHMrC^*tZ1$DVI0?WU1|5N5G-BEVjndmy=!{q6dsJ>yC zXuA?J51b>Ohu;g`82q2@y&*(1in&KD07ObBm6x|GdoY}Or5dK2XNtExw#5cvp}Np` z@X1LCdJ;I$*3&%L@J=^g6RDa<9)T0}5@j+dF_s7?AoC}V9}CQ_3%<6V-eqHomgH5> z@}~^=mGEQfuYrHkQzJ5k!aJUtij#SuKVnM{8&Q6Eg@a*FZKbAZhMwdo_l5jgIqNcs zq)%}_6Y8do%~Iv;C`SGivZ30q6HT`RW(2LXeKvhGR5t9@B2^B>k%s~8-oad?LYPQ6 z!4y#Wm;>!ph6zjDf9yX?gX~{R<`p-vA9PRV@5$?lAoX@*2U}!d=b);=BZC(OzO?K& z_R~MsM5}_SF60=plsJTUA-2%%)Q>c4wVmMjH#lHPz|VjY!N#yHVe>f%sJ7~&k6^GK7^c`)bp})(mtdJYtB4~xRy16}5hbt?6P&6>FYRZS7_QVP4oic8v zyYf<8m!xONBJG}%!*-*ykL!c`u>XQ|0T>^f)r<9tNw!uBSQhvp@Oa>1TSrR^Q>-Br ze1!Tj<7tr^N7bY}G^I}0_A|()p|*^m$Dz9LTj8T4Iz;RV+ZTK(Al7oga6{dYnuAV> z^*Q8T>^No5E46`&F|N2l>GHBBjumB%$~Kkd*i(zU7j(#Nk+tFP-{fn_D^im)_T<7QTr)ryXvIR$2gREs3pa z^^ecahbX_W0OBrrne0tn2IWK$(H0$7{>66UE0v*gN2DSsd@`{46M?%R%EQE5!6Dq? z#(E!m@;u)>K6e6eMcNBLFev-OT?m60;6 z0v=Qs%`w>h_toZVwrZ#9@^w+Vr`k{*t21f$s@-e>yNzwFIzn6McT_WKAK?KVNoU|; zv2sOmi116eB{+a@)WGNR&hhMUzO?^aI;*%rL96UV>8n!h$rX}sC3pGzBs-*_Lt#|O zD7Ri54^{9~`mgqkuBZAqyGC12dyslAnS>y2m2+1inYTZ;YqmY3cV^|BdiiaN7TAZl zTKY8nX2?jtf%||L)r=yj#(+{45+lI5VLM(x^aZU&ThOX3r2EiYf&HQ2pRhK{XyEY; z7G85H{&3F0u}~p0D^PpGFOsL}BIcH=4tpLPO_#G8aMYX$b&MaHRk}RA(SY=v;id7E zalb)th&7Bg%+_0V3$?Sr)3K`NqxvVD!kej|uuI`D>$78l(*|I8=(qW#T%l{~{-FB}egixRf5aqhCLi5dCnu8jWKqjRQYTXL%8 z-zq9D?p-Q4mUuRMJ)Twmd*U~Fw6tDqD8H1)iD_IsSC_Bq|JU2bo9z4S-^GOqcSXJI zm(QYLycg(?PT}*32s{K8g2%>t>^W33n-L+@GO7VRQngtfqPefeHJdddnltQ7)obPm z&5?%)2J|op)D9A{k$gxk1)s=9Y$BTtE5lsPDRm=Y%=+Qn_Y=;Oq0ANf80b6{x})lz z>H<4oGe_4$-(G)KKg=-NFhV~{cR_ncb3r|xJ*!G(>NDr*Idld3HZ_K-O;OYv@*%mJ zECKaHEl4|Ef)sh2G)>F`wapE_Dc=ONJi+`PF3q3hJLt`Ezjj8KRVi^5aJfO*;hAze zlX*0|OI~=sFRy>W_~Lh^&r3g)I_w!`<;&LFKa_28K6D;*n4KfsmArGk{d{$JTAB+i z_J6SF#3d?-`N^zcmeW!6NSN~{Ku1y^lJ|B{S=3u*ggQ~vUwc$nVCZGinGP5ejm=Gi zjK}rwwBt1c)YaHS%mFG4_|h+liJ(N9f=?nYlMz%HwSrm=-go0b0fsaC!Php2ngP4O z)zFp;@j_5Rd;=9kFrJ2m03&@Qz86o2M;dgcn$$xQ#9h*AIT$MRg8^?cVmhoNJdZ1t za=q$GZF8wHC3blaIvrW{1<7;+7HE*k~yRN-XtIyJx=$}A!(ry@P>||VM zOff3P+b}z>!=svUyy1s_fPSHFiFU2#lG*{Tx>eay)iQ9LE@F7*1=AZwnwB0##ey2} zIaKr4DK+G);$&e1e~(M|8~vAkw|u$a!93Fc&_9n$0|)7oVoT71K2p9x?fnM&hW26! z(54Tt)zE_7h=asB@+379lwzl83$vIR&WvRqGSyY(Rdv7vI#MMtcIG1J$=cCzpaV=L zInbGG0C$6Opv+4G?OT)rI52n*Ye5h30C>`ir6!Qb`~b9Xb%YlDf1Jht#hdD}dU9N} ztG4@_x02uBvw52Wk21(#9-?1QbJMwn{{37E@VyY=PNBqYsw3^AIaMO~Og_@=)3(yp z(1qx}K$WEjs3RL_*K1|Sc9;*Is#?u$V7R+9J2i3YN8pWjP`!%nqM8X~=ojT9GYC)& z0q(IMYXjKbHk1Xp(O+~A(1*6@5~vaS%WtF{V5^)0g<2`UmtV^t;4kxE_-J9Iuo8Hf z4Me9{UQ)!#Qdij{cUQ8M)94&_4-Y5nQRSctSE$MWzr%d>d(8sy)jp^FrbY0$pijvmLZ&=`jC0GaB&Ot^}@PV^wL)8<G&r#i(xQH7~zYZEjhfjL?MT&HBI3cthu-IwY;=aJo~J*#|+xN7_u z{*JIyvdYz@2jVy2rJhtyD<{xud7R0D=r*+Ct93Fi0+cCqR)t$?DfBYB$m1iB~(9u0}iGH5_(tWdFm?{a6c z7G%I*6IO{HX*MW1*C8EfROexzLF1+XK0a6eDmld@(I)){mby)-%m;9UuYWqwlLsP#2%5xux#N9tLIuWZC1>0V%!-DB2ioJenpi2E`C3{Sq6B zqohH~dW1dzw|kfELm zcdtp{wBH+#r6CFjPna zwZwP8TxVf{L^kMTP2ih+5icVC15P6XO-p0o@nnFSXec%fJq7*HS#wG(|)&bOo zui&m{0>$BKaxv*3!|Agy?#`-iFiq)wkhS_y36}k$Mnpm#(0=|4=>0p?4AoLnr4r#Q z|A2eS{pL4{739N;6>wWS;MhURI5C)C>34f~LAu9cs8;zL4)-f=EFjGHAdz4@9nXAZ z_Nz97<7hZkS|@|E+61aSxg7tA&d8g@dt66O<|CynDNAmQ1(0p%m&{ky4Ym#oNztmU z>}vL*Dw#>4RdiKqCGi{$m2FZ}v5Mg5c5q$zzCu&6mQ+bTA*X`hejoG_@W?pS3DJlH z4RU3rjl4n%kqX2W;%}jj@QB~Y$MV3V=6Caf!VY1%7%bleoH!MWB!+>{AWnS({ElVy z#)05zIuHCsb5$C)5p@KA4ycL?UxA$?>JtUH4qr*CsbXpoD0|DR8f#*;-PKpX^L?W# zmYG9!C$|7Xc^0%pE6HNGFFwLHVok7{kdB=RJst<%g`s#3HXXEEMM#fg<;S90ijXV(#@q0lPB>vpfxU(aOtoZC_R*3|G$=Y2PjC-$uywc2eCxl4R@e4Q1(9}9^xuc zhE>DrVeMhZm5DvXQa~H%kw?mXL224q*@AMh!*~@Uj$lcJm_u|0-t844mdqvZLV`pc z`X8z-IiJ`Avtt@45W`O#%EmNX>qCE&F{my{ol~N7K-h`h>qza*3F9Sbkj=R%_GSP#4O7?=}hwk)7(5!EyJJRQvEK2%WPTs8Y4(B_&@9+xF2_}bo47;P zr^-MJibiC;o5K@mLyl%qWqGk85{LG9aDj*w@{vA_xVgJ*#1{4H4>lomen8DR0p ziJhRXo=yD5?*rRor?N-RmYPW!;yIC)R!fg1hg4IZCg;e{K+mYcF;MMJhm7i*L=WOE za3ueLnw+z<(ny z!EB1b$6{%))@@ZL0()VyYy|bXPcq3JjG!7+GIG@hF%Mg8{m(yfyyRF zkSB<9pvSBPte91B!fOuMCR1dW{69|D4`nI1OkBYBfj_|nqAuB@g9)MU4^Vi(r{L5 z0)7eI0STKzG$oD@*FZ5K;(x%+<1+pRJTx}r`|yMKSNsX++DGAwKHmUH$UNLey#2qH?gaj( zs{0@KIoDUDgwjA|CMq&ShB8KmieyfrWC(@o2}LM`C_{>(=t)sRB@`MB6&3O{pb`lU zN|E87bAIo0|Nqx{opbNqXOC;Iz4lt4z4y8}^D48!Qd;)adAsuk{7nqZ8%n5YwAPv5TUZL0(L&;+bdVSP*ABCePLkiqr@be^*Ag#>6=LE--J;}yoff!?w8SZ+?h4wkUntbSFbo=0TyWOT3$?pYY zr5qX9Ln!^5yc_fm+68S%*8)MPK34`!f<8PRj0>jOsdiIvpM7%umC#3RQ%&_h!Rx`t zQcaQ1t>Sj$A)rNYq4NJ!(s29DIwe8!hW~8(+&-kA@kTLW)19*(=hXZH@n*Q@B<~wFc}CU)X3xjbWHz5JH>u)L19j@Dq_%wZGz*(J7v4%~4UCAAe%~K14Brp8 zh2Qhf@E1Qe&xK>OqqBdz>H*v6sD7pR&iTX1%ja>yJSW}9D-B;mu(kzUhQ-_wfp_MxPE$M(|NF(LTq4X3d^FE41XcnU(k8}ANlh5*AA59BncBZ{+)&Bm_E(0P*TME&+Kj+V?G=f z4>u!r%$V>6fza;GE@yonCw3l{( z`LwHihVnJi-QL&5%05b?EN<*QZ|~w-`v>Qdes3o4Y1=Ewi|qGtJVIP_gz}Wnc5!jc^s)_4=!rjYB)t31EuXvvlKeBswp?$CG?ZG_2Pf|sALMJqS zQf?EHhwNw_h1#>sw~rcwv-m7p%qPm$WQ#qqOYPJAp3K;T@+Iwotj`NTc^)jX`eLV= zy+w9xNIprn>z#z3gW^F6dhBtdD$i$;;9R>NZ_wAB)$L;bhqkKy3}rl})ZR&Vdp^67 zTAh-v$t}5iC~p``joPQ(^GUIk3M0hnU`KI#ZL06g{<-?(3au#aD(814yI0HdxN)8P zE;QPZv_{T?(tBg}R zEBPY6BlAT5RrwmRT+Yw?hySA_@Av%I=c^tbh5*(H2GLSChi3!_k^#K$d>9nuhxy|C zjq-gT9`pZfFWdP&i+%7TKPL4v(}L1u#gVYL+4GrvuhFo6;MHXz|Gj)d=9S1hC-1&| zJB;O9jq{&_&%&2^npsTdp5STWR8l!8!Z$?OuyNQoINdJTO{DTv|K~G1%p(P6hSm5^ zvsM|d2}%Y7%|gq9J;|HANR$e`i!1QT63{(Mpi<$a9zQ61$*~XUV*BvGHeOE77WRDf zbM&2^>bvO@OXI_2UAy?Ic%`w`2|r9RQ@_N=#4Ys8P4@eaj{7G!#m_{=Xv6#Q@C(WB z_A0+gyBkNlP5zM5? z4tOK8)BB`RHjPzKk>>sf-T$`aa(vq?7#dv9FUJ(~-!WXCg)=k^9|^7^v)_lvj4}rA z2wKvEdXxYCf^TSm1Nb%>kLy1R7Kih~7lW?G+U}$ko;*8TVeVKMWX&N(jQTUk>TiM> z_WZv?j(x~u$!~0v=luixLuBJHd|DWwhV_ctS6oBYb}%j)C}lC_ul?yBI* zrcaJL{(n4Xkl8O5eA%cRRn_RwV1~ z?CxovD-kS=ALR#VjB^y_^Rq zv+dFJxUI3;hg=wxJOruU6yGYJ&hdjh=hU)-)!TmTx9l$7Nh{wj&*RXClK6B`QX=^t zFV5xJrc``={5VN&0iX8zTt#b~4Q~p6sdYd2qGK%B>5p@1;&PdE)pyTYxTGA}SWG&rZws&7Ph;eyTaIL+#}7qO!l? zsiT&>f6tDIra=v^k4i_UvW=nBRiobi|8_3_OK(LJSqDM%cXpt*HdjiN&GOInj6815 zF0eN6Z}w!ic65vO7SQ_Bo$aJzr68>4mdU{TQ_MM)vM-K8Ws(YDZhMFJ$-n$G)e~=B;SD9j|9Z z+r+AbezW=H$|IR(^V?N4s;upcAp;+DKUo^hz{ZOES@4*`s`!7EscS z(Ma)Y`1WshA4;C3t&^c))^OnQFkFl;iM;j`WJ#`I_t&pp}bGXI-?@~Hr0qVd3=!+`ujJ>{$C8s3waoGr z$*0mmA?r^kY071tVz`-p+1k04YuFpLNW~5$Xah2_yQ?-0WGp#3f^=TOr{bz$CVl@= z=-vcY*xh9EDB;ss0yol8$C37T_?$vNp2Mzsn8rR!XkYJJ1s%!o+T?CqI($#1_NGhT z>)Bhp0YMuvQom5G=#`K10d}X{$H|Q+PxeQDb!tP_mmte4@k>@o%^UC%R>?`5%Y$OB zs#;RrY+6~^x#lK{F;8jd2Un1y=W1Egpaw1F5^sy6Kqc43PCAv4&qZ>m#@gyHW)+BE z9dR#XQMFW`KICxc;5Pd1LYCQ5d!SSM>_e8oyAZ*T*g|jSY^v8;2CH%*+i2$dUAuz} zpC$VP=SQ6RCDTA88h6q9j|AUBH+R9Teh7}T7qaHd0_L&&tliWeI8)qWY=VlO#pKg~?tgyH z{w?TP&>8t7!6Ely_Cq%Ki%+h#!6#<4ceHUi{e2@%|0yj?eQ55H<5y0woDu%!`#0i# z!;9;77QuS<$R|#>Owz~meZHv27r3YBzj=NwHcv0g<+$2>{9n0kWkbD$h8vZ#)|~z$ z%i?g_O>Cor+IC!B3WQa|v&?db)a?{&;tST!cGO;FpR~**W<^;+{K<> zDf~0-IH08mg$Cgd+I=WE4VqFeyh#5vpmS8o*_oyESxH(;NgQ&VK2geyK#tGg@yId$IoCsD&wK?3H$vv^#um#`hoV&n2kxuK(0}8#Pk9 zIMrcS^XHdRe6>=Js9ApfdQ6`0%73F=(l(rlPt#f#2^0N$*!xtcDH#6k{Z4%Sg}Uy+ zZ;5w5X~*YMZV~#0Jik`M-`SXZaK!)g!$H4ys?pcprLZdN z$ms19bRmU$kVE~9=mEH91Wp)+dnZdV()ApfHDAAvW8L0w-1mdPG$RG?Ao=dF2GEu~ zxSGtloct&h6m*})7COOlDkG#Q1f-6)mw10UjHwZM*p}7S08iaPlHEr7_4MsNzlY<+ z`>c@kBVVs4cbbxlH@lii)tdafmIQ9+O=lrp;5I$+Y3Ce|567duwdWo=4O6e7+Ba5S z<5}mAL6Z2|v1i zasPm}hj8&xax6~|*Vxb$m%h1tI?Lr+rCg^MtN4@fpkfO$0LF1?}?kp6Zz`Mt_Za@Cpf-1X=pI?06uf03*`F0^YjF*GP=D%oD zjBjIr;{mN!4xi8KXhZ>jU zCAGZuz-wT`oip7tz2VPyWIFhDowJEIShs27v!UOeG96*fErm4CwDqQ4<|e7G5zYkm2cNE$_bDMldSU>EN8Ju~*D#KvjsC!7$GE-OT8#1k|qg^ZRJxc4vPijA&RPWEs z;7xXt&pyJY^A$T%j<>Pe`-|B$(^Y6QHEklaGc34_HdN1CqE(s9IV|ry*!F3j$5?VJ z_$l29=}M`yGF%KNn`)2Q98`M@_BA7X16IC}$H{Rp@KM%Y#^Sum==-EuIh~`YiT@-U zeV#Z^>Vp}6KPG0{Fa7jg7yOpmqJ8w=?RtzCNxd{qTqlskPScFWt3z<_AlHAqouK4l z;k}+yb3M2ydS_A%j7*S8gcbJoG?%|<=M%F)=E6(`G^*?>=dOx=H8Yp_tj-s1&CC_< z#`>_4-&HfUeKzA)@@DFByUOr^T{2Tdxkqv+NkQK;nSXFz zQKjZnqhg*>crg4W{MGYcUMTI9#45TdV{omG~PU6O6VZO{?+PEDLZ$^tvsPdr| ziVfE3-qCXl&|-NoWBBe`B3g6?;* z^Xroc)giQ(kXjXKTBVHBi%7JyNQASD+k9kOV%{odoR>9<^M}XC$o=N6KS_Wi=JSGN z#wouzV<$DfH5YCtAJSR>OS9HTbc9W2z-4Bn|H4lf(M6u4AI&C()9Z0k{C<*oteI!A zcpsR%UUjE4*wb{WNu>BpTFMYw%Fvvy^_1rfQhb)Q<4E=y=Hlhl`FczLAG1O?b4n-AyUY;-g}0#d*KpS{yVZf@T}ETBW;QDdeX4AB>L^ZM zbI=Xusg~}#t|mc4u~XFVV*i3u#a%oo=UIeCovs9w@H+$3NYSlIbn(;%*}(?c0`c7B z-s0Nfb1Mw^Q}<3djTh~ZpmPXYq}OSm_5|f+48OsskW@BT24D($#SX#?sICJlsL<(Yn~3U{qyP3!a|a#B9aidzRg{uvsxoelSr zRfY9d#9oIouYrUtW#O%e--|zhu)Gdqo()fa&6>kBh}*dM2{_0U9)_QFwtgB6WmG)D zHHCHfro7fdSJq1RcDzz<-$9rEgejkboa}}4zRE-Kbg15Qyi+`{jI^{R@?Pm$Bjp;U zuI4#-kN7(wML+QQyOmGjjq0*NotLW5GH3P|iS;22c>{!fvox>zwHvNL)@Dzy<$Q`Z4W%g}2VJYWz6s^=a1v?Ow!&eT>iKUheT)^t$>iSI6P(-GR{bq1rdd zDsFpN{MB(ySY#{KaG%`U`{4DDia8Q;v{wCJk$SmOw`#?5zu(r5H1tL7eMGGLVD&@A zAEg$fcuel^Ih}nySBy7MZV{?HY6ajSCHJ!~Fwd1@oOe3)-kJaKyVYcv@ELkwl6!1C zRnI&j*30sk?p<%O`nzt0n)OiAR&iT74H0v4uGb!o2U}0*A+$@}O1xW;@|pbno(Yq!BBXnKvsgF99pV<~aHacZwdo_IZd^gSg0O_&qEk_U zIIzlIAU+x$w%ad1)U2FU{*wGH7LD^@3xBvGe%lNBoi9FVkHy*XSuluycr`i6V6ZtZ zx;U<-HkYbXD_)~pz~j36cC$5(wB~93Zq*0F;SrQ-ne#6k8s)TeliM;j&B#% z9S5XW7bT1kZva}RyBIp4_Z>>3~ zHsOQZH)(5WlrDfGadaM!*_GllXqVzMDLsFMju#f%C~kr>#nJO}`wHr#P1?T$gkLP| zY;-K_eH}Q?HG1s=AxHS!-W%?rgme%Tv&*BTa8!QBiB zS~sc|T?duwDMmB?|0_r3Ab@50zHbhf>jJl{FHI+Y@B72z9`S4no2&*2tLaT^Xj!+Y zJp^lz61%vEsKsxPt`{MN6O`RuzT?%kP4t8}J0Nj$wPb&^0*dz;8s>+|ZiUvJgl<)X zZ`H)7mGEgvesRjhjqySQ{Ctfywkqy4v^G9#iSs+5>xHnf5;&uuYpDLdTmSZwB28Nk z=hnp$LvhAroYURi6Sq8Rj88WXpLfkLG9M!odrI{H9-U9pyk?ZoCN-xSud|KcIb`Zf z#{H&v2br9vkT+wR_M1@c?6v^cLVg{+GdfbbuP52@2ptDNUq)yc+x`JR`Y;BEdq z{&Wi4lT}izb!zvMc>74i&AF1lR9EC7aEszgf@t!YaU*X4VhQw-e2%Q>=7;mh2b4 zLcA?j1~zz`;h{fWGpt4vC}GyWh~{t|>pHb#o3ml-+e=WD7IE0xP$BQjiC2f_a5+t( z6ifMHtBnn47kAp*)sxmTiAFM>Hk4{CgXu`CVGJ+PiymN0x2LO&W#KM>%Z#884Tsr0 z37>j{<+_Gmm0I(uK9wSeLs;*<={WV&DXgZYr6o<|+kKY&H?xILvIqBwJ4f2-P=~Krg$Ld5NVftm_C5P~ zmw11Az6Uwk%!>XgXE~m-PhgpLq$ofaI@$Cf4EMACo2XG=8dozK+GuruDu+|`Lz^qu z_@mUlpZfg=Hc*Yeb(45?QEEKRuN%~%ieI(i1Vi8nkEyLyFfp!1_s+D&v2?xrXoKyg zt%VjhOEpt_7Sk2S!vj(jFd}(UFp>qr6M;d47WO-L$1zecQ=G>ok^Si z9i}jceRGw!X^isxrtAo7vmtidFWod#hZV4tE!3SJ{%dd^&HE_SumhlQftAY&#zf(y z9DIDNb@C}vnW1iuYAk)nv%2FX0tWc`889V)=-2_Y`7O$ zB}-WpeeM6Kg%($Owm^$|(13Gb0jI+l&Sqa!hwxnlaVYD11)n8^7evA9U?sP*@NZGV z?d+0A*ob{ltg3kDu{p}X7Oq5%6h%HALh-A9$p&Ym@zET9c8U+8tK?CW9do6t0tBL} zx>b^QYc(kr?qZK@L;17BsKBmCQQr+{^Q*Q8LP`lcp4t8k+J8eoQgfRjjJ5 zIaFpV-h2__xJK`OYovW-WX~cAy5!`=OjgojHJ=RiYiU%pCtK!7u}NtQrF+FVoKA|& zFfNwLVX@RN)cF$1yUqyuUcM>T zo$fi?X3V6x`42|UulVd&J#`MMr#pyNDQk7^?amw~yPj3}G>X4vtfffuH)!#V9MibV za{2ru=hwx0%E+CVd!`8ey|BWnuA1b?4LKQiJNa_0@!kPC_#{3btHt+gePG5t-_tJp~^(EyuUsf&!!!t%`@EdjP2p1;=Mwi5bI+#UMzHo(%O({1JvPF z`HxhG`lxf6d8V3~DP1+HV!bEbZxkiPNyYl!H6Uxx_3thDSgghDf&14khl6ZS>)`BB zE>EqP)v&U3sm}uT>YWRt9jNSy@=rOf78%?^eePD92jQ|!lvU0AR)y_c8!44sHe2=&{tw*Uq%;5k literal 0 HcmV?d00001 diff --git a/_static/kaldi-align/at.wav b/_static/kaldi-align/at.wav new file mode 100644 index 0000000000000000000000000000000000000000..caad1178c0f209b7671192d3f79f03044fd22ebb GIT binary patch literal 2620 zcmWNSc~nz(7RTSdiiciGqSC;#lie#aeJ&uu@T5nIqzI)XIo$wJz8y zE^UP(E_EA6Mg^BqRB!Y|#vmW}de=9pCOXyZ0h z6@$ZLUQdmgu`6**680H8)fsnn%C^+g869c!rk{*nJ7WLnkyK4;KI*Iqd)8ZDRP(R9!RIp$75oMry?Utf;ES98?E0qR z+sojN<(FT)KGr_7z9s-n)pl7 z&M%S{ZA?y?R5Iz0q+PR5&fPxKI&I4&jd9`#Wr$HZfu5=`(hQu(P4a|UH@&ZITH8AJ zeM9?!wppf@j-l^PG}gbo-;((*>804X{?+38iu;C=)U#6YW%BWhIY%(h!eVUJAZZ6y3_qL&^p~k-Dm0;O@iu`d_A;B)*jmT(c>sA zA}PWW-l1t{{!le&CxnjrsBv&!=t%MzBEdnRQM@B8LF%Dzr3|i(OY*IfVx*4efXmiCtUjp@&`tHtuc_djX)_nS=(Ef0p= zUR7hPqN-liNUzb(gx<3565D0F*1FnJ$Q6>MOtUh{P#1n{@HBm?W~82G`vrTL^;FN=p5r}td*dvTmKEI-yFcl=*J15^(VOYm zXn*9)?I&G?bD!PhiS{1m-68~7;8L+laPVWKYnYDON$H7~@K(%5rV|C&4J3~oPtPXI zcm&o+tRo`P7$StisD%_wen(d+M#?WKH>(WlH1%qgS7X*>Y5u34rYTqVF=oYeW*@VO zK8M#JTe0hC0vN(KdM|o@=wIOgYz^HZ=GG4h9~wW1CRIyjOH6A`+vb)@E$7o~1y`=e%7*%%`9J3#b3Au~ z8_iqzMDaH<2+W78u|8xKlnke%PqE#Yk%*^fD_i9T#TN>n0%3k-5(e>xLqVn>o52?J zB)BJdMp#4mrNO7emV^WcM;pGYBSVj?0I6{?TB=#y!qUp!dM|!h?LZ@8J|cEr?1KmQ^U!X zlu5?Y&**;H5ZP`jovgxR@FLU$|BTE)e?s5F*TF_G4xA5UgR#&!xB$8f=D_*L5af6G zKKcuFgs!27(edA9N7D z3}yjQ;(I<=oWj57y~0P5PWm9VgV&%d$V%)G+KvkN2RfU{U?7H3LIJI0X=1f+w5PS> zwWWi;*4P<6vtKn@eNK6p@?ptXC^8oy1T~jEQ17biPjQymZuH!=3|LH^q3=^V!p#r6 zPIbnb$99%=Z|Q03`PN$R;QISqZ@h*6Jwh+PM!>X#da8&2t-YFBE=R54M}tI#N_sXC$w zFT#w77ibfo3oHE(yf-}C-9Pk~+H-BYY(pJgwz0O|R)y7NeQYOP#hy$b;#UisM3qzl zT!iJgM5IxGtWp*%vr-WKr_4pAk|jhk{u;>xmr7~E0{;*;%9}9&crLlNyULy6jy1Mr zwuO!`=MZO$GsCsgo#I*HS>WBqnfP^55?Bu9AhqamVzMkwu2tHVdsP{j16-%{TLZ{NUOZ(yJi3%$n#dR7q|+J z_ILYF2-BrFkbz5(ZgdfD!OsvC#2B)edLpZ!SvphROmCxa$o9w<%M0mP#R_?y>{vi| z`2K@C(JxOo9g47}%b z;G_Xs5AB8KK`>kbSHW8N7&I0B6v2_BFb5~1B02~?hipSG2da5k6@Gy@hc{q{v62AI zHMku&Te@N*PE2_n2VS-p9{v@S~ zqr`_|ob*a+6jw{F(hfigT#(`dT}Q-zAy0fJR)|f4I`HR}{3k*zZ{W}RxBH|0>70>k zVmmk}ke{Vf${A#fB(1?Pc#193S(<2-a5YK7hh_Q+^B4PFZ`fg=JGlt>Kn7`cb+LRh2_iAO2| wJK-@}i>lDoXe{7oXUjot@p;UUrx6MiBwQ!fvtq)z5zI?(P=F?s)C)z(xTD6-2sgfn~dM zcIMl2|Cuv!&U2r6?(f#`jvYE^(7J8_Fsbjvf%BKH3FH9)0D5FcZ_mY60Du40#Adtz}Mj-xEJj{jiODVXVZg_TSz~~H^ykxh%RJSFjKH> zYz(V}HHdwIZDlXRJMfvDi=1{2$w}sp;V$6*%bmoQA>88XQYI(>^yr4?z{X?U7O z^<(v5wN<585h{t=OU?D{QM`J+`k7j&Ija$9XKCxSGjvS-3;imC$}raW(%8fF!{l$C zZN6p3Eo&@)EyJt|>r>leJ7xdwc;-CmT13RU3*5WNxzr#40h_>^&=GhKZLCLE68Xb8 zhej|TGsk-L^kQ{qt!5o(eP{h(vDl$(Z#ILiWVNtBb{96l{>0knc}`&_k2GT^vDsJ@ z7K=rDWCr#Q`+|KIjS!8)AyzZ{2ImNm4d+`skCZn4X z965}HA$O6R$UM3bo&-F0C%FYVQ4le57pnwq&DAIe?InZc>!Ft}-) zJbV&97dPR3@E`1ftXL*Y{|3$_ClE&GUl&aDc6B(4?Fly0BC%XB_cfu`8SbLO}Y``;6bbfC)jFA@uO45r-mEqpn7;jOiQe727Z7Q`GT@ePKgF zh6HB@T?<44y!?E;w@4O?*9lYjUpcqf(^yd$oq3OuM?XXRAAAF>qo$K<-Cv2-uDuSU z^{%2UrS>;=rE zV%;>t$L)0Pw|vnywa;j|(loMpYI9cev=&M0)V8Z0%M-V?v@PrSq%oK)T`WjJn~Pj$ z%w;ZTyZKepAO4?$mxZw-HbwT2{vEd`er4jjByRHi#KlSJiLqU?*MbcVqt9;yyJS zTW_gjjfJKp^M3O_hn)J(1cWN-CLe!qFRu)7o_K&H+WU_8a_`^L)uIAUEK?1ipzgVE zIFlU{t*Z<*s=KYCruhvO4f~tuExqJNT5dF}8qwy=)?La6y4B`8_TEG{a3S)5b%uXX za@^k;F{#VLRCdqTJ*7Qw_I}>4)1dJ~S;HcS%o}j0_o)GXIAtpv6?3>xTWEb&Bo1eVyZ=Bi`xjT;@O>*B$SisK+`rKZmD=!a`1On0r%UQ4+FD+&o93h6wE0Yo89C6^$)b%^MzAu z0-N*O#wy<{0Zp>@ps9km&rA?Km!0xv3-|Hv@d)7|@0$TX0;~NlOIPyRFb*A{S>Zdh z-tYkGiw)GS>=@A+*_zw7v!lDJM6*uor72JeHAyDWrGkviha4wAQ(P)r5YQYxJT5O` zZtCS;{61J3)N4bphTb3hRP{+uv-DWlEu+iy=o_KS0zdlpm1T%%yi!aL&m%KjMUDyf zBet*BI!lOYqj9+LnkmS#*tXryb7i_LjE=$xm4=(zY5ML)nbqnzO>L%Dy1%(o$b6#Bod_Q zjPK|?)&Wi_kHedZe`X7~;rv=ri&uxVw@-lYMDJVP<=&rsUInWBwSFx@1iP>3=zzhOcp$3+HhYEgT9s-%-+m|5hG(KfM(H$$sgfoQsOI2?}6cegnIp|?RPt_+uuNF^pYPFQ{zpP5_^r}dZ? zP;JoO(}~-rHXrC%*>STqxAA+6M)9$BM}@I!Uqf|^yx~Ced__O`&DxCm#zx=fwTi3` zO)FDn)TgT|TK+Uet73GoR7cf2Of!sO8m{_=@|NzErdB!Gq$CXHCZp8+Qy-wy>z24y z0#cX8JqlP&taUa}$H8N8GxGq~gndBxtgCo6qc?J#|JLU`Cy}>9c24wze}ygNafIO# zqu`E!DXsJt^VrO6p*O!4b0cR(=X@@TwOBgM#k?Yn6HK8E0=r7@%Z7pu+C%}JzuEl_ ze90@t=LtR__vyjx{>=Tf2hIg9Cif#F9lAvy>nbvV?r=k>HUkWGys}7$1H>YQqT`WV zqBx;VQ9m%Jn?vP3?eU5q4a3Vf+0L5%8@H?KsI>~8<`3;Bl}^nCW2U9ZQs`P}v}yYo zI$Ht^zV>AM9O5?=O)S;r64T9xt+BvddmV`|2f8{DQNS^BlzI|5n>Pu0Xi$Pb@DZd| zC!*aHasVIuTIh}NG{*=ifRE62+IYrjXe0E_@1n5Ivd$IZUBo`@4u&{Fz$X$JX@h_^ z8BZ{g&ZKs6Lj@XSI|@kmQ8nmfiN<{kd@O#!n~e{pO?FhHX9b7R67a6m%x3#ZT%R?7 zPjA5o?FidFycaFTB(}=A3uz-PnCZHs$jPy1SaA(P9|xT2h^rAJT+~=Lwb=^}vs`G= zv==&a46kdi+IJb+o1R+;^%YeN8BZ&!`mcHz@)ej^x7+M;lu@UwznZpcX7jzZRSi$5 zIKfV8m?2U53hsgh7)N*X3Zxq!D<_CrF}IdW24a(In{6f0DTto7*cNP8fhj;W`xoP~ zd^&rh%%7gA0EAeSkG9bCk{2$0!nSJSm*;{L z==C3Zk}ZV&oW0Nq%(;xOE*2a1 znM3;}5VDS`26&xi^=19*|6F_z2p4}x^W4$QNwV#d7_|>OF@mCS(+=@#&REt1q{7h- zCI{Ri7ICkc*P_0@w_MZer9N}KX19v%pV%)!0dqrph5fky4fv>0?doIcio~HT%NwA( zeG#?G_612-%1mcFCAdd7^Bmp1Mle<>XWF(nN%3B7Ym34ZW0fFIb#2{!=YH4X#@+TZ zO^|#v_(NH#o~q2DdRpJ9`Y6xRAr8;7qIEk^?AVV;0k=kH_Z4(=rJ7GUASR8WH>I1r zgi=O#W1#DQ@XGd?UTwx-ire}!A#AEPY(@+QwVb69NTq*cz zYNB=v?i%?`m(44A*a0A`%T?l-DrU{*kS(sg1=G35n6K&Zg(k7 zm&h#qqjRnMt!1i2LA9wAXoq8tNr9G#7F*w8FWIBH9~GIj8KLK)iv&lw-S0oZE{bqL z*b#mTP$->egQZV>x0Tigk6<)$(#Zr}q~8(FQrj)c-O(ydL#i&UY03mH7+v zs&M{HpaD#Wy`T!r1-Kpki8$Fu;E`G*UV~Q}ys=7tTOAfECF~^=BDaBSl`F`T^hm1^ z{8?{;0%>_Qb2L`o0ey4F1Y^A;(XbaD)o|04&RTDML40aC2mVj6Lbs#tyda8eR-7`q zMeL5d;uk8b>!Vk^BZn%$_L(640Ey22#2!q3)b|K6>b4t3pxsV8=f%( zh5xk30tXsj+Fx+;X{hB3BT0~s!H$p6?8sqcl%Y{(!8YUXY)SZd-$44_rsYY4orR`L zF(awY*4NSqnZrSVg!5{MpHo3w?;c7{4Xy#f=9iLdK@#m@@C4GImxd74KH%QCY9(Su zC9MLvjw9UfTnnTKzPKZig@H%w{{u&Ld8u+L2I3O_TI)%3XEM{T%yhovis(Ca68x?# zgQKBPcZc&S^{C~Eum@e)lB-FMw}r%QyIg!<(ErN-5NWHIlcQ}S89#}qTbYXP*jI%E>K2AD!_VSj;2&|l^ykYEzoLY^XyAq%h7h+8`|Jxv3o&YKrXGCDDm&4 zOL5`8$;5uA9DT(4*@in-2=`mlDId4X28x!_R@Glc|3xl38R{;gD@4Aw1;&UZ%U)=k z5)pvVMcZHF2Ht9C4`(mabfAFQpLnFYEHD6cM=wU4s|kW#SwtaRg;lDb!QXhRt>dY6 z%)4qt&=ZW%o{-*hhr9dJGid8HBl)|aQ${*d$odDf*s5(ia2@;%KIm9Tp9XV;1Axa) zR5XqHhGat#w8;?1>lE!G*~%}r9uj^g0p|=s0{sMM1?>{~UGRjhGP-F?MW^5#a+hG1 zy;}5vb^-cfe*iDSi{MVQ*F+$6M%vGkMjWH^MP12OV`t%H*KBwt9^-Kw)!Tg&YjqU5dgD6sy|EkEB08rSi_`3__L=B(P-Z9~ma%Ff$^7&`LW{FR@kJ+~H z22naYihd?`x+7?pY5lC@0T|xn%7tD!qQOGJ1YhW3 zWPn>}JsDDhk9Kpm;4;HQ_Gi}$*#f(_@nhHl&0F_#jszYCj6vVRbD_uZSAd0PS~{S5 z<`+Hb>vpltr-KU}_l=q2{?IBzH;K+Q-uyAc*fJ7`uTw}1OyuK~ti zjBns&mxAof)Oj$e09pn-CYne;<|Jz&Q|RhUzpEQgz=+j#!KtL(Kq=#VLMS^`H;&$) z+gt4o-$NI=7~~LWDimq$!Fgt$&Nv2d;|Lvzt`ok4+D~x9X|Y5&4=}3*lc@JZE9(|8 z6F6-!h)-B=3KZ@nQ@mFg=`wd>*xl_OL|DbXWSNEnz&uBSkJP@~@|~Z+o@>|#-DFD` zXFTG8IYf;ehm9(@vl}ITVP1aqB!dmeI{-LFznF?Km{Rc%4&iZ-un(AowvP za2SBq2x=ce8v`!~*SME6gItkLvFMb0u=6GsVBHKY5m+@P0wXoh(Oc5P!nFqp734+r z5PUIbv^Je$Np$KU;1W9DJkk-t>t$j>34p=816cws*7v1d1N!S*@EqWiB?sVei>GnL}vv`NQ3aFy5 zHtpi3v89F-4hKJITIR^~wi^3T$3>)j88Cx3!BNV2hO6Ygks6NDe9xW`4rkA|~p(}{N;?^{es=qAtZEOpmHqrog-Fs%=i3{}ECXoDfC z`x$bK%A!AD_`0*9aj4ndMBIeFLG=^@(&5d}22km~3Y?@(bU9tm$u^n-vJ$7kM^Guy zL7Ya0(!Npah;7g_1b4L)B6u2P08+^YiVrqW+0=GwJvjw9=N=DCg7=bQ_Xkh)A91lE z6_rV>B)_|9Bmur4Szt5hBo9+*#D8En8bDkE9s&=^jqpCOH&qYZ1!hr4pq}70@)A@- z{e;J2EyzkxL(T&I={)!VrGutJ0pv#THnpqe<=l33f-jr1jDJF zv@+@ip&(m`5iYBvuj{vCfNPG;YVo(sF|RUxFbRz%dLQjtUA`_xGfB0#W4vmF`g_MV zO|^cdX02hm?Y3=HBY`yqu= z(_9;gIqoH{$)51k>ZG~-TxIrbhnF3)8*SH&Ps~#-HHO>z-yN>D{w+S9dgGb~dab+$ zu3cZVzB04;ZNZuE%krXgYqD2m!v(|2m$l0c$IZuG6JUayD?TB8;YCQ1fbn6OA&EXq zgmeK9TMPYl=IGC=leFV?S9GJzAvV&5&_5teXf!L9UnUys`^K*zpj(6_YEf82a8#hg z`?h!-PtUr_?8y{kmFRD@8`_m&XDmY1v?H`;`at*>{T0%kF$`&dg|t!d44~CH*nY#& zW^UAO(p4)J@^|ucP2a07l_eE{Kizrg$6l}79~g=bxr3Hg@Ve~NWKfd8f ztp1$7+u|D{W`w?q2n}8?%|VCKW;scHT65E{rC$zZeaPDWrtnkX4{h194m0tA1xT}e z8bj|#*`j`jal`jUtP8h?-3Xj3eT6TC7F#h@WK()gP1U}-t}V;Wjf__5sxY+6;+`>S zZ~OG@y)vbx^VOJ*;T?giy@v^8%pzJ(^0>XTy~cLh{s;KQ%He(F*#v8ZUc6U~OJuBl zi~-fYRh?9(sCOB8_OA9ybF86Bxw3hC`RKg9&zIahbg}HzkrSbp^S+LQr(TL0ClnjcgJ6c7ChJWIc}`Q(wqLHiaSJNsg> zx>Pnlx@Y{40kJcGENC4|be$aZG$7MAfwj%@t1Y2^NBNY(tehX8hP;tv-ObOe3pAdh zeUt^pmk+u=z9IcmKd`K=mZItRpN3J}qxxQ{gO-z-xrlo1IJh@}NxhGvJ zIvp&C<;VVsj)~kEe9}8ekj~nR1~MP85ArHR4WbOuQjt^a7V5a4FgBWu|KYvh%wis6 zbYs#vGuitY1L+aW7~Ia+2%n2Y;u^0cuV~S~+(4#`mQQePEygSAUM>Bq+(i%b65r%M zd~<1iCinc-#|4#}nFVpG{*5CZ{u402aeDla+Ne>2)6f(bs_ostuNe3@q)1ZCD`x%f zlK)Q;R@bIcftYY<6xg%d(EB4l59X#$4PPf%Li|z%HSMigRK=;m8>p6pii2u{rd(U9 zH(1F)z9XYW6lGt!0KhTABBkm}T8RrA_Qp(mf+4Q+5qK zMPA8lRT#cs?&vlPmCH2{L z61haP&KzrvwZ~h_Es*WDL*-san}TnaOb#-Hc?I%CLy-4&O6A`K*8&a4H5ZW2K{r!U z26?CZjPx1Ukt__{i*zw8RxIn#t3GJwn>M?LGw<^@@Z-2No=$LE9Oe_^zc>I4$ng8% zbsJv*rkcNWXj^hxCbs7&PikV!qnsvBq3XiZ4gey0OxP1J?HKnKC7c@1+9ura=8^{ZsuVW4-MfEa%RW zY?0oPG|0UCI{PR4^^(mOhOrMIXMim0N3Ed!b;}ZYf#QlL+4#VEiTF%ryOx>{D7~sz z7TnE_d)@seb`;!^e+I8yC`#^nvy&t7_SlmPe#~l0A^2wEq_fDhzHL|O?t)o42Y%(2 zy{q;uN6L!id}0Pq;I}<;OVaZ`0sXJ1jtL9kx49BJELEopZ{=GG&XhDXRJ8l+=h`|G zDpC#Rpfuhrak_M<&-8#*{yRlmpw9Y+mSeS?N@4B41~r=Cx2yBzwBn(`Ln3-E@5ByF z;y!h^nIp}M?eAS*U2A}sSd8$SXuDv$V7>5=_^!~B&wneq4KBE}P$3H6`Z@=^=gMOsTgN4e!0TIbP6X`wvnc$iqF?D^y zE0)_8<$w%_n~VNResaIx{tZ=iYS>dhsR`BBA&EZ!M6d4>l{~$BeR58OftTT$qj*-) z`g?Xht3Xv8TDPY?On1-n*nJ<|2zge6H+enqKJVM&d(Q`wz|8*EnQb2$4mWI4tZ;tD zBZ6DvNA#XDID63NUi&&R1NV!zptIcJ)~mMZZZWkUSPqx7Y~ronJH3y}%-&OcugeaJ z{<4~(JNDoD6t!3>Q~ggfM^|gkbL9hu25F~weGX}7P2~^ zJ%Q@U?#=DVNvIE@a}V2JwT-M?S)B5Bep#=Y(M@ODgEVnQxjl)j0oEf?ygj~m!V)4i zp>_Trys}WO^-5c4{n^Ixx={= ztahCN&NKH54oEioX#J1)Vcus&>sZ~X;ih@&?kb0BiQ&Gv!93FbA92W?>zZM+X+Ae> z`m^A>>eI2O-*0Tb7<&5J1@OZM_qQ%N{qLsqPCU?O;K;T8&qa^qWqHzX4KcyYkbf-} ze;V-aLyqXrno4C;CyR?)8)}YUowYo%tq0z+ZC;Q3-UMw8I_Ec7ybKSfKPC#zBlKD=Y8+&~ zZ@8u1r^YmOx}BQ14xi>7mFEf`ecJ!L{6_1AXBWG?xo;d4*MC?^zxkalo#!NHcP$TT z$In7)s)3e5yWmJ~U085E>)v~2epMx_IbMH>0S8@7tr?ire`Qkdpkw?XhLlRPy-*f5 zPijt4bXJx%+bRbZzyCw8y`dUJ{ANxUeG7ONZVzt@IwkIdJ)-`#Nvw8v4f6qKGrymp zi^wdQB(wVt3_2OKG1wKH7J50bL<}+W-5VU;>}LBRcN)D9CtIlXs+N>^wTbTY6F3oA z2BHH&BFmbgOK-bV_o^(kY*N+s+J`mq<)Xr-+$HZXJ{oZiy;yd0*v|y~X+L~Q;}A44 zE^23}kB<+R1(L*Q_X}VHxy3Z1?o;;c=W}1Gay#mZjS9wlpZ;-6diwX>nR+wojHDA5 zPFq3?rvD=6Sk9>@w`DdpS1&FZ^gHa&s5-GO6rRD`CIx-ly=$a)k)3D8{n=G4OyH2c z^!X{QWPXIMfp?Ju_#W{Ye^ppQ^u_3%p?=bX%qa3W@d4;YTg!OHoX8m~oFT3ejKja6 z8R$IrGl5=Y;%~)1!)6y#-`cXM5-I|IcFBM6^GiPQdFqp|m;0aCb9&m19zT2$|GruO z#Eft58QW!YEEH5H9E@#aUPD`GPo48s%_WDP&%c^>)0U+x8=*Bajs_MbZ0dEU_x)}M zJ#pFFKvqCaK)x>|FhGIEvn_+FSbv8X`Tc3FcqU(E$Z{(g26h&nf}Lgh<6i{~*+stz zL0iI?M0F3HAiazQQX=POw}Z~(Nn|m;YkZ45ypIT>kmaU3&<>ur^oMMwq)ZTlKS7=F zN3aIE#hB#j?~RwrWHExh=uooCdP*1B+EUr?&y)h6ubdaNuA4Fn_oVMTb;k8^F0~@X zGGbVFMcAsyUR@t2Fk>f#zYY1%pWtqHa+@Y(kGR^H`TWYR5584psw7t{V>Lg;J3erK z2pILb%bgyqLEPbE`gV@eV`}}>2CDRV@vP#&(p`0-%Deg{=AGtjbG)5J9Y_LKMuaoLk%!_G*@qyHtEc+*PoNQ-CM) zuJTK{;jCe3IkF#~4E2Fa!Cyczcn#VH(unTH-!1mPci#iI2A&$8k$5uX`qu1N`=hW) zajpDt$8chi$Pr;rLi_C-x~p&R$iK`{TF&2$m*P8q&!&9;QtfI=Yv^2KsU9!yWbTWy z{oP&m_kA<`+UWm=eNKHJGM#6j>tG!mPI?;(N? z(2FoE-k8iv-I?guIVUXCw~1fDxIyV$4#!K|9M@1V2hvir$ipCy*~~pC{47qCmdOyQ zg;&6QKre!FfP-)(l8W4=kAzM+Cm4q*&GlFRO#Lc*d-YM~E%n{_w-wcsS^CI7et*aa zqYw`E502ya*f{X>fQwyG=|ArH4tM#PoRGX#}+Vg5g70t_?m3OX`uBrxNz2sqg z<9fum#|Osd1>wG%{r821#mJ-hzOU)HalZU-T~qCW=BJ94nrQO^r_((b3`J5n{epX^ zBn@pDK5bBH&+DDrg5Syt#92a6_y?ar8|6A;T+^|(by!EM*$iwzH?be_e1zMDhjAed zC9eTA+A+p4>>Ij*HXXR&THwicAl37VCE3|eT(_^^RNejcYGr8_H7D@CcR#1REy-pR zcj=ta@7-uVXeyAi52W+@oEt1 z#pk?6dFKW@Ivaa5^(jvM5Y~aET85}|ls9zuteu>`j%lVOO^f2A>X+G_Ru^aIWzmT~A%c z8$|eqe^{;>bga4?_t(zEyn-c5a&nW z!h~hr6H*)E{|o*q+Q3n8-t*dpBSbN{j2xz$CeLrWqS$LMMQa7UBqt!8^F2< z89y2W4X0EG8UlWof6zWFeC~MnHZQDtzqv0&x6W-kSF_a8$Ln?UKS@2i-%h?Aoi6id zx3Ek3+r;a=8Q$UC!M6SNzltsw6;_OupHbIoE^FeI`{e&Mk5pFLPM{WvJD3~ZDLBOY zHFp5}si4VM91H|*k#*s%p!1xNvDMJeeVirW1+l#0%hX^n9-AdT5U?SF8GA5xUG)9% zPJt!f4}78n^MlkrtAr=9!SH9Yk$6u`C&FA}>jPbV$IR9@@~ZY`O}74{j;9_VKUsDl zCopU3>%5O|zqc1FYBw5a_MVEvfB*bR(sINb;}VlzC4@%X1JXp-@glxmO8M3XhpN7UBTm9z~vNQ~pvt6HAccCIls=BST3`=Ff!gS--j{kYAn73|5P!hq1o^e9uv z44Il&%O1hzbH)oW*(up>UMB6L+nyEtnx5FI(>`@qQ|P zz(2!n=c3%jtk+05{EZsy=w=$B&(p2ZEL63%ZEX0j;(lT6w}kgl7XRbvue);(|7O-E zs&%S>>e}L&t=AbPp~bNuqf^7~`c`=9#eF2de9i{;4$}Ge6y1iL<`p`-F3)_@w$<9M zi)<^dvsDIHW!JA!#Op7b4p~ASqudDW>2dI%`Ba6}higKOfjj*k`1bVc9`G?_apd8! zD(@&x4s$o&BH)NIVJ64JH(?skIINfzi96VP*xfv<_5!ZCo)f_kpHYHHp;hEcH;+hm zbhQ`S8|(`$g{qqRsItgkSHGsbSH0cw;p#_G_RK#|8m0B4e{*stR336<;cbE#F0xi;Mv4VEwnY%9yiTEtNbo=R`{<%ML&J?*+Z?pk29Y_@+@zs>Gfa}bmRHVN2W=y& zT=Sfj_6A~(hn*S))w&s^n~>S(Sob*#sdj3ydnloB%&{&ZL7xr22e&)}8RBS)C!y(!kN04JD1$UE9|+9%otcsFz(Tt>YmcDkxuLGBhZ4jcpDg{z_Q z&{mj%q@%N$2sW10g?$RMF@7Vv7}FViMi!%haT*Ds^@WarGDrp90KBLJ?oLFC<3Gzq z(|Xew({`iWkZxG1o1nhcp;GvEEbpKz!&U#Nnw4@Tu70K|((cq>Fm19vvYBnO?E@S? z9A_Oo=LOeUx19V!jv=>@2PpxFL;c_-v=4L!BMTjaiP$^w1Du)M@7x>Q_1wkW0o*y9 zd$$#zE1^m0 zQpAZQFp7{2WG_;V+(uR-SsoAensE|+$~=R;$4+^8;zQU|a53iw=LYvAFN+894srN+ zE-QwW#?rC&vG=hzu|f6})?UoY%wgi#FYGz%J*yY13nuW)1{5&LkuCIk7=@C61LP%Q zxl?8jwhl0_HrD8ibT;i2?L>`8Gg=F4-l_97WAxpOuxY$$wTWYXVEUh@&fn9LV1pfy zv)J)J#{q}Psc?!3*v%(nse9B_Y9uA6mV=Ywv9!Omar7tjP~k4ZGJDQ!snuhJg*0N@^v)MiI@tjp$iu;rMkh30t!ft23#lLv&6m!RMO}LqT znBAGZhgE?!VINpm*rV73SRKrG=1g=mqYF|=djx-h6ySPbFq!LeJE9%0?IkvbHOYM4 zIM1+3AD~~ZXBie4))?*^b{nD%WqM!3D&q&!L9@tGZW(3WV3k{g?Oz?BYqh6qKy#U# z8(q_hJoh|`1fr|v6Nv)I_TqQPoXcsZBj#YCYoJN=XS?ATZSdWgd3v_6ZMyLT5YX1R)^|# zXxC|-+7{g$eTn|Pp_?(>*xR_@xZPA`o@8~{Ry%e%(_Aq`s5{2PN}C1Fg1^!>(z_yJ z2Fcilno$(%#A;;C^yo2#oypd-!|)z>Z~VAt!r~}yVozgB*j5(cIZFthif6KKv8u2Y z*fC6t9bplyH1>5i>G`IFEy0K4oAH0}BK8FK9abS0hh1e3VZzKZ^eNg0^<}K1Pp18V zJHg$dI4}+9OPz90bMx8aTWY`nvxqm4C#mE@VO z7|NRG`7ak)39M1rCuRe40`>{Jg!y90%&!a)GK0p2yFd@Ya$qHu>#lZvb!@jCwZxhG znR*!G4Pw1b+o4I-2sQs|dUz&8P(7$0sJp2>p-t7r>U$afXB=wkFa???ntzzjS)?|= z(Zz+i50dw&i$Dmt2khhF<1VMA()ma`VqjFG$;=7NT;?TgoyVppva8sBI0Mi2=&=lc zh2O&8zL_KDUgOT?jo~ALrGi%;&TFV(GrxkjmWT3uxhN+RpTZ7g-C>?VzcX5p z&-4W}Z&(Lj0=|&Wv1MehH$UD!?;3~L%c>Q^So)xF_dkIbo zjtXW7(gkA#k%Ah25B_pqCYR#)a2nYCSjU+&8BSUm^bs()k2qi3UR#n(dvym@rHZ3% zM_U3KH`WcPb<~8_jHo(PQC=QcF`;5$#l8w|6;b`5Ho88)5s)+5w{$So0^R?NZI;=N zl>|vDffG2v7<>o3K#h0fu0%U%Ibvwj>{AYGFK*e|XslaX z)2qt6GPbgRB~js1v9Ua}Tv?u9o>NX%L{>koy;Fa&@nFm8w$mN^)LV7chC$|U)~=34 zt}E`H)I9JnB&3a|ry{)={n3A!zSwT;EjEp{iM<9#J^%eZ9)-X0_yT`USMF@ydEO6R zC;nDICZW#>y1N=pAml`JSpEje8>wJe~L GTl0U-6THL# literal 0 HcmV?d00001 diff --git a/_static/kaldi-align/curiosity.wav b/_static/kaldi-align/curiosity.wav new file mode 100644 index 0000000000000000000000000000000000000000..32d106d7b598c623dfa9f7fd0413a7b362b679ff GIT binary patch literal 22576 zcmWh!Wq8wU+fLFpb(ghUC!M>qF`U7W2X}dJcXtNE-QD5A-CleQ*kFupjJYxQtzF%c zG)cdHNB-nTdfZ2H_d2ipI%WLuAwzG4klT#M0+~6Ys004AdyZX6qb^rhb2!I81 zH_WBFo{0h6fB>K`un}kn`hX+Ao?tGJ1$=b%edbpe&^((i&*f826Y;)-(DacoQRyA*T1E=qYx}OG;1Z8TpueM2vCd;B$$CM6&ai zYn1?E2tJ=|01#&kF~>QLvK@QMd??7k0mDPkTkrrLhUAl#tYxhIP#Tm99EUzqPr%ox z$yAWar#z<;pE67L0(}Uwzy^$l{U*ft6>t+zpIG&VU!_SApve7`sb<4gX7>PBBp@Lhg{!@fGbfVD#VC^zv9)NSZFTnnSfG;tA6E7&C)LxWqClh{& z`jRn@BUBsE6MJkuNG=9%J6de7DOTzlVx0XsbeOUT&>>TyXT(eUd+<4R7@@_-QS|tI zq@EVe)}kyzO{sJ22d+}al6veMb(X_neNS|7cTwrK7leid+s9&Z+C;!iISfp}*x-Gn zC)o*E9R2YAB#egO_v{p~AKk3mru)JFD+n+^r)5bWL7?RLC%q<)dF+@EdTSzN~4`YD66VGIg+7PR zvoJEyKE{$^zX>NYxEN{a=lBL@fEm_{_N(Moaw^Iti=AtX#a%z48vX#vQvE;1i_}PP zk==%wtY*gyY8XXg|A}Nd{&ntwo?sqK3 zHe%ISU-XuvKe8E%Kt6$_^MHP}Ig{KDe8zg(Yn;i{MfUfG8tf`?3>{AFwNtSa$1NZg zpKT8^ra@-72Y$iAMVA7xV3<>7JE1vlx*%A^m}olD8Guun$uQe4Hvh0QoJr&$YcR4F zyn|n}2AVS+*~CsX+tvq)b$l`0H8t8qP9@ypJk))+TVZc=p2I!tUdC(aSLCi~hgo9> zfxSqx-NRU7u0zh?JIJdxp!=A;6KbH~xVL(>`Yh$R+dg`X?oQWw$8o40+)Qe5)OHn{ zX�DOVzp%af5!h=^%cLCc`fn)>=Lz1JG#mAbSy}#YUUY+WqX!Hj#ZI9%^5SNgaP3 zlPyE-%N=2$0WC4Buv9RexPyn-@~w2o564>aCjJinpQ}!m*_L8^s2Cy9@3H(#Qcy43 zLHk>)n{A|}%_guptoLmV#zKP~RXJ~AWtzbDaD)K!9f0m`w~o|6z3olik@_EY1?>|Y zjvUqN%-0>S$Y%RyWV)jQ@3043LhT^wjt{f%v&P%k+XdJk`zDLPsK)z%fWv4UV0~rT zYMN)8k3DpD*ow^zi`ur-5{3M>Ew`iQd$z4)5W3R5*JeY1*)`ZlumlM)tu-G&I!OyK z8lP(ZWZq)G==_B@Ba_T=wiU?#Y{f`_%x;}!`(i0@cwx23Jx99p4*tY?!DzG3bRHoa zZL93lkzynt+fLlK9o8ZSkQfae#hY!5jAf?&NU?3YvMSv1Ckz zn2=!0cJo;q%e>GOY(tTwWEc9yw5xlSVH;w1Wa0lHD^25*|fsG+z@E4XOV}UIn zt+c0EDoy3c6dVFxpleLa^qGcmq>Z?PH8>RLA?qgdL(^HyXtW6r$9H0*tY!XBBl0&NET)$06>k;aP&X}fdI-*U?8!87>GY0 z=Mi6s>rM;6cg_Wqz!kWK*x;lBT}~xPI7Sdg-~(Cac!_-_9{i+phnvx9Q#WfML4k zq}tFK+i|NiSU1%4(-@{3-f^?#X}eFi&>*rrFnbxG?o(aG+CcLTYaBA%g&m(Q3{$0v zi*ANgv~koK)GF#*=o-{TVZz5a>qMVKXIND<3iTu{jdM<96|d#pVSZ!S>4glEqv8qq z6}&j!VD=^WH{~pCEb}y5$6~U>n2FTuXmBLi!VJB1=gm~4CpN^a)_Q4AXxZH(yGQ7nwY@a8t>c?})tA)l zt*>gDUH`DEqq4eOUOfL#P2tG$H)YE!JF2JEeXl* znK6-hoOv7eqP~LaX+s%7OcC=2^A2knr;A79-($zIQ+W*GAmJ6k7v3#SGAoy!MLh`~ z2KP8$JG_wLHk-B00IB!2oNle|pm&XF>u%yVoT$yN$^FZ&39QYn=~*+Ys-`TtysK

cwxqg~`o67`bNJ#Kl<_saL$ z>|^$=4C)cJHEvYg;ONWY%R}4skBw4KH3LRTFM?cOQh0SryccdWqthJ^>!_n@U>iueI=l!<%wP6)O zC9KkbrrG+V=qE!`Q+-uY&1Up0!(+o^H^ohkzmfPO@l||41OsGAD9;66FDvBP>+Q@2lgJ;JGv(j_cLUd?;@`ZpDC(YDynCrY#A?%W_KD03rL}% z@J*No@1qZ8jAC{&cC&798~B&_THYMdU^k=tRpncc^>U-6OTg!?=FaE-kF$vNhnnTM zX&TX0)_A1qX;DcY|L2!1&oAdchJ3F0EpKwu$LS_^NLzZe3N$8cwMY`NtIwCd?_=8o zE~z#Lj0|gxFhDXm^r|D@$Xr?i{UeC_aRYipa? zEw#U(wh4k1$zI;RrvrP1u8H^@{XUi+w<|^#y(VHsI3AK6RO=&Cv z4Zb07IC>)~NH{(bASq_rW4e{Tn=z4{BCL_ERcPgpWsvlhxK_-OotB3vZp#`3|6>F| zvCi-KK~!qZ(~s)PY6Pnqic9m)WGlZO|8(KqnAeIo|NFMOqK~fGQRJ+2{ILzRRiIz! z<%)Gt!~4VzIG4nTZU`FS->Itb(J8%T$GI%(b28TP&9N5Cu%>9TYv&gI`L#Une5r5q zeqEaF9-59OV|^SJ0AVVZ@pssi1fmr0dJ@<;|yn=aFcYe6c>dHrU;ITPRkCvXL=TS+r0ce#z-LE zV`eHGLiGk~@pAipQ;;r54YfaOvDQDYH2=|j=Vg?;9OE3L@d*S;ra{H@3A}d6CHEhm*`6WFm+spXfa1J7 zN#X7O)P1hIK=E1{EF8`bh35endd_@Cw^1{@^J~YjHt*(vbq~wY-_Vb_pOqi8-pzi? ze0%F%c2-R3>5kpD_0DVxn?8rt!EWK!NEWJohRuuJ5xpmZ9=a-&7P8ns)8n>~#&}Kq zG_`k4>6p~%smbYD()P0cW!2&GedRMMJ8LqUes_f$;}DWKOwC~jif1d%dz|o?=RV0} zvy${&;N9+%sG94|^|;{LgDngp?J|@D(404%THroJp~OHr;9Mw`>IHV*7vTC!ZM&2QfkaA=tQa})V?+3nspO${e`)JSHU%aVxv~@Xni1~vvguhPU5c#>i^Q!i@1(U&vK^Ocz z1M>XozJrv_l9BA2z-8-4^|6*SjoX{fH=k=l>diH?{$8jyR1c}0-W1aLMyIg!LzKia zs+=cso9}taCq=c;r@z-drBFG-v%zb#_XDLx7AFv~THs=ul@k z6#7PeLo0;Mj0jF0|F3wfn^~cASG$jOAEvnDwp=EVJ`)cSuHjNxd*O7-tpA@%h)YlI6cgs_v@MTZ-j*op!&$V znRRf(qGno0NjGZ5Z7&>ypxev{A>el2{f4rSXNz*O$8N=Q`CR!Kw~bPz=n>DrKEe9Q zJj>k2WHP_gmGEE6DX0}XM;pkz!4dM03JwYni<(3XNiW%Zd53$aN2~i|`9$d{;ZEKo zb|zyKTuDiW8i0k)8luXv0}ZruELDaMZM82Y&Vv!JoAF0gh{&CA-^jT762+Q%jjd#u9;yu{of;<}IZex+ji(tH|~ zg^DyeD!-=KpE!--aWvEvjn+cMZ->27t+ez9ss z*P4z|%|K0fnSa5f9LaaXm*bx|eVLeB`IoOB10=8;g?FXvBs)Ysgc~IO9<%)Jg&0B) zgm?$11wQpF^OCq-<_)JNp^4f#&8an4s_C^i>o?T%>lV~}tIn-@T&1iz(^%e_WZH{G zfqC>!o>6A>9OE}N@Kn&-z_tFMD%#86bDQT;&%N%LWGgR^`2xO9Jwv%jiKO15uB4u& zET(*;dNUmC*Sr?~EWrk$x7aQ*%6ck}d7M*zcTbQ_7kIF1=>1$>Qv#ocPry%Txs(Cm zSF#rGz!=C^%Tq&N-5Tv6ol^f$_dw&;exq(j`R_j)a?`UN-{=|j8AR5Uk|`bi@f(~| z61}us9L4L;?&7edOH{|hcE=2jDF~YxxLsxPm?YiJX@D-;(>1onKh^817S@J01-B$N z#{E^4^(i`2X7Q5YL(Xt z*=hD$;4He_egsvKLdtb`9ep&-H3>SuJD)=g`U-X?4-r;LXS5;r~Qnp_)LcZYjWZ}ak+YYU7gfZ2=*^z+aPVvyqp(8lTM z*&H@GEKa(zE!>4 zN;vir4;|UaH1v(rm%T}z=uZv*HwuY-6t+09uPV}0;=WBbNA!~Sgmax^;GWF$2=&noJ~J>CHf0MdjwwJB5AnPW|}t_2#!vxhHEL z=zkFX05ck79;d%!SphZ3`iI>}c$_dR+}r!E#9uU8+N2oc(JYS^Ho=kjD9cE_vRmEp zy>WQe;^Hwy{mSiil6FE}rwQqjwhw5Z)7@$Jf`5uzmA8Dp`&4+Fy(g>6{T>G{41OGB z^n2#@T`^DQA-yb~Avnu^1|NZLI;WD|qzuS)@`)vAuzePig^#DiGkrN<*lU?9=x+4c z%!Awx;W+6?*>-7+*j*?U_zBzv0{(t3!1>0?WDaNErO&6%ay~17Ipsd)sJ(Fs;d{Kz(tVO}cdg11 z@HSwq>bBgUn+Ke*$C~=--gG@_d0c<97ON|27}_wUc4{?QDf?U9aHwmyWfhrD-R?q0 zDSa)s)oqfmD&%sQe`sLPaX*vKU2n|$sE@z*01uuUDIP17aM|=UpurL2Vz-96^oYC8 z@#H^_YJ05hJyJkUpq*zGan^D&SPIrR_75H|d@6Y*lenFhwMZ{XW26d6wQw!}CFcP9 zEbAI0ntF@Owo{D1)f3w(t&HX=_0K9QewTfB`=ZJC`C~-cxwdFyymneMv*vbVm|-t< zrF>jadDy*xBkr@rLg_D`8BtFYp2e02>6A(0=WHf?3t|96@u${gE!Jjia%)^wx4lYL zmQZ%I+SHiXaY1cT4^pq!tTSvy@4x}l3*JjqryAv1fI|NGPVp>K z?3N#J10|<;xl9DUK$}B(<$Q!ySXpLo^J1$CJ&2bPTks~7k8X5K0XD(yY=SqEpUZp5 z`@o+r%9Ku&@0Qod9!jQ)jiS@SLf%Q%8JYwrbmZ7in_ugObslY6`&U?2P>}p<^Y^vi zPG;8SMgPrgRW=W;$}gT$71BvMOq|n-bfsCU%@kClGq6qy2 z5xnWl8Neo+URSTK?pV<>tp?;@TyDht&LNDC%IFBJp(;U$~u0p+N9m z-W&M=ANPPWfuw)BO6&F7v(c;7N3UXe&vzlzCH@r-gL#*Bo8k^7Ij1{N`&MhP<(7*L zjI;*Y^ARgD85xbri7Ai~-p>qY_viHD_U2PW1(Iah4Oyb=oNpGK<}cugnMbL4fPqjr zn(S)h^De)}yo#ws|NS14FU(WraB{*5O@HS%a4LG|6M4I7 zNr=EpF$*Jy_@0vUWP{~{-8U(6+=fXmy5^QC4vkf7YSB;EEN+i%Rkl8F-dKOBnp2ro zHLM-P0unJk)P0acA;RX$X&EYq?OE3dulc6s}Ulg$YYZ+rbWPgL0Z1>I8##Hkr`%?!>J^_DHnrW9AKiN&Zp27^* zIckegB0Mgw%j#-(V4oAH`mql`^%|+*P?H~)y`~R3%eKR1@5w?ZNJaO1i8%Kx~_JO?VbxGfd+5%l4&;1G;ka5gQK@|Jv#3hh?gc>7TM zep|g=g&lSzIn*v*vp3`epQcY{++n7%Z*v#(J%l$z^&*upnOn;gFguvrnccJ<;8DE5 z_QrHkr_wC#_}a9kI=5&+esunp{FAxj!m3JY{fv^5?~bgb@{e6z7Q1b{b%2XM-(`G_ zqnxMieAP&ghl1-YzF?*z#j}q`iu-59XDNes03J#0q!dGEoR#PZ^D3>bqrG`yV|Vj` zj^&+Gn@|4rtGHP)qo%$oyYof2O2^Y3(|H;8S)UO;G$Csnx17IN2)Me*b7`((m-kQK zJwBfmSH+Knut+PA@f*1DoHlrja}UOIoFSGH>#+pePfNLVy8X9pu>CStP(HryXW^<0>{I@4zt&>?4+COQ7|vSXIISSDNL)#y$W&SS@kDwJa1+dgx= z9(Y}Ke=q1opFlh8n!4&J*Ga&hsaw^4v)<=#qpObhH+`#Bm9Hv#RKzMvt)9@B*}AL! zRmX!aVYk4TfUTj<;Or4Zil$5QrD1M86-T`S{QUz*`JMFasYsN^E0()$6oUde_XWcN z(uoZGAel#)&@|f#>owaJml|-|J{owcBj6mKr;R~7rWv^=~pIe*aa_~MIIi<|Cu1Zt$Z9mYz_F)W6X%6Tg;l0(X$UWMLq zK5?o={y9MlgSP}Yyw|&XxkXCDL`}R#&KVX5{^8P7PTF6))YY}tX_oocG8@}2vE8?w zz@`J6ssF%J;p6mk%q(_1H<|xR*eyyF?&S%%pSkn6kC-ybByyZXjf^x&y05m)Y>2Mx zTR1TPZtkd`WnbQ?Vp?%u_{bKD+qYS-@WfKX&I_FoYf!pFWAYx|B;ZUZp z+53)PbifqVBTuJ`|6t0uGoyN@IuhEHQ{OhdLcL$fufATiKX-EWwycTYmS!}38vS`$-s!)u z8*|Eg71Wd#sy)F6yrGg!3a&ECV~w&!btd$3Ttv_1J-883ff+tNiW=SvdXfuAbkG>9 zd#kweNKsVbw4y1+--|6phyG0Z-M=8dm|o@8=-C-=7>0Zwt|ktCco}1NG1bR%>n<0_y(8w zp7Ffv@yO$cR}bGO-c#Hq;_*yh9MK+Wz0kT|eXrZI^M4IJD|;5}i!PT+s~$8=>^x-f zwY^3Bkp!g9(G#Mx28y)utsWm0XT+m8p{x+@a={+Kb)JGPWgLaCQbqx*NGnn5SMyqVgM?D)3AeYh&EkbFteeM=6+M(B zORq{UN>)e?iU#t%xh?EVtTfg)mJjPT{Ut?7W}>y$OU7W`uTZ56xzSyfn=wX3zbpBnbrJIH@#<$|Nh|q!MOpeyek#H zazMUa<|lb0((+-BAN&JYN*)3S(hf2A^B#+L%2MQSV3h-Pmv^uXVy6L%m>?jYtK~)YlQVj8s~Oob-Qav zcZV6Wu!T&eTef#ZaAHh-kH_($ag8zSB1?i=y}K1lWvFlo{T#l*w#@zVt7>>Q-51$)J+ZqJIl!<$^!QR?--gdaOwrsiN_lJ=TY(#rE@S zQ~8I~Mqcv&raUBA?VvV#7V>`Ys7z^`*Id~6sv}r;(%5O}Z8~5|M_PeML7*2Bl>GtE2OR(A1BBb_hVXGNh3FJE!U(y$L9cl?um zdU<&&jWST2Et)0-+3`@N!w;Qcdu*CvEg-hiZqoA^bY8S9-6PNaga=1u3A`Pe5dJ)3 zU1U{w-(b{7qg>+gS>8vykGG0-i5^caB^%KXHXrLb%NI+H{Uv$~?P~)J?V8HAJhpqgTMEBazi6FhScFfYWwGxIkGhq5{84aZC*7W^u7}D(+f-ZKW^>A%hs^WUj<)3X zbJ}0_Mbuhut|-sdjjH&yl4)*AH>!J#uP!7fWJ7?visAjt{kn9W*i9bbRjJl^;2 z%a@l~IYlYj$=q*&T|GYa>4+Wg%ao>y&xk5`gTUVQ5te30AimtNzwY;M=Z~_V+e@R` z5|Q7`DEVIh+NjM5$+3yP)x0-gF|o<{hP;ivwC%SIv92>-)M>O6^sspnF^F$frA5WY zzKFsjc7`|kkCfeGJ%cmp#~E~1GcQ|4_q^x*)rTIiEBJEA@St^py#o*X`71{W3*eJv zp>>k}Y}d}Nt6fg*7HbgM3S9vkNfUkuO}8X*Tdppa&;A?$&hoYsUx_{-z>d7r^-3rtVYULbMObT9> zAndh0a)WrT<6jNXmR_G(QBpLmytHMoWipXRD`uY)%B5P5u%HQH?x9b7w|l2~{ZUql zX22Ifz{U1_1b5Je3fFlZ2)Y@uJC>5z9oG@k%k!4_KjvuimvORYuo~31Xe)I0jh)u% zSh`~j@PXD&52OYFS$LKW(++R;EeC(evtE3;{Rw%IfA8oG?~J`5ZTyA>L&omv)iNSt z&Zj9CqF`)PtykW@9QOCXU(MfaFQ+__fAB2Ms(;n&*Nk?VDX#+LgQ*ioPjnylIQEc# zo>bvXtr?v@^|AQLqtEk8`!|NSj_Mq18c*uzHSBeaF#0}LzG%C0Pr$-}I`IkoLl@Mz zuZmT4FMC?%_umz*zZ`PTeR;QULl73ZJ5k*mi|OzCRd!0)EZELI4Xtz35DO`bs6Szt z_e(a@v(dEw(fRpiOh5I4F7rFLtZDRjPEmN?%

;~ZwDl&TT=L#8K=4A|`!4qxq>@DqRf z`i}OA{makNvgSlhiQSEURQz7nE{bNqp~>NWOe?oeFqJEH-qj_y{nHd%<6rzRw<2QTU08d2c>f|tac4xv~SQizTN4#O{4vjp>`lRdU6i#(6} z2z-~So_Ic&{}gsGXF8XfMH*#it9q0%6TJ)dWmig8Do=Q_6nBK<7#8%4=0)?%`ip;W zlvY_`yvFUd+9XJWFn!9O*yp=%oC9D~FGr-FJat;81!}&8N%}>8&4Me$u2* zc`JVZF6Vx$7iM-eVD7{bcCIQj@!25u!2L-?1jR4NO-M;Pg6Bi&G46226ZirA#HF+xBsQ7HssHIb&{5c=tV%BJSLNQ;ADPK^x_gFT zJ*3HZM;sb8Gr3>HTzP-i7v};iu6fe^9teI_#tAP@J?&q&-KPG*!eHi!l z)1%?H898OtE5im%`Zh$EGIC1VvWe3^Mg_8^#2gw5N`0h=k^qtQ~vYA&?l-VA+J_{3;6@r?Kb?6>F4!7zjB`w zZW{$roUe>jN+({24!3&fi#7gTx7(I946glHH?R4G_6UBTf57)t?C<_P{+ThRVpvUL zj{haeZR#-7%$B;kF)cNQE~k;bQg&P=3HuOL6WJ&1wSS#*pzM}_%E9R;D7%RT=rW`k zZN@-6mAnY`VJzWg36Ba3Iji6($KGyv{rzH9PDr}X%hbp5cL&@YcIoB|Uu{&<7I-%gNI9>`UfVCACWOhHokSx;b?_NG&R!@(EOk>txDYH zj%;I(bO(c`Me`DKdaC00hc&3ixQ`V-;@Mf(ARBhi*4KW+w#oL{egnPin(yPddHiDT zd*%#EjN`5GaqIU|#*bqkdOjU;^T63#C#<)e^{F8*CjFSYYuua#4>o;WpE6b@TcI0J zJ~RK(k7*g_G8*1~%y?EZP_qdwKz9=JoUd5!KADL#hm0I*9Q3A7aKfh0tHLMUmR$Aw z-!HmfHhlP!B`CbqIFRs{x%*8B`s(+>`?F$%^a@7~6<}{I5~E%}!Z=Yoqt(zrZSho( zHdySxz;>Y{=xNf2LHmae92(y*E)Or?&a&5zu)Y}2+0dc`S2kIL7-JG1Y6DNkSi+V4Z)pVH1{ z$Y%5?z5|@ff9pRvQ8%FPz>Wc#eIF$TN8FUWGp#DVo1hkByUvAh+56 zmcW1fJA6JUd9uUowNMQnWt*ZOtL?2X(f035YvXlJ)Lt?5$F5TSWh=sxdV3H4IGi^; zs&}eyJ|`8EtMAqwt>!ev8+X8;WTSi!M3g1Y>$AOARKnQE-~MUJ-4X`-A$SJ6VDi@V z?j+Rz8BU_{&{lXF)4-t%ma#-Yo`uoYU6lQ8?1z}=wrko$NxN+4I%@ibES%;xw(;_$dha3T-BqKD0t>41&iyEOyXM{h@jVXMa}Hi6^0B)0Zkx0CjTQx1VNP7 zhMTpV0!rrPw>KUwxOV&yxJ!D&-hMQ~Ia)dFpTUQw2Cv?~vUqrmQs$W2>D_v$rJ`X$ z!JhXWZ&W|LE92`o*IuccpuPhqM`VmxIh{8xV#1^`*M`Q$FBZ(}vgd98_~`w+%#j7d zi)%_>Hbx-Nd3o+>%D(OcJZ}Wt3(t?x1UGr^by{KV#*{kBn%1KQFHQ&qwi5;|L`ZB7Q(--Nl@u>+c0dlpUw?1jUIPaL| zGAC~Yb9ImZdYAS+Kd5NZrK#*e>-`!b&=}HT?O=7kZ<d7juPGG-`8y%Cli!f9=GqUi>=A+ct=zS5`8{}Kj`6^bg5@nMAa%Z7>nr>LvwuT86XgOASr$$uMSbe*`yR+VbiF<@U=+(1d;eZhX>U!n}-iG_F#3T%0XgEjcZ9bDQr*NRx#yr+{f@b+b&21$0mPaC#ZDn-?rPDz->A%T4b8 z^XTOvmWN9R3u>8zX+41t_!fJo(X1=cjn@k{+cJ-O?O`n~3~x~na`v8jAh z&W?9gPlvtOkpA)yuf2l``VEWT9=kVYTXd%1WWhtqXDrPcs=uUp*saxMbP5~U^(hT^ zYCCEtw=J?%0$R>|<<6jK5iJoDLhq|aNfYQIM^F1~TZ#oV1{#@`LB^Ygo8~$887PQ_ z0CkN0q6l}3lJ6z)`sJCTEb_SEaYQlHZM8I7=JHZWeWf3SF9n-L0n#F>vGQ~T$ZrLG;L$ICO!qhXYa9`Rv%3<<03fVSUe5_Y3 zk4;9yE7Mt1g?^hM)IJUUYiTkU8tSZkT#G#I9$aUt7FFG@Xev8Xl2i^?N4E8{+;O@4 z$JnBgNn{_;=;9n}m?NoaP$8`m9_p+#ZP6~(uyj3*<1GoO9_Ipn)Na;Nb`33tnn}@6 z4^s`arHm4IDdQ%yl~v15V!Q^qj)mAre6q6uxAyG4VsUJku!($fh}cq)7@#~0Dq^K^A0eKlICK{)ULVmEK*<-S{cTiPF-6`XGLdB z=icT;f6tUHEu2{HR~`0uZT0M`in`q`;T_w$dg=z7ew(tbgB|mTQ+OE?hc)1{h(CBc zGS5c0aE-ropl*UTLz`m^L;C}FX@i-sSv@%c+!(H!o521bEdo4GE_5yehFq?gtZ0^Bb9p7l zxn;Y(mt7WTbFGXcu)9m^oIw3fje!~T4AwKlkgOQGMS1ye|3j^iSF0wK{Q)>z&3_VVV0w&`t>))URcTfQ|fYu?^++2sj3 z(56>gH7ac{eX71uKS_Vs*lt>HIc;8Q5*mv&ztyYMHR@yPCAuT#O3Ns_*rg!u0X8|) zNQ|5U{O5e>d`R9W6Up7qKHvwJmK=a%sL{~~xVcgua+io&WD z6T>a%d}gm>q3k7sHmO4XQ{LZWu~MYS6E71u1!DvoxH~vWydV4#yrtYByvsZlFP9%J zvAFbbp@1eNgqMXq1gm&Fq9*dgml z^Ih{T>vH=ZTR+nW!*_EedWg6VzM!0kE`wGGg4U9?$W4pF@IlkRyHlU0&r~1jl6A{< zS9Ixy?WQZ{!KgdF^Z)%twro?PK1933Rrv$j+}l34&rzpo)^^|1mFiyTRIX>$ra#6H zhIz(YX0|2T{L+$Y&9w}(YaP>phptTB0qPfe1nV%fhLbDU$s<|r%%}8&pqeOj)endE zmbsMuh<%VVhqqajBJblFs{AU8l-`ma758=hR~nfA(fctca;NfF@UIJCp-nJFSRz=- zpCHKMZ{#L%SgeQi`EU_!HgzXBiFoeHYt4sZs4pQC^n-E)?qZJN^yI!_7t>&>KTSnj z58Wb{Ix3N^*kjTc7)b^YRx-z>7ba1Tk`o*~h@SXd#0@hzjv(QdewL}m%i5tXpV9Je zj^5~U;*b_^M+J&l9-HTzt@;VN|8-NkEt*B@f3@dKa`QdQ1N&%ug*^qkKwKc-IMbcC zi5X-D7)s?3Z1kFSuw|fan%&}Jk`V_8e54StkoB8Iux2uI7*u8py^6-5zN6lN4modw zg^Z^zWM4?5GlTgQftKHoFXZp#FW?n%R#D z1;s+6U=M!-pTUpe&SNZQB=ByqcQbHWFm%DW0w|<#Xk+L*X=U_(nWtGKJ&zthsRUA- zVZ=B5l;b60L#Lbm(~UQeHo2hG^3rZH_q9myE!GqE1@=?6Qqyy@zct%DNqt#+)yOrT z)ZH<^u^n@Wkvq0)f^>6mSUsPwvw#1jj=Es??53L z=~6essgsCO$309$v661cJL_xcKAD7;;6~>|=YHTZy_va-vyXm--h*C9RXA%vZ^{^O zfpd-HKd=OP11+MDpnZn=(h=$*)+oN6Wn`Y?Dj91zuUH#l9_1!&Aw8Y8-lf?NpcjxW z#Bb&rm`y*z_`^1_>KPxP^So~6cH}&^kow-4g}gTfyHXw_4R_3blu0xYDKw>1|1#!S zjk;^pPIA4$YIQSz#!eAWHJDuqud%!{Un9@bhuFVc8=NKh1roIcm~Y`lnj6PJf0Ak1$y1&5?o`#By4^Z~*xVSjO!|O99@~ zQb?hb&e2f!IL3-o92mKtGmJLFF^)m9LZMW4o!FnEpanAvXtnq*@Gj*O>gCKOPJsdV zQSc9P*!h~;ilw>~wcU=d@Kq$tat&PJ>`Bt_ao}q-o3hbL!{Wd{_8vqkY_~mv_F_S% zRPZvMV=lpBod?Xn3~W2ifLONLhnP#zel{oWa3z*ff#u{*!vt5CuQ2wL}5Vjr=+Xf&|X znd`g;M4(rJ>BI`a$EB{L{G+dS?ImXteLy$gFj*Fg zo!I`4yi3#6sxT_x*LgzI00{K6P%|la`Ng83TC>$!%wTl81D*uex{v6C4{e|B98JyF z9CnQ0pUp8uhZV!ZDbrw1kpr_-3LAXhFK18BPn5NB`!)k=IlQy3Kao(EtR3gN!e2 zYpLU1KC)0U1PR1TY>`d~@dXly+4g+1p2+T=hW5Ab)ZHiUk{N1GVn4K9yTCS`=B5Y9 zLDbytgRZ_4*YD6weQ2{kXFljWDM)I{)~APdn?{)a>GiU{jo{JHnhl8Mz63| zcO`OjZCi)z2AgJ$60?rDG1>Mh{W}L)Ggqmra9UZJTRE0}fCFo=3 zYKoBY6CX<5?5Lu9U<(NnokRO+IZ0U1bIQJgO&lH?iI>|v^d}V?DGSI&J`0h3hJHXK zJph4NJ;-oUChuuH)Y{iO*zw6U(v@9qVpM}_^J$DB7~0uHtmgI5?*ab6VWtw`AoX;| zPe)Ift(guqP_iv-mwtpIl??^-CzK9-oaHK@u&lu9ZNqH)nC|c@$iw`a$iY^da&0@I z%~+>n2sQ`&Pj}sM9GQ<zzf(!t2s40&A<`TwDZk=^J+<-lX%cy2^ zH*KX$H_W20f}6*e&1CH_%Gl zAMs(lLMVr3<_xQ8gP zJZD@s9=6e38SPvfgV^CpBCY}xC?a$y-h=T6kG4%0Xlx(RN$^DIE71jZ;{Q2MkO{;c z>qy=yV!r)5QwD16JL!GF1K0s)759SfBXpSAN&98(=8Xkn9H$u%2^RPfzU1`e=FzC& zHXdjhi_c_zb)K@!W^QJR?7l!Z@rkTL%v3+qKa6Vj934s9!hB{lkrrqwvVuN=xPc6% z+bBVn6j~%sv4%hs$xs47dN7jME{h>Q&lpNu4c6Jqq0{g~(|X!vKw@5nk0$E$?t)ai z!Wzb2iA*sx;_o@V+HSF^_L-IfKGkv_KSMDSQO-5UM~28y16o{raour@a=}?n$BjaK zAAPuG2g`|l!(mo9E#35g4V?F16Zap-Z{+TBxyzmg5|*MMprYceS}k?dy|r$wRqGyY z#Zk4`s9+w|JpU?aKdcB^n2iRVC zW4Mk!LCf3;z%jubS8Zq(Z>@hi@QE3O)PYz=JiEaCJNO;C7#kNT1O3Q3d@NOgO4(lb zQSL1N6lx!4q_#j-cv3hW-V5ij#@a7KA2?;9Yfu-ot(Bz;ynCMRp^k6J%yNvw`6o+See#I-o|F{!9BK|P@14bD6 zwi9I6h7LJz(KE8!`!rO|g1o7nH3GH57F+}uhT*oS5~q*tB>8w~MNki)W>z`2$;?5@I|0wdMmcYgfAg={ z`mi!lhwl~MPEo-L=o>aOc$Rr02rw_?42T&$ zzz?AoCgm4Cea=dv?u64gx|YXd_Pv= zE+y*tS8azw$M^;y6THECMZCiLL7fPLJc*lf|iH3}+tWb#hk2-I;~# zAp8|El{~=g1Iw5we-W98<{)!9SNamy0(FeS-$S^dCr-6R}%Ly0v9Be^V zEP%BGJw;8$_7d;$B;*%{S+E6?fzydA>x?jQ}QMF0OSv}82bjsRT5_n%R}udzWHgmDkh_sJ1zk!vliUbx3#El00?R^! z=~s7Q=NQLGS8uP2y3V-6KF`C%{Uc_H^|I-a6O>TbyNUj!Q14->70CsOmuMp3YE-wF zOHpBEm9md~q2vYcU*^-#kr zRpsi8y0I0Giv6F{KJPDjUb><+sbz)soaUhpwOzH2G`6%)3);XN?A3zVoOm{u*n!Ps zb!E3P*RanB3qNDm@?;YtFDf5K=PCNqN&i$uTK9WBGZNC`)4EYH&mxK>W#mm( zC$XK76HeAqMsDb=Z-=LcTkV`+SK2e&k<@6<3n$Cj&w11t?JTjkwA*b1TVq>C7~?gW zHM6R=Rph=)ecAQ7s*GqhX-<6}S@EuRQ*%e-{YI7XiuVGVjZY+D+9O$pt{^NTySSIA zpTw(p71JbJPdtLQgBwCNs>Vj<#1FZ=Ew}rhmL6 z*BR%Dq;4~^i6fjU_B!@2yor1R{{(-BpemwETzl;JXkFCn$b4y@ct1ZzSj^u-XR#jf zHnC?jnBh1oH`E^#0JY)Sz&o%Im`?TaC_IxqKl=)UH>i9{<$vv3YtL-^&oo7CRAtoH zeA!#^SMlnXzI#cz$`WHW_~qsY*88mT^XenDn`>?u%z@eECaUKo*!7}l-3i@y-6D;x^{{p|1mni5Zc@;59(IKNGYo+f6q;P~dQEV41Zr*JL*@ z(0tn{QKdKKw{3Nt@s-2Ba2bMq9D?(ic+R^dxGg=PWW_C{NxByiXC*4(97&3FnM^Am z7r9$j$PW_pm;=y(@L+}?`;(nRUdGJuIrt#BF+2dGFgGigvz2$7^MyRbJPaG5e_=i} zm)-@J0;#?^9S2PhG=jQ{iu)z4#d}`3AE>kM-}vdJ_f1aG?FUeS1TXOXyty!*G%0Z`bV*;#T7AVDjp}(?4lGi0pQ4keY z=oNDm8=@m(e~!1sm&X(+3nTH!HIkLwG2|hxpP$Y7fmn#YMEfv)25X=v@Hg;0NXyv5 z{2ptB3IIo_ID9MgbMSh256v!s!F=E8&b{sD%x4W^tyg`pcKv6(^hEJL&*m2vy>F=) z`myG9$-9pqK9(ro9V~+z-x|uzqwGC=FqQ5NdY8f<$R>_h7^ip|Hz;tTp7A=a_~XE*n|aCTmXX zqt;&5Af1}aZR2+QYEQQhw?A}3?qpYz+vl0>jqo0K&-c9cK;BNzBA>_C#dp{HfzEF% z@}>Ke`~w4@DRn^WpB0!xg@a9@^6(H~55!`OV@zbokvXUZi)7LHe|A4wkE`dAg7<<> z!5yJXbVYJpS|y2;q)I-DCJXQJNq#=>PhLECJI6;diCpF&EDkMVoMt?LufYZwfEPe3 zz)7GCtOQ?!^T9LVI}nE$U;}VATpCW9>Es-P9Q=s>`?)zjo!+^Kd#&YSi<9an8u z>wm5CR-fgqWudv!gqXS-UmE5Zta`vut?zGGZfr2-nRc3=(dz8;)++1E_HQ~!dvE7Z z*K!Z!EAeloMulkA9vlpRVzi;X@RzJnlE+@=> zL@p%@iG{2P)>Kv;>mBnveV?CW%!kK866gUq6MPOtgBqX-PyuP+5ojPRMoN(jXc<$< znolUmC+tV`?|#i|;Co0nP2TeGYhTfIHxJmt1}A$sPqg$@A|pdd7Yu@zZ>ZDj7FHPRd+mmE&!lSa}* z-X*7!{mE;@BGy+d3l8J)Obp9I`Y|TKtUIojb0v^sEE3gZm35SXpqHUsl(OJ=S(F2i4tQ2n)PZwK7Oi{d0 zEf^-4z`x9E=f2};*{?}Cp=GjBkns$hA6`Y>r(16l+)tg|?Ni$~x8|F68|=Ck?PP69 z%jK4(Ewft&wA^f-(&E>?(JM^TESYTsYy<3Nj;}jsx)E>C_lX)7b^#h_G{eqViR2=D z^bDGS6=O4)2Wa+o9rg?zhYm%AjF~V4c0m)NJkUV*+sq924Q&i{4QGVez;vJ;mGs)#C%KpSX;?0?D3pW-0gh5;GA%QsK0oKgd;sET_t-gyWeG)e4X4J z`7|aq))bN2((sW@0_ZN|cjz(53gm{zQFDDs-kt7i zof(c>woz71tHu1MX@?Ov{%y$CXX*~1lCiv9?~Haw`_i=@`KPu7W*~J%xh*jzHKinPd$5v7rXBX-Mr%6=1{6x07Wn>hp3LX*H+Kmn|#Zuu_;HhF(`9`8tOUt?}FY%)?tp|QK}MH8p-YQtLf zrDjCe-h$J_NV&1v6w&Ioo$fs1{hMk8OKJAKFJ{Df+&E!x$r0HWd7j)M<4cc7CQ1t= z|B3gAb_nIX61oNG93%mH1UJyFUJQ4JV|2UBa>vLqjxt;|yfsFc&Kj2+lT8OL$E+P4 zgF4@OiUTBYg`r|)^E)M7<+Bv|F(czk6Ec%d_FA1fvoDZZ)w`_Mpp@}FhbJuV@qPDO zaTUr_5o@~SNfrpF@nK#oCxg7s?2p#dZWqPSL64yvxESgWt^hAX+2GxfIAjg)qFA0+ zv=E>aJH zEY=UaWcC*#AUF~^Nl`$zHOy12Q{b|hBE1BmQ|UuFrL=Q&nC62%26|8p{sh-x+qAai z)?`z(4sRK+ovQt@`Ek>>mLIg)+PV6l&2#96obHa9o(y;uIflE3`$mw~WgDGJ79_n+ zUYv3!>Fb_oztvi9e4rO-r)Uxy?pDW_O|Sf;c2DiS%GqW9Pnp%e z+ODdm7M3Nit=c@(e9K-Q><9hLm_i)m3u*4>9)G`leXJw4Am(OlLM#@wPd-x4SFTo` zmi7=_q#f>S2nB2oGJ?H)nfCpy|Cu0Ts)4QhQJdWoqq(5cs0!3int8g7ddi5jmRggY z}J8hh#qloy01@MpO~IFE|HaFNP3VY?+GR(bw3|>Eh;wBAfF(gDpQG$ z@Yb=TiDh)l00%vYY=`*a)j>G8g}NU&7Wl_s;(g^7x!<_d&R!iG+E$o0>#sGxXsoC| zU$dZge0_4m$NC-B{mM_4kF6cvqA{;D7a5-Fzcs(GG5tlrV#JG`!%i~m$U?d^V2E-{ z)I8;%%JDSsQKh^ZvofY!aZ$QJw3a`QbCOm1eOK&)4P+|JJgfxnc=FmSGMhFvsm}E ze`tGSs?lXNoodWh&2Mxx{P`uNCbQaBCsEnHC@WQ!gH?0&3r!xqPPf5$ux%k-xH6em zVZz`zNQ}sdoq~zdB-shcSCV+wkOznSfyq}D{D$uqfI|)rZ(o+9;q5vF}Av}W>e$G+GADdr;XJGjYo|h z{W9&LmQkk9Z3i7M+;f9Jf>VI_&>?UiYpLhe$IK#I*0Ga0oJcL7vF{`Ko|9ax)@3iyQw?$Jv_)&;`+^{cIn-x zy^+2?zAX1r@6%vcHNs4#LiP)=jMvYYlx}1>wB~!I9u~&Fg@RY~kp5%c1n}V@|(Hs~b#jK>K9v!n4O@}XsUk2CFMET%wVQ`P%;yz8! z)t7xU{ImSO`*-=TQ@>GUI1lvD{jTTm&8*#I9#1LymELLFrAz7FmR*ryMM~6{s3Ij( zu_6MC$dRw`7+7)`<$C|@m`#Z_vWmQTeRps1p?VHe|>Cn$^j7>0)asP%keq? zm7@>{3_^w^Z9A~-#(&I51-hrL<8UWq=(2j9<`;#vE4?+T>1n%g*xQh3%mXtmpG>Jn zK=)zlEE38vQnw>#Ib&=(*lAQhekyz5_+T^CIovFjZ;h(w}wTfC-wWM`sY9gS12o019#oIq;b$na3=l-XsiS-=aE!d}xr1 zV`rFGgToW$hHed2U8fR_x2qyXw~QWC#wa%rs+!viB(>pI6mcPI1)d@CA(*Wy9^b6hq- zM_54`B-tr+#u~0e@R0kEiDLZ5e9uyH+Bln7an$L=X537a6V3r{px+TU5D>LK{IdbguXwT5CUQ$%M>x)ItpC^^)bfp-6aZEzn9MZ|Y zsb`GSeviGjQ#Gh`*iHLhL%8y=oH*1yVpFB54~=EWJ;yx2g}`dk_l%>gKiScozd89H zC%6QjFaH&93uhPYcfu6jMI(zrNr==Y$`q6d>xFsZSE7E=ZQ%vp36C&(FTn#Fi;rd? z`DaBG(H_A%uADWSv7cT|3CH~kW7$&lYI$*2Oe3R;^zpzOR*6?Jy>MOry{AQuB(MY( zi{9>fV84QH6`u{A8-f%aB)&!5aXqtCs?PV1bx1nz4EKyxD%^t~hf?*Sut&6Me3XbJ zej{c`^Q9C|H#eA-NS{N?Ch;(-@MG>=xQo;xi19J{;r(9uo%2r!hzw*+j|-&w{wqAm zIDlV?B4VBrf2S2P8(7mg*Et6`FPU`O8Dcu>gIj7TSD)`zmRp{i{{Hi?3r`47s{hI< z!hW9DJ(kR{NeahabrDUlzm{ z-Ys?4Lxz6?XSp;}``~emA=$?HpJvwjsW|oI3&;#>v8t{stNBB1YvZHFuDTc1q{dZ) z+s&IXry0Q>$AqC?yM1o?6o?Z%b~8>=_YwyYOh>h?+`i9c2i#Pn$3;=O_>reW>>=JE zxFCoS?G?pxX^fZHL_`*HE1`xK%u;jQ9wxSf-bdPv*$Dg1cEdm)Uf-Dfa?d?xPTJ+c zJFc?k;T}f~6k+-7V$f@X(_-%|eloXQCh>}74#Rh8EMJ&)Y4w)Y2W`@(y|wCw{;uP? zTfjnkl6bD4An0?@HQ#mOWt<&!7bTidhs<$=m=4=!x%y#u@e zobYllG-^$`W^WSIBJDpw2Wn#9>oIKIMU#50T){3lX{AAj0y@1^`xtUC-U zAs?3H*zG(E>4GeSy@xMBKcji_(?!WV7-bx3bzRqeXp$77F1^d#c!B@$S>0TfpLV6P z%;IF2L$=R6J=0@p@>*m!(6Y}@a;W}=esO@~mA1xV8zqa4+$Bhb%IS3>-GO!@} zyZQQA%Aikz$8-yCyH7~HOc2>ZZxJ|Sr{9JEYKx;sOU!$Z{5KsRDv&8kA z^{6?;bPQCP*fzUE3%!a~VIxrqu+4U=IFYguK@yP;i8@1BQn$CEB<}K0gJSgT}lq>?Qa#xZhNSS!Yo|;;?X>5AdT)Ygq`+ zF}~2RSNONEUd*_0@O`0I_b8rcj#Z?kHaTq<(yc{=U!dS zrjmxIe}5G8$LN=ipOD+e8cb_o^U3|5Uqau`Nt*X`?muB%egf*Q>o3?W+&QL2@LKv= z*hF59Jxd5@7kP)vE=BoA-w4_*w2)39B(6}$Ye*dmPN3ueMpR9?z-E21ddBG4j>LD` zym#5-S1&#)E(L}GB2xrXG4?eegSy0fNx<3QpTkFGUR)w{>G%(=H%rTl!mBg;!xbBP z*L`*Lrpd4B+93t3)M=!s2QlYjF%dTftMQFUIzE}^%MBK>1ig5p{q$rjIM*$wypXnr zCq`|ae%`Bt<4xfa4&d)md)U3K2-+#sbQ5}1(D!5eiiUsQU;K-3$M;6{gXymicLVs3 z(xX1tXfg02@)a@FZy<14SV8zHA0l;^GhvL}__{2udQHz<1z`y6s_VeFFZx0pf`Kvw zoijJEcy{gli{Ycv6WsZ{a-X9ip^^WFNW_n^`=+i>f`$OoHuoAr5?kq!Mb}{K5a$tj znEf=ZAlVxtMeyqI=j~^e>%aQcB$m(~l;sF=cIJgY%k1lhsW|1#A_Nb8Q`8q&5wa~Gg))_Gh~uYq;@yQ6sEsu2$?#C6cRRJtUx^Egp=p4Lu{ag3$uJT`$vj$$WW(z z{CwX?!~4>X$CNwY<{rzhEZW(S?1g073~@3HyRignmdOXn;LU63Nwu= z*h&JSM(0KM9vI&Jt?h-`Ffpv{S4SD59h2x0`Z@jtH;XzC_}-))jsG(GSy9Y=dEiCk z^Zc5Jy-k{QZT5)9a2Qj>%JY32N}6{%=Fh0*!STHP@OP@({+~z3$7L$h7$D!!lhrh% z>Tt#Pm5kb<&db`vE*yF~c`pYL`FgGQ{S;mm^Yh}CSjGI@h${g*g$kyH<{~7a;H6qyQQSG8C2V&#T)j3M;0{k5u07jnxcH4ycXt&04tw zfk>lYlhg#C30XBgDA*zGqLewttqWiVcrzpm3cCIQyGC4JFEy{Pc=s;Zg?9;?dM4S8^xrhnUUD_+= zL+*Bt2ZfBJ!*8ItXitn0hb2A0-vmBPRT)*P=%Mbu!olRxtI9QFy^4<`{1L_IHth-X zzs@HB7XOy^jCp}s&FEx?u#Yj<(!J>`sA%F^%n3vVVgQkVcH&->sB{WrCez9(@_5aD z$+%9NMpfaufJE3O2z@Hk$k!L>wrFpRFCSBlr7O$E^h&d4kG{-sdBOq8Er4~E<*E6S zrO32tvfAL*pV#ly9n{qtzA-vXU(G_xu!(6bHl~~3*;YF5LDP_@Fwy7>h|Tb)uzz4) zFaVg2iow+2T5wWa94;2S6n~Mto)%40(aiL6)?#)RvzF1r^kl{{a~PW#m#FcCLhO1> z6si#J?@G2Mncf8#Rd&TJuWReSn2|hwa9+VMft$s7%B;_(8w|JO%au@o+rs9y}ho5%&W* zpLUe7i)mzDV!ouyX`g5y{SNa8tAKfnK0slS50NgC@`%BN?YPyL7UaKhG9=XzZTGVy zrh@EF%de&Zqs-VjQDqS5lQoR-a-~5zIp!MqIvgO+7Ry4XtStlq5-!M+k%P&{^!!$WEO}SZ(0S; z1u&R4x0fGkt!4x{RFiS^#O&$WMY26hTsn1 z>Trp82ceU6jgmkup>6x`IZn`PC_{wHI4af$BSZNjy%4=XFd_+Y3sC|*gqOgia1ww5 zuER@V6ObO~0$VTmc%onDrTtE$);!iGXw{mv8nwDz?WK`x2)cQCAA@uPIkC*JT+h{K z>mv;fhNOwq$s(fzj5B*%4qBkrNZW&{WLGxiJ+vEo4LT3n0C@rFhg3p)U;DX|Nb&#x literal 0 HcmV?d00001 diff --git a/_static/kaldi-align/i.wav b/_static/kaldi-align/i.wav new file mode 100644 index 0000000000000000000000000000000000000000..9db292a47fd5f6463143bffda2c8426670d311bf GIT binary patch literal 688 zcmV;h0#E%?Nk&Gf0ssJ4K~_a(ZFC?I000010097iJ^%m!eE#ODm;6&mr@-6&B{IUDu{)X{0(y_Wn z#LmvF$5FZdt%jkOk%fr?fQyA2n+L+h-yHo94P^~N{TcQn`W66o21*Qb6LJvi0@vyb z&6ct|t_Z$m)ZXV7`qu?BB>ye6_pW+5cLZ}1lb9{5_cKI9-AR& z8TJY>0|*9Q6cZ+9GrcskEdb0)YS1^~vhvqF!5)GNi1!y4E4_o5k@D8wVC4{iHm^Wgg*7G^FTJiIuZEU_BM3UUL- z0_p`L5G)}XEW#?EAMzNh7MdDLBmFUdK>bH|L8UXeB<~)S9$q26CSWL&DlR6YAKV;{ zATlRFDYz|>F`zG|C>kO9AZ#OtBh?`x9*!0i3KaRF>__Zk`tAz`6c`Uo0POQ8@kIOR z58)hu98MH+4XFYd^dIdH=9l5#*ca2K+0O6S1=RP9(TTUD!T8=B`>X_-@krKy$Y8#b zsJ4&JgD;97pzW^vu%ojYwVJc7ul%w#%T?E?+QHw~;-=py*#+fl;G@$J)MMAg*+$;x W?IG@;?A`L+_s0CS{#pH$0q+HqWIqZ3 literal 0 HcmV?d00001 diff --git a/_static/kaldi-align/me.wav b/_static/kaldi-align/me.wav new file mode 100644 index 0000000000000000000000000000000000000000..e4f16f17c2a1bee24329276e8202e99aa010a976 GIT binary patch literal 2620 zcmV-C3d8kMNk&FA3IG6CK~_a(ZFC?I000010097iJ^%m!eEoYuNk$YyZgiT%SF=8*C*Wux3F`}w4c`ud5jqqu6$2K97Ze)N8!sKn9ljka9?KrrAN(PeBXK2CCzvV7 zE1fR=GDJ5WJD)t$J=H#IKo3IsL(oLXL<~f+LajlHKyW^yIyyG)F}W;9C*vWy9OV`@ z4nP(p*vQPz!92LauUDycqhp}Tpl_jzpW2%Jmv5K>o9mitno6C1qqVA% zu)Vf=zT(Gx&kWV7*@NFC=FaV5^jP`G{g46K1&0a>4q*^$5%>~V6%`kK7l9a{8uT39 z9g7{h9Nru=9!Vc<9|0gAA+{rOCfO;qIvO`pGCnL8CUhWE8|V~Q4U_~i``+?+>ObHh)!)gczeu+RuvDoTrG=*V zr`D#}poW~>o28yxpX;8op;)FvtZA_%x7xm1$Xw7#)&<*e->&5k?o0M#``G>#0%8V$ z3ltB85lR!Y6p0pt8O$469FQLVB6cNAB}^lMApERQabGDSE-J?21IL{vv- zO5aQtPU}uIQGQhYR@YU>P&P|%NTf#SLoq*+IcPQ4F{Lc1BNZ9W4rB$6`l{{W;M~DUMo-(=A#kRzv$HLDF+2r01;cw~p`S}Si z5?B)^3_1s51XBYR1Xlc1G0c-^_35o{Y0ABy+2R|44 zCLS-eFn=ztEa5QQITS}JQ&d-JQ}<0ZOg>EvPnS+APNq-SP$N&7NCZ8IG)^(IF}gBl zFk2~D9+VOl3MT~J{Fw3x=%3xO)1$_Dvd*6vltz=NlaZF!p**Yir!teAgvXOvy!qXB z;WEh%yR5_U+NSJ)?;G?*{pkoO3P%C$^mFy)|Bwt34G{>;07Lkg@N(^!^)&>I42TD( z_(ARg^4I?W3vv$03-SzA6UZRQDVZzkDKarkKoCyqQMgWzNzO=$PpwzPTZ36$REbij zQA1L;PKZjELyAJRL8?DXHoz;@A($Rt9j+K%4*&v|^Z@F8;8@oY%ip>RsF<7WmT8s} zl;ox>tu&||jq z{|ftI_Eq;b`%ne63dI4r^|kGe@n`?B2$cxu1CRku1gj63AT=zHE>kUaGp0b`NmNb- zP=ip9R9{<>Sz%SpQnFQ{TmxOPR>MpnMgc@_MlVI%Kt(o*EN>)7Ak7+)5~T_D0G;>T z>rdR+&B(zzwJ@tUpO=^xk4ud^9K1-|M&%` z5-lMPBa0*lC)P5cKoU*bP$p5(Ps3AkR|Qx6S*c%;VFF$>Rg_M_P&rn^Q_M`kL)tv9 zH6Sp^EA1xF9aR+^3q$@@@+s-Z-yPHc!pO1nqd}g6nNO8Jt+%gLopyuIh*G$eY0`UvfRFxB){E`1+21*lg7e*FT8Y?LXIy^)GN$^MmOY2a=So2x!TDV^SU!z^< zSDjR?S$tm^TMbbqNqR;_L(DwGHfS&;Cd3#?5AO&P0f+TE=8V=y$WpjptSzNmouHEo zrz)v7nRkHGh1IYq-00FawhN`WwYK4#_e1d}?XTm6i6bmHP1ejK5aV5 zJeEj$RUKFiR`gQGPO9_h(0;;+*9F><0lE z4Mq#z2*(I44xtKX0!;(K3H<}a0(ktZ^Xl!>?$h^){#Ex^=!o9H=~Mj>|Elyb_q7G! z3nvXr63rfRE$}vAH>))PIaNf6PXSaMQVLHZO^{LdR995ZRAg0wPyk89M^{I`Lj5}; zH#IYKDW)7X6r2!p3Ap-`>95{0*3QQ(xRR@pqve`&w9v8-mjQqjjAXnC+zH0csQRLD zzh>v!^WWxL;ke|`?ra4h6OIlx2uTQC5q%I82n7os5H|@o2PFab_pJ2A_bC8T09y4~ z=tScP@jU`S{0;A&^)?3H2z3cB5NjMtG_C6OCu6;BZ`2Ho{@=pj_6z+lINkqHnAm)@1R~>xSf;;Iior_~Hv$5`qku1k(zG5+n`02ICDg5BLWQ z0y_G8^NIC6`d|Kp`ONC_;Pd1<_|*SS@&D|+`5Xl71IY<~7MLTVC`2g~E>kp)Keb36 zNV7+vN03HBN+3_=PD@PiN{&eHLX|>wMesr9HPtTNEb=FH9i9^b3?KtY_&Dr8;*w&)=Az$s;(hJV19=e@5F!Tu z1Y-<2495lp4A&3|2>Afw_|o$c^(6Sd{Qme(>Vn>F-*NC^{e|$?=m7Cq{NVmx0|^hq z8vq||AMhe7EH^l&K+r(gK7>F8LEc0ONry?7Md(9BLg776JHbAeJ~A`DD(fb~BQqLr z67>wX0oL>y=Re*a*#OU`zf7m-@ap|Z z@rLM&>#p^|{H+4=41yPI7Yi6^9=0ktHyS$xJC-=)iu!yE>smjKaykVUbjINwI(%R-2 z$GNGzt4q)??>O_r>v88X>89`q2m25o5uXQv1|$vH3YP@a42Tl63f%yv_to_P`u6-s e0a^MO=^Wi#;$ilm0zLNN>VWGT_G1C$3hWWasoXOF literal 0 HcmV?d00001 diff --git a/_static/kaldi-align/moment.wav b/_static/kaldi-align/moment.wav new file mode 100644 index 0000000000000000000000000000000000000000..eb60e44fe71121dd2d49a376af41c77747acf350 GIT binary patch literal 9702 zcmW-G2Urx>_xAMdja^{ry@-H_fPi9GL}H77gGMn?>|HciqQnql!QOjCg9MRa!(J(Z zC`D8Rr1!qCeaijr?|beuJ6rC|xpU5Y&ikIbKSoWNQtN>rG2?%lynNjjXE}l(C>*=T zz&E=P1ViM=(#2aAKY?@jPU-eb?KHOTHX>^`%N&)jvQWNRxh z`1x4PjKzCvBWKtt&iEdI@H-)IW#za zbF{a&R3Eo?vhq?bRE(9b7P$+Ws7Nve=V4zsHJxPGtG%vS+N|#k7XRo2=Jy#J z_kaIdW&3U9w|}eut>4%BtY@CCk)Dg|1Wl3#=`HCxnL_R%ua*`_u1hw{vMmNIcdIwr z1v{0v{O3HvF~jzQYMwNXvS7~-x_7s?OlVX#OmAU&?wJ?xI+aaMA%2!&TgJMNoiO^} z(EY>XJX)>p3jYH#eM?Vy>x@RUskSAh{YBTp0n!|V)Z=5R)x2lCcVq#w$M~o(w9Qz( zs$}DvLl0eV``utKeY})@OYme&Sz*J_!D-k&n+HSdg0YYdVcFy9G0r|i6jjtRe1h?K zgInqT;@Z-yr4v5r%71Ri?Oie0s_y}`AXL$-_(6V5c1zi=USNC3{s(8HSCQZPVQc;0 z_;wG;bBk6l6g;Q@=sVq*RKb6Ly};@n_P($rwJNzC=nqr5)|H;0L*|Y@HZ^$a=c&^t z{T80+>*sV))k8@P%R3!f!W&~7vYHaw7ip4AJBU%T^>%LVwce#eqlZ5Bu6EgBGfm1O ze`|f(fBn9$%(>w8)8*My(w1H>I3+)ld$H(_)BF9EE!|5%ms3Hg=j7@s%=8tDZvR?5 zQS5qN@weO;^wh*Y`}QdRW!m$$Y~o?#N1rDDc460C`n3GH+F(6Nm1^tZGQ~a8N#n4~ zJ;nF+&=U7+j$<8)Y$i%v={KEg>S8~u^ZOsQ-79-M@pVhSU1?Us1jB9NNA(Qv?ocYy zZH8<{=k#IIr%kO4Z}m>HKdJ~KrGv6|&*tBn-I}&FJNEdPXHt1mm5ttW|A=WLOM?Fm z`eVdSzw6H9ENaOx%-D{ zVKH;(;c=~-9e2gfO&by^8X>-}8(tWBCI1YUT5_%NbnN-g$D^v&G%jc_GUcjoxSVjD zZ}-S0b4b6(0f#D^*KV4j@jgZ;U>onW+NsRq3iGwsrg>CNVPRg*)_dsFJNcX6$9`$( z$e~_2^bA#m^-LW$A6t<0lh3TJvJ8>s+h6OY`5zb4-~wH^6DD1L$t= zKYzV!@enWRsoV>KJZq-w7Zm&o)*RpV>#pw$i~VlPypYB1agWPS#qW(c+;Bvk5^$6h3fwW-`^TC&m!pHH&YLtpV$x8FjaWWRkbx}I zj?kC~#tdH8PSHK5Q2X?R4yL62AV z2{sLmn46bVlzoCjhs$^SO)?F4Q8T9XP30d2hjNZQ5IpIA{`j@5WK&Bbo2Sq@`UcdF zIWm<$%`NiP6y4Z}V1d_Cr;Rp;Wd7s>W-X^gp3=v4N&30?NQJ|=hm>%3?7cSoj*&OSc% z`qs}6FXaASa-z4^qCDW#gp;#s7w_G?E+Kj4?uj>tp0%t%{_k7KJ87vr&Z#PGGjD@LNDj)uJoN*MBw+f|omE)(rDm7GPrinaVCjo=~31M}U% zjqQ8CZTcwqu<%1uVQ|5ek5j+X-HqlD-eH^UArC_wMpuqkO=+2;nG_I#1Xm4x;+n3W zD#@WLkmvL!gTFZpki;2bx1zz;&tvH@mylWEv&TK0ba&F>vG+r72kLy5x~x;(qcWK( z`jXx?Ez|0ywZp$JsZOg5sZf+q@5twMS^8@+XVxB$IHJFrkbOUI{?{U-#_CY;tH|~_ zdB5bYYFTYRCn8|H`W(-!`QgL$6l7rl(z@uh}*1Osx#52V^(>u>)f$b_w7sXJ~CM?GMaImNEMHk-kd)?)lkyRT% zRTr*()s$0}_4>x-3)++0&dg6^9y}?GubyE@wjlk+j`x^xZGL*(##LJvC5$)uMB0hP zQQdyUdvnBh4`(j9?ssLu?drEFpSbT)eF0RO8gqH|#`LNmBPRo&R?Er4=jQ#@KRm;4zx=l{ zZSSR)OCalWA^mMtYn7Q%I(aSee-&_UcyYkap>n5cxsE5mx3KlPJdO2WnkgNKkU7Xx zqFRtZ8JMkxeY&Lsj_uRxa%-CFI-8KD{Atjz1X z{bS`8aWsju$Bk2sE6f3`3tGP?tELcYfC1ADkQPZ`xh4x-2^+c*PqO-j|e#Z3P{o5=Einl;ADe0D@RX zd${e7+COWE?|)P^e2w^?-{vv6kM1L0E0#K*^$Hrg!!K~yg<hYt&E7@p*B=l#&xV7p1R zTylnpU_|;qG~;{Fw)Vz@4RH-f-REk$GV}AQ(gTI$8@s1}-d&TfN^MU6H9PIu+`Lm? zUbosA6NK5e=e^DasVDqAc~fYdpS932)A@3t7p z@8h-`-u54E&uUQB-l!2)$5$S!jH-TH=hu)|7hLzP?qqFx<-M}P_tkk=$+`8! z`|Z4srb?&AN1fLglklZdt)A*p6d2@R;(E-^?3!WU#s6(!VfVSNuhplEp5!k3F!146 z0abYB)7koKErxCnZ4`4ARS*$8AKqHN4=DVu42EKPjNb&Mmv}aHWl58 z$(VjUPw$|Asfp||bk4 zD&Mz5#&}$Hj&}UjZoOJ*X{~y$+GFWtHP!N{)ns*$O{R6PRjT!F>x-5-7QZW&DIUtb zq&i`nV2)rsUqaTP@!%X6#s-;_^+s*G?uIUSAino|_rmV@jt@<YaaY02x6<76g$GNLKfnGS)6&KjNyz4%)vc*nCMRlU&hH= zPx?z~@^AN^+f>zKF5J8_ZUyG@1LOO|}eul%F>R%24fiLSMstNX4R za_C;;B*Q`TB^ouz2h5uL1J8P0yU;GzUSr=b%`WX_!x%G8z;#EWi*+zv4 zZi_LQP(Dd9OQ}_@Q-Y|?DS z_Ez@xw!Z2-t9Dh5#VUEPbh!k|M^T!PFZ2@}8t zfa+_l%nmZdR8t1fq>|EJp-*a~$+$f-5F^NblX)kCI z{Uo_7ekMeOyI{_%cnWeXwTR!r-!BN0{9xg0>1vg#c66wAn&*_@sBygSWOBG*3#@)r zjkXw&wTMl8IR%Kt<7sf5#lwk4qLs)cc$5#{SKuSa6$}%fl|GRTlOeJa**f`1 z87E#VDia3hJ4IW{G*Wx!zP@bT>{nxzmwMJd@AFa1Mwya*C^GY?+N_ zk-=rau{XOjt95_<%BuJ;5uayP6qS!F5BTC$^R#YP-HrOE%~#sDwKunJYdg`A)S+xo zZvWObtC#4z(Z4{KZQjoXps7SE|GM~z471p+BrVTdDb>kpQmwPzVdH2QXjfsIZ0F;^ zIec{pb2K?dIQ)WeoH}ug~ zj6G*d_z9*9Z-|b`LX}%pTGchHPV0Q@Yt}%WWy4bg%SOv&tF4xkRGU)^b>U4z#L8wdAlG2JBHAG+&$rE#;-*NB=Pm{BH^DQBa>Bs2!M zpoa4a;TiE}*-wfkV*JSS481T3K5^wGvn@vn*9jQ0-Bkv>2!O zQ9eO7Lb_2>A|}M!VE#`Q-A~GBVkUR5F?^df@0ooYCW+Ddx{via^|sV zx8c1`26u({eRbVCJLk4Lw%WCtn&axt)zhmc){LpQZ{zps2Wt$gx%t#ip;*))+hOgm z-Y&Z-I434#uKX(QA!k6l*k;{hT`0Yn{!won^wM|gkLyIbJYA6PU!9G~k>znGfR36V z`!2VW6)Iw_+%1<&n*=I;5bkKcKJa&+xOaGWMMp~e$Bu-a8Jd3vEC+AtqD@ieBpB(p zrj^VbHin%H2C;+GTK-3YQRE>lk?a=m$Z-5L+DJduN;P$wI|FtD1A_wNYVI(8i61Pk zle<~|qRvuBs{?En+j`sXQ;$}wY!BGIvVEuCqfSvjwwh&OCv6hm=MR#uxD&?1y~!%7 zf$u0jF59FytLT=mlh2c1lnxga^HQm$lqZ>pugzs(rl}LZERC}cv58T;TKih*6}h5#yp}y~K59-ftucj~BbXxdNrPTjsc+ZT z^)+-4>F4QUjXiWPwo+&zyQe5q&Q@_|Gr;!8PKGvS~ zrH>jrA$zqkJGsrsVj_|6C%h(T;b-y>@p1_zx|e&#qG&C)9f{>SID4+$Txyu4{b2wZ z)N0MzUflw7CfmZ*B1$5a%qEl=ijKjv$uvR&+3YbHN%@oMcmS4-G;t~HDRw3(L)M{r zSP~IOU7_M2>+y&^WDQkJW%Fo(8RD*2Dwm89qC9{mv2)B$###Ds{b6G}oxz17M?fMM z&(xYM_059?nlg=kaH?UIIg<529FXte2sfEQ4Sx-+>|4~G*-_Mbqsgu5YU9TCYE8R& z2N#ECP}Ra8CF3QZq|c-aWnX2FWV@s)@df^3svFAy%jju_x0;Ur3EDNrPE#$t1|g~O z!r_t#nNiNkUPy(q`|_)DOW6|1Mp3!Incqw#fiLD5V}|~;cEZ4RP18W9Hbb9cTyKu0 z%jsw~llvRcAQhb9tT>jw*k( z%<=4AkcqkyM<|qE&Rfn?^Zt`9cfjp$T5nKQSgw)Xmxb}&aagwBd%WI)(Q3 z!0Cbe{Y!g3cHCjK#UCAB9e5h@ZpFi@q@OBX2!DRDx z{ctVQf2#M-z7>NxhHK`h^k~M4`wC_u`;g114&T8$B2-HTBpW5Sgd(0legK?e45mQi z8p8tPc~hndHw74@OiAWdv@7Gz`JiXWYUDiDVa9Nfr^?h*Tn!Or5bXaw8>atIBNJ;SEavcl$aHC484pAeL> zSL&cI)ScD47(bel>4VG`E(7tzS}`S|ruM^FR0#S6sRB7va+Un?ynAFUk&FeQEue#2 z$vtEru!$TG2|?eY+pt8OCccpI)O6lzzPE6muvEywW4cf!h~(er&F2MC3kVVZ9t}qU zNag0TTi7$)e$JK4W&{kNufeBIfm$vG`j*Gk(s*oMN1A4AL{&aoU$!M9=D< z8_pVkGq~xWYS(E$Ko;`SEa_j{H?K$BozOYGGrDVh4>uS^Ujf6wcuz_g`X-~^J547hMu|6y zT=^REF>x64L^q*}5qEYzZA&+r*1^8cS3gNNO~*6rhI(zA*`3Ma`oMWK0rp~{6pue% z_zn(x(NDr}{4=~0lrtHMPeP|5Bq9WL>_KK3Z7{R+6_{<=EDE~7RMZBaPTV6#Q4!+b z;$W$VyiLl9y=32{m}I>8mgJD+XHfwE9Cd+8qTH!)Dw*6zd?cbt1(Ab~!FAX+ zJdsEteW(bkm3%-(QSsD9xPAMSh#}PEXmTx4i(kN3;1lq8JQgY!8{833#^dloEDLMI zc4Gn9B&-{Kjx>OkP`%ED=(LAkFJ_Zi6&uM`v9+u()OM~gsw+V?SINoYYbj^oqPcRm zhdsyg*l6Yq?MjpMX!A)^hAG)J!4zfMWMYk(MjYy$-wmS;=k*KpHTvU*Afw2*#}H>Y zY}g9%DT1*+Z1$l^b~0DR#&c<)9%)9Vpcz;ro`px^tB6iwK2eXmLwx1q$MI4;i5Npf z;c3`&Yy*}JtF8d^#ZXL(qL>pl8~q*GgD6llWC&Q7(V1vBQi9YV-N*xkM4zG#7>SL> zj$;{6)5wUG5SfwGL@JOsoIja=fLF@1=cn>-@=bg~po6{d8{T|=IzO1N;xFN6@hjkO zYW^dh6>kp}L&Z@hGK(xHTgl_(Op+#65by8+{5ht>nz1;{gw~?>pe~FGSH%4c_5uUAio8V1pwird{)V#fN-YwKjzOK!SadY{ z7P*L=ht*XA|LcxJmLZ8q0n&@$s2zG5xr{U-Hs}Xvp#XaAe@e9#nS&<6tCa9Q58&J^ z1VCQ~LHiBRl8O7m-RH#I7Ir$D!8Wm#5F7sRI}1?3>A10A5$yUhz!#`uPQddKxY{Nz zm+Ru9;EH{KH;@A<{BA7#*hO41 zrv@`&FRB6I$Qa1gHxNA%i^{M)*bZzq7KlxU$4B%ex(7b@Vps)_quU{FCZR#ld(R;w z*9`yQL^fA0sEmR~=As4uwtwp_9YUSxhU>{yW_psNo)mNQx>#z7+ZxUV4JZ-I4>D~>kCy{0#=EI z;%o53_)YvdR2MtpHU028E@KzrQ)FW2;rjfsezX+bjfS8$@Oh`ABwB_TArH4B64U{m zf-Xa^qMfJ&bH^O80qBdD=w^tUG>F?Ga0l#!F|Ffh&Jn1AGkllIz2o{gG5j%!T!Pm<}qZ`4#=nZ49*&uS4=Tvm!;6QfwkgBz}%Y%wt+-29j<&XSPhckv&{w3 zuz#0>XApNfww%pmA40^xVxO@c(8efeVF}EIOI$uT5)6m9?t&S>2ex1$yvJ~OI;C@joxna85RN z4bD5qC2~u-U>K8?@F_;XF%y1{;R3no+%cHv$GB?9FGs*WWG6ZmVwxsCiK0Yls5^ax zwZwL!b>J~#hh>5;sD1ZxUtsiTq!NdFbkGZXkS8FMO(&{_6L}l3K$7LvpgGtZ!3ohu zYBu&1?f|Yr8n`i75^jlE8=n=#P&e^+Bu>o%BUumFAEe{C_*}iER|gNBKJ53+g1^jHbgpe~IqK{YjMg0o5X{=yk*ZW*`bI z5%x5jutG$EOhNX*s%(iS!n~znEwRMsBOTx-{srHF1|kKJg<{ZL5R0D1!jU)Z6l63a zhT1a%ddZX9$IOKP6Iig9pceZAG4O&WnbGjO1#~n0hHYWrK`pVK?Si%L0h7$c!`!+L z@!$*|atqi}`UUK&gKhWTci(6Jnf}cAe$I1d&cw}+i7DX&z>3J_a}&4kapD00 z0Gi9undZtb0003zVB`8d>#v&U?B*nKxSTs|n0=FVmgUO&nYEl1$f~nA%i(cp?pB_h zF+?oIDhN-8inxKhW9`sFkOll_QW&xfyCuLoU4m?&gJv@x1JeN}_!u2T((sK$7&G01 z$>DR$`68)CdHIW4s7u-Rq3*J=|#ms82{;a%W-Wo0ohA!Aev zumX5QT{k70QVlKIj*HP@5F-k9H1TzfZp6Up=YP)Pk7*XhZ=q9uqx<+1ACgS5CT)LoSY%Ucxt=|pd4iZp++)VErR;w#+L${D0~|pgqI1AzqzE6u zcHp}pAvM(~)QHEl@@RQuUsr2w^{oPz$8e7E`L8dxy$S4&8oD{`*jn1+)L&wl%*k@S z5xRJ0bp#rGc+z$!cVW3i>5~=Y>?N>0!>Ak|>}~y&_x`7b!cWuMXM8>Nc}fjbo>N{| zTiN<#xRPw(Zk2p*2ikax&WMH`;(RZJj7>it&Ym3Wl*y|C+a~-p{^Nc|1{GzxsQ1(e zN7Gb0^v)P4I`6pOXNrI6q&XhDTr1tuJtKS=zOdhj*FHzKFq@SPo+A&E-_la(D8u> zU@f&Tm^?8pC}6;Gmf#HY3UC&F&N*V8z>Wuk)mwYNX?p!;R$cwazq=$uGZa>1r=`x_ zu>&e~AY3hQb$=OjHTaU>uv@Nmp0LO2tu5tPY~LgJ0d7<_bT4WCqp{-CFJHd))ei5I zhmE$5ZX6deGwl+mJf9<2v?zYTGQ+}(sMq0hLQTPB;J4oE>`t;gbmPO(z3aQK_EZem z$lq(m$GPKu+MT-H)KYwtAjrmOzrp?=i3hJ3dt}JaGL@Y}7u!2(lb^r6ZS@;?H22K5 zD|_#^mo4iF(!5aC_P7t{GfI7z$Glv%Flou==PL#x%L8K^r*hml8zj?&=S-!Yv2T{< z`97rXO@6YeSYN;T3p(_T{I+bK;z!_v?dhP*=#oYMTN1SZm~A`xxTCFb1>b_NV9ueR z4O@KFme0-q@?YSKc_k%pb6e7T_sMWYyrz|o5j+au#s0QFb@SRJ)jDI`c;p|UN&YV0 z^IWEiYfw~qzI|JLQEgdc(ig$dIvp1wn8|E+{wcAw>(MFCW`su%O;-o3a%;2w%sU86 z$!7AgezNMf-ns9Vl(amx%D(rn_;SR>D;NL1oRHIA*7mU*X7Q4(N4P;k2j8Xh{*9lx zVQjT(>4#a%ydrtCCgk1UH#fABU&d?xc)9Za^?#ma9eon_O8VJKwS?vG5bTxjQ|sdr z=rD8Vg1L*67g4h*XQ?NZob_R_D)_K`SxIGcJ7%c8M(UBXCGD$MC&&*KS~&G z3%rD0UXwII0pao}+iymqfN%@nSGLD^>4YcRgft_z=yj-qjyF{qTj=w|C*B!RihZYR zp2rc7b?(Wo#cr=X6h6b=J6s^~B~}1<&%l}ZM_W8D)RZaZV=ITZ_3!E+ztntn>AKa` z-ILxivz4l4R1Fk#J^A-}U*)szG{$YoRY5RWsmZ3>Y;Jfrhpi63J!4hKpB{GH^Tw_H z!d^#NxG__+Z*Z`=v#z$f zWVRbWrL<&p5Ph@y_IBQHTihz@yd(9|Rsf4Ewp*Wc$#56BQuZNs)i$KVGv{jiG|3G9 zEM_@UOJAeA!BONqM`pQDcuA1R_Y>p^*NXYpjn)QRPupnmut3WRWVJDRm~+@coMLt> z>jPsOu?T$t1%d|3g?eHX8#n2Ws|%H0irg`cx@&y;M7ipae4Z>+T0AI{+I6q~65q7_ z&G?JByQ+sawSg0kZVzoEi7e%0IK|F#lHTV*P*Yg&%q!lgc%EMRIlHXjtzXyip^BEd zwR6g4m6fmk>i=p#IQo@7VmZ_8hA+!?y=0nrrgN7k*ZaQvCfjm+gC?-+(Z@YCrplVP z|Fn4YT^`8m0z1KhbQJ}j6g+S~;D0BiHcT5>=%JP@;%;GWB$D7z<6%X3SIPVJ)e|*} z#?kh@Qbg~-j1m=D&vOiPkM&EPLWU7QKKvZ#@bHC6#Z#zpOyo@~rDp z&#Ny1&5Pe`DXFNPK476gi+MX`Oxqfn7GP&T%6W$GMkCp`#2m{a)6S0k`o@Ym`99Aw z^M9#b`t|AH^U)mnu*`XcRPV>8+ogN?`X>gs1Y~>M6ZbH-(U0|~4GTbDNIelWaJS8& zJ+R}a&Y~e9so^5_FWgs7y5yDWl(2D#V9EHA~+(Bse;|VCoQ|m4_H@dCP3m{Np2j51VT5M6{u6 zl_Qnz_ags0@ZsO?lil;%A2udbcontRdCUHT+t7~|Z|#=5ZMQ9E9|FovMZgMfgM+|M ziMaLVH!QBdP#^W7rX`}gV(9T$r`B~mK;5TYJE3O;xPA@U5wUg33C|vfpRChFu~vh; z2#Yt&CgL5vX$c9o@?5rF+ctYNR)tKB-0synHFX?$S{p< z{EU@b9AI&I%obG~n0@*{PxXgNp_;rJ^CL!O1e4k(iO{;mqM>(x#rs zt_5Ga+b4bg?{nyAw9R6_W~*BxbNhnTP9TT-)FILr%RR_Nr$ln)qWah4RZ|a z1NeQ@589;@NA%z6apOUF7e{XPg$Rq)@Iso4p5w2y2VK@Vzq9*bwS=9@%pfwcQbdoa zu}}CYB-EEG{vMIaFN~3zSB6Qn1K>|z0*@h9_^+%mk;*>Zsm#tzvVl)o__Hx?6}y<> zfZhhe$?x@VwW;bYsx*zeF3C`6)azr6{)R7f0{WhjL)^kc(Cf$~aM9~e2?Pgu;Z{%_FSGMcOBU-&ynvRX7_$0c(Abg#&h;0|mq)1OF!*3cZ<2il1RF{WTMpj-$<)`GXF!_*biTz#m4Lr(xN zsprP;^~&-0<4(p?)B%!V;#02x4t;@gqur>?<;JS%6yfdiD7eD|=K?6u0bPD+9voC|e8rBDcT7n%dVg(FZu+>L0#Ik*H2^|Fl zg3aJI@OwZ@djKjR8We)zz%F{2{{J;+X(zMyM^l)&l?F_vJE=a})qJNPg`Pt^_yjxw zx4>cW4^Ro9p#P&o%siXuddiZDp*-oiz|UYSh(OmN3i=UFhYMgIWA)tQ$bIt5JbU3 zFb`^ja^cTNH4=@)!@t5y;D^8{In~TJ7(5B>f-x9_T7eh9J|Gl)4pxH!paU3h&i`p} ziqIxu+#iOlLfTUaX=4n#~g3O I=pX3+0c&gomH+?% literal 0 HcmV?d00001 diff --git a/_static/kaldi-align/this.wav b/_static/kaldi-align/this.wav new file mode 100644 index 0000000000000000000000000000000000000000..1c8bed9560645262561c2caa126515407e1e243c GIT binary patch literal 5194 zcmWNQWn9#U1Bb7F*WFDcNTUb>iU9_SfFLNFf}8Lk_M9`OSlBbLXQNm+8)Hrc5d#5f z0Xg7~E8x2O{`)*{zAv74-_MgZH#Kzz6$Dz6k~@3VnoU9?2m}KE$FAi6#tsk&0wRKb zD%@1a|IZPihhT{?w^s-f0qcNWusUFqC&YW!dB=0!bJ=y*u?58Nj(Wx%?al;yr}4FQ zi=E+E>kR|>K-$0)-5BSP`!{er>&0CbL3k4O_wbi^C^?v+V1jq>~f;*Sq``xxPoolT( z|7w1(JE2Wd&CzBmev!=+%ZJ-VqHjC9Pj@YAJNu=nky)2koAZkP=2SDfUDa9sRoi;G zBc}i3V3Isc^^f_P69%y&e?^}G!jZ#REaM#KG53ui-$(32w#OmVYat4Jbc{I+S!a0HUfzu~YBJV{TV$IRm@F`J_$vY=a ziTg8No)8)r6;&6hnb;M0+SkFq%SZcHu>QbrMcsk-y6=0k-SZtD^FBkiu6CTNWDS$P zLHe%s!aBgsoDZq>C!armLc9;Y(Q_Jm@bj71uhSYv-lLy{KG^#j^SbzRUC+m{K3f#< z7`>FPW?qL=0X#J-AU|w0cEO}=2`y1?gkcN}Z31Zyejjlk-Ad_(F)g85v#d)*82TVS zF*-OVm!FplWZ=PVee=YN)t4=6+`qt25_{>d=|3@^@Y?)YvGnPpIny&|W+rFEWQAoX zW*%MmWq$Oc>FGCT|1}LUsXj2tZ?BNf%%P^&>j16mruD2@YDzI}Hn&<-R)%Sz zsnW1p|44g7d31D(=9v74K4<&75C8mAT)pqgvy-%4H_z{?oA|D)Zq2FME8;tQYYx4F zv=ofsEuY{N&p3MqRcpn%i`b{4wF!`TMpEgFS(65RwsA5zU9?EjIT||v!93)=re%)a z5PfKy(!RPkL_A+)?YTNo+4KG5!}ssLP9Gx3rjMU8kAQUE`<@EKH3E*GB4~_wJnX9eF{EpD(CP0Y&ZzKH|5T{gE2O5HgcUt!Q6pfoqy`jb)iB z!De=SaqDb5tZ4>_YN29W>JbHWHhoEZA5`mk7JDt@BzTwn!lzG;ujOBpuP=Xltf8uP zN(X18)FXhc<$w0K&Pa~DO!yx)HflpkQ{0}!h6TIkKTNzGW(;}73A|nOaxuBZ#M>*+l<9} zKr1rlm;iH*d8_%G3D8iLOT>zv%gw4c&?gahXI%Pz^xl!(pEEiRwLkxx@;KqWw?3=6 zzPH>{gb(8#_GwIjCCeGvG~NVQ^1g)8gp|cc7ao~j7_l*Ao$w5H69@y9V}iUnPO-Dg zF(?gf&Tch#z&aE?p@a8ENgA}e%{1TGp$F?Gy6zDkb4~>|MB3tKCz<1ap84AhTw48n zZ*FSAhP;Hls;pCst|n$g3nzsC*IF%S1!phqFhLI`SV^X}#$_gfZja`w`jSSf-K3g4 z-Yj3HV2&)2-&GEd1of0RM7}tEbN{8)Co2w>|Fx|(KwrB$+kpmH;&Gf!N+E)_vziLJ1VMjqXaC1 z^!4`c?mpU{_>ui~?S0}!&WR-lycL4_#O8>O*tf2hwO{9b5;bLZe=t^oM1ljsWpVmY zD3i~g%-i7qmGQ}URs26m6B3>Ub#RBhP3A@8UD{C1z0qM~wx!yZrg-1`bDN;$W=nH- zf*7YRv!g&Mz&+$cKn6Pl94C7Mz9m8Dq-G}M)va*m7N?giVCJxXEGQ}{?)izad{XY6 zw7kht0aMv4>62(*85=2y#3`tm?jMceqivF%-*w*^lFd>-IZP>(D@67_YkN!E{ic8q zvUkKc_Q$WT)t|p}D*u7$eNyWWEh+D#`#kOPu2r4)MjhT==qjEhXhqCgUIS~KQ|PZ2 zOk&T9m@y?_%AAS%01a(D%xtMKAdF|!hcriw-_0}~NaFKtTj#8=ZEf?q<_~kXE%cC(K+n>0qrq!XMbGOuy|)SBFjG`Bcn0BFgt#UWXW&YR~M9~U5Nz(KC+V- z>xm%jEu0&B1hX7cX*;IhJk~x^E`Btkk;cpVM<1%*${7+#|HJN-w!vn23-_bp-)A+l zd#szwuK#>z_N(TGjZHr`MRZ*4#&#X=fe%Ki3oKXQi^(8fmRtg^^o%2aZT>a*=OY!;41`hi$S zJ;S`jKkU;Ur2JD3T zA?|~G99x}f-bH$(^t*1c@r+`@&@8pT#&1|Lpy{;?OFB<~Jo#zk+m6Q}FAu(0UlZ{t z_}PiqzyB+%X?R*zt9_UMfzbN0Z{5g!n7{Zjywns5sVL~j`Hpa{ryt{?gi%g z7xK<={}gunrgC}wb%H&DJuCyAPffzUC-f4^aXr{-^aiY%u$1&a!VCOHN(1E_%YP5TA4rgK!%p|O8u2b zmASIDa--tDvbvwAm@D1czkbj@Uafj3?=uV=q4tGFuD;S1Wn8aQn3f`50l&kv@XOS4 z)@N)uu9&`@kc-MCX0a1#pGcqR|MIqz0l)w&z+XUW@V&$z&`IQW!eK%^420z%S)Moe zOO$*<1vrxLOIv~wl9Dj1@ee_RsBGGC=3C5EIC`1LQ!q@nbrnMzPU*I z5fx)?98Yp<^=RV-MYJe#kPQ2*00AGDT^?gc3le zPqr7scj)h#jc{Mf^?sSP1lKN->8`kU=|U8LSrnS5%I)?tQJlobX}4aK^(k636>6*= zJi5h5)<=1(4YzeG$D7r1JKtHY3R44+Kg>slL$w!eXS^Zy;{&y*Llox7)1H4Lt1(B! zKT0n9G;(dyOm!+fk#kjXL30}8F9=eP+8%HZ=voQ!V-fnN0@iSaW*@8(ZZVv5@g3E+ z=Z<7Zf%Gh7HR?IA3?Rb`v8A3(@T?ICS`oM#;V_=&cKC`N?=3g*#U3wuGpdNa(HH_0 z^D4cEoLQrhj1=z-U57l3i6Ea*#43MPt2L35j*}$J#1m=Miq?xK+Zkp)I zV&87oc2Yv>MzY6(zibC9Si3$f7I#sN_G4W*@HF9?p#@ff#fL35myIM6b_5NJw~dtr z90c=6_5d3xw`Jh5Z$kWtNr@!-sVeLx_G!{9G7kHR;#2E+%xY)ja1l_VxvOl1Z85^M zEy4%=Q#6sW_r@v)S^}bwOFU`dHlsI|N~zWH?9{+0+_?_lTcJ9Ru1*U20qE#~3(7nd!Sq+6nrM_yo(g zYF+85pTQsOXfQ04*E3}_KPbYoZy4Mo%ICvM@&p`XWHCxG-{*LU-qz ziE5rF9DLh6qFMk4oSDW#GQM}RyAbq*BpcF!zi>xv1zI<-hx|JnAr2DwLeCq=@qY+J z5)+V2`CAJ}4uYiQZv*^C`Wm42Q`dkPe|dt5 zRqG}`_i~y`LQYPI?@Lml!lhI^wnth^Xk+*Qsehu?ic*}rB!!yESM4C90^2YHm);;i% zMopYpvl00$K3SA+SxLKw>=^nMJ;k}qIMviNCA;sIw~M2-lzML9A7VucuD+D=mqmo^ zRFh$6ksQ?Mu#TB5Dh@vX*`at4Rt4vYpOEU!>CSw@i(aMWHi4wE;R^_V_Kx}ndVY7m zk>F>ZS6h`3Up(iKW(DjZAUD{kEbi|9`~I7PpMJZ=p2D8%`l|2ozKrN+EpI;;w8Hl$ z;k+0N55Z}iUYftrsD)KR))1vS`Q>r> zqbwxMAh7;U@@S5FYlEaCZG0vAjU%4c*ncr%y;P0x_s)-k485VY@eS59>PdugTEDlb zCy(muo9cf2vD?>Y;fb0Y(fXDBBISqWG=#U*HUPRkB&F;LNv$uII}$&k9Zly|+SHfU zO2e1l#_8Qb>X(m@Kh9Y_a#r%wr2Vw2;Xi%Wqw55*-b;}6`d?zhM^{Nt6T|#MY_F7? zFiWQIA57K7Qlx>0-kxP$3I4A`Wl`Wb>N4`Cj7)FA<(n6w+fnbSDmW81gdwWqgV35+ zU>^?(PbS;Ujv5YfT z5B|sxg4Zi5k3CIM+s8R%_o_##uJ`__zx~~yp!GsoYh7QYUx8y;3 z?9XTwUNw0;_>rW6To5$BQ7n8-+N3wokGVY>6>$%lHu&9H6qix|F5)*w>eyip&TChl z##lU9(rJB^!|F|7%0=3a0mJ!Qwvk=Da=Z=ar-S^d_ z4`4Zgwc}r;{@xqHd5Wh>BdMK`Ct=v{Gv|w9xK~s+oCxtu-z*JXbq9Wny4#S7-tF1o z8SvDBDOi6)CFD>#tbP zapOG4+ZM7~3F{=&F(Pn^#tci~-_(r{9wwN%y|OEYBA^c9wY*h9$x7%ta}{VI^MLNT z{Tp(hyU#e8Gy-b$R2db(cAErt9^momnHb9x8G#3E%m&o`MKHZi|{)ntaZc& zvL6JOd;7uLu?o{+YdE9`7wwvg+;7VCR1+Vgmg?{5qtQix-7OoR;6f6!VPdV&{-cKh z+&4yA=TLUIF1n{eN4~;4IAJAFIKDz)u)w$64Ki75mb*sv~0(}f?aC`Mb=(EUr zXp^bI-rxCXOdfBMce-mzDWqD literal 0 HcmV?d00001 diff --git a/contributing/code-style.html b/contributing/code-style.html index 74d418a75..7fac7b2bb 100644 --- a/contributing/code-style.html +++ b/contributing/code-style.html @@ -51,6 +51,7 @@

  • Frequently Asked Questions (FAQs)
  • Model export
  • +
  • FST-based forced alignment
    • Recipes
    • @@ -136,7 +137,9 @@ docker images:

      which will give you something like below:

      -
      "torch2.2.2-cuda12.1"
      +
      "torch2.3.1-cuda12.1"
      +"torch2.3.1-cuda11.8"
      +"torch2.2.2-cuda12.1"
       "torch2.2.2-cuda11.8"
       "torch2.2.1-cuda12.1"
       "torch2.2.1-cuda11.8"
      diff --git a/faqs.html b/faqs.html
      index e5315dce8..43ae9d548 100644
      --- a/faqs.html
      +++ b/faqs.html
      @@ -56,6 +56,7 @@
       
  • Model export
  • +
  • FST-based forced alignment
    • Recipes
    • diff --git a/fst-based-forced-alignment/diff.html b/fst-based-forced-alignment/diff.html new file mode 100644 index 000000000..3d5764290 --- /dev/null +++ b/fst-based-forced-alignment/diff.html @@ -0,0 +1,182 @@ + + + + + + + Two approaches — icefall 0.1 documentation + + + + + + + + + + + + + + + + + + + +
      + + +
      + +
      +
      +
      + +
      +
      +
      +
      + +
      +

      Two approaches

      +

      Two approaches for FST-based forced alignment will be described:

      +
      +
      +
      +

      Note that the Kaldi-based approach does not depend on Kaldi at all. +That is, you don’t need to install Kaldi in order to use it. Instead, +we use kaldi-decoder, which has ported the C++ decoding code from Kaldi +without depending on it.

      +
      +

      Differences between the two approaches

      +

      The following table compares the differences between the two approaches.

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

      Features

      Kaldi-based

      k2-based

      Support CUDA

      No

      Yes

      Support CPU

      Yes

      Yes

      Support batch processing

      No

      Yes on CUDA; No on CPU

      Support streaming models

      Yes

      No

      Support C++ APIs

      Yes

      Yes

      Support Python APIs

      Yes

      Yes

      +
      +
      + + +
      +
      + +
      +
      +
      +
      + + + + \ No newline at end of file diff --git a/fst-based-forced-alignment/index.html b/fst-based-forced-alignment/index.html new file mode 100644 index 000000000..3b27b2e82 --- /dev/null +++ b/fst-based-forced-alignment/index.html @@ -0,0 +1,159 @@ + + + + + + + FST-based forced alignment — icefall 0.1 documentation + + + + + + + + + + + + + + + + + + + +
      + + +
      + +
      +
      +
      + +
      +
      +
      +
      + +
      +

      FST-based forced alignment

      +

      This section describes how to perform FST-based forced alignment with models +trained by CTC loss.

      +

      We use CTC FORCED ALIGNMENT API TUTORIAL +from torchaudio as a reference in this section.

      +

      Different from torchaudio, we use an FST-based approach.

      + +
      + + +
      +
      + +
      +
      +
      +
      + + + + \ No newline at end of file diff --git a/fst-based-forced-alignment/k2-based.html b/fst-based-forced-alignment/k2-based.html new file mode 100644 index 000000000..ad25d7eb9 --- /dev/null +++ b/fst-based-forced-alignment/k2-based.html @@ -0,0 +1,133 @@ + + + + + + + k2-based forced alignment — icefall 0.1 documentation + + + + + + + + + + + + + + + + + + + +
      + + +
      + +
      +
      +
      + +
      +
      +
      +
      + +
      +

      k2-based forced alignment

      +

      TODO(fangjun)

      +
      + + +
      +
      + +
      +
      +
      +
      + + + + \ No newline at end of file diff --git a/fst-based-forced-alignment/kaldi-based.html b/fst-based-forced-alignment/kaldi-based.html new file mode 100644 index 000000000..a1ec582e8 --- /dev/null +++ b/fst-based-forced-alignment/kaldi-based.html @@ -0,0 +1,816 @@ + + + + + + + Kaldi-based forced alignment — icefall 0.1 documentation + + + + + + + + + + + + + + + + + + + +
      + + +
      + +
      +
      +
      + +
      +
      +
      +
      + +
      +

      Kaldi-based forced alignment

      +

      This section describes in detail how to use kaldi-decoder +for FST-based forced alignment with models trained by CTC loss.

      +
      +

      Hint

      +

      We have a colab notebook walking you through this section step by step.

      +

      kaldi-based forced alignment colab notebook

      +
      +
      +

      Prepare the environment

      +

      Before you continue, make sure you have setup icefall by following Installation.

      +
      +

      Hint

      +

      You don’t need to install Kaldi. We will NOT use Kaldi below.

      +
      +
      +
      +

      Get the test data

      +

      We use the test wave +from CTC FORCED ALIGNMENT API TUTORIAL

      +
      import torchaudio
      +
      +# Download test wave
      +speech_file = torchaudio.utils.download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
      +print(speech_file)
      +waveform, sr = torchaudio.load(speech_file)
      +transcript = "i had that curiosity beside me at this moment".split()
      +print(waveform.shape, sr)
      +
      +assert waveform.ndim == 2
      +assert waveform.shape[0] == 1
      +assert sr == 16000
      +
      +
      +

      The test wave is downloaded to:

      +
      $HOME/.cache/torch/hub/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav
      +
      +
      + + + + + + + + + + + +
      Wave filenameContentText
      Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav + + + i had that curiosity beside me at this moment +

      We use the test model +from CTC FORCED ALIGNMENT API TUTORIAL

      +
      import torch
      +
      +bundle = torchaudio.pipelines.MMS_FA
      +
      +device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      +model = bundle.get_model(with_star=False).to(device)
      +
      +
      +

      The model is downloaded to:

      +
      $HOME/.cache/torch/hub/checkpoints/model.pt
      +
      +
      +
      +
      +

      Compute log_probs

      +
      with torch.inference_mode():
      +    emission, _ = model(waveform.to(device))
      +    print(emission.shape)
      +
      +
      +

      It should print:

      +
      torch.Size([1, 169, 28])
      +
      +
      +
      +
      +

      Create token2id and id2token

      +
      token2id = bundle.get_dict(star=None)
      +id2token = {i:t for t, i in token2id.items()}
      +token2id["<eps>"] = 0
      +del token2id["-"]
      +
      +
      +
      +
      +

      Create word2id and id2word

      +
      words = list(set(transcript))
      +word2id = dict()
      +word2id['eps'] = 0
      +for i, w in enumerate(words):
      +  word2id[w] = i + 1
      +
      +id2word = {i:w for w, i in word2id.items()}
      +
      +
      +

      Note that we only use words from the transcript of the test wave.

      +
      + +
      +

      Convert transcript to an FST graph

      +
      egs/librispeech/ASR/local/prepare_lang_fst.py --lang-dir ./
      +
      +
      +

      The above command should generate two files H.fst and HL.fst. We will +use HL.fst below:

      +
      -rw-r--r-- 1 root root  13K Jun 12 08:28 H.fst
      +-rw-r--r-- 1 root root 3.7K Jun 12 08:28 HL.fst
      +
      +
      +
      +
      +

      Force aligner

      +

      Now, everything is ready. We can use the following code to get forced alignments.

      +
      from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions
      +import kaldifst
      +
      +def force_align():
      +    HL = kaldifst.StdVectorFst.read("./HL.fst")
      +    decodable = DecodableCtc(emission[0].contiguous().cpu().numpy())
      +    decoder_opts = FasterDecoderOptions(max_active=3000)
      +    decoder = FasterDecoder(HL, decoder_opts)
      +    decoder.decode(decodable)
      +    if not decoder.reached_final():
      +        print(f"failed to decode xxx")
      +        return None
      +    ok, best_path = decoder.get_best_path()
      +
      +    (
      +        ok,
      +        isymbols_out,
      +        osymbols_out,
      +        total_weight,
      +    ) = kaldifst.get_linear_symbol_sequence(best_path)
      +    if not ok:
      +        print(f"failed to get linear symbol sequence for xxx")
      +        return None
      +
      +    # We need to use i-1 here since we have incremented tokens during
      +    # HL construction
      +    alignment = [i-1 for i in isymbols_out]
      +    return alignment
      +
      +alignment = force_align()
      +
      +for i, a in enumerate(alignment):
      +  print(i, id2token[a])
      +
      +
      +

      The output should be identical to +https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html#frame-level-alignments.

      +

      For ease of reference, we list the output below:

      +
      0 -
      +1 -
      +2 -
      +3 -
      +4 -
      +5 -
      +6 -
      +7 -
      +8 -
      +9 -
      +10 -
      +11 -
      +12 -
      +13 -
      +14 -
      +15 -
      +16 -
      +17 -
      +18 -
      +19 -
      +20 -
      +21 -
      +22 -
      +23 -
      +24 -
      +25 -
      +26 -
      +27 -
      +28 -
      +29 -
      +30 -
      +31 -
      +32 i
      +33 -
      +34 -
      +35 h
      +36 h
      +37 a
      +38 -
      +39 -
      +40 -
      +41 d
      +42 -
      +43 -
      +44 t
      +45 h
      +46 -
      +47 a
      +48 -
      +49 -
      +50 t
      +51 -
      +52 -
      +53 -
      +54 c
      +55 -
      +56 -
      +57 -
      +58 u
      +59 u
      +60 -
      +61 -
      +62 -
      +63 r
      +64 -
      +65 i
      +66 -
      +67 -
      +68 -
      +69 -
      +70 -
      +71 -
      +72 o
      +73 -
      +74 -
      +75 -
      +76 -
      +77 -
      +78 -
      +79 s
      +80 -
      +81 -
      +82 -
      +83 i
      +84 -
      +85 t
      +86 -
      +87 -
      +88 y
      +89 -
      +90 -
      +91 -
      +92 -
      +93 b
      +94 -
      +95 e
      +96 -
      +97 -
      +98 -
      +99 -
      +100 -
      +101 s
      +102 -
      +103 -
      +104 -
      +105 -
      +106 -
      +107 -
      +108 -
      +109 -
      +110 i
      +111 -
      +112 -
      +113 d
      +114 e
      +115 -
      +116 m
      +117 -
      +118 -
      +119 e
      +120 -
      +121 -
      +122 -
      +123 -
      +124 a
      +125 -
      +126 -
      +127 t
      +128 -
      +129 t
      +130 h
      +131 -
      +132 i
      +133 -
      +134 -
      +135 -
      +136 s
      +137 -
      +138 -
      +139 -
      +140 -
      +141 m
      +142 -
      +143 -
      +144 o
      +145 -
      +146 -
      +147 -
      +148 m
      +149 -
      +150 -
      +151 e
      +152 -
      +153 n
      +154 -
      +155 t
      +156 -
      +157 -
      +158 -
      +159 -
      +160 -
      +161 -
      +162 -
      +163 -
      +164 -
      +165 -
      +166 -
      +167 -
      +168 -
      +
      +
      +

      To merge tokens, we use:

      +
      from icefall.ctc import merge_tokens
      +token_spans = merge_tokens(alignment)
      +for span in token_spans:
      +  print(id2token[span.token], span.start, span.end)
      +
      +
      +

      The output is given below:

      +
      i 32 33
      +h 35 37
      +a 37 38
      +d 41 42
      +t 44 45
      +h 45 46
      +a 47 48
      +t 50 51
      +c 54 55
      +u 58 60
      +r 63 64
      +i 65 66
      +o 72 73
      +s 79 80
      +i 83 84
      +t 85 86
      +y 88 89
      +b 93 94
      +e 95 96
      +s 101 102
      +i 110 111
      +d 113 114
      +e 114 115
      +m 116 117
      +e 119 120
      +a 124 125
      +t 127 128
      +t 129 130
      +h 130 131
      +i 132 133
      +s 136 137
      +m 141 142
      +o 144 145
      +m 148 149
      +e 151 152
      +n 153 154
      +t 155 156
      +
      +
      +

      All of the code below is copied and modified +from https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html.

      +
      +
      +

      Segment each word using the computed alignments

      +
      def unflatten(list_, lengths):
      +    assert len(list_) == sum(lengths)
      +    i = 0
      +    ret = []
      +    for l in lengths:
      +        ret.append(list_[i : i + l])
      +        i += l
      +    return ret
      +
      +
      +word_spans = unflatten(token_spans, [len(word) for word in transcript])
      +print(word_spans)
      +
      +
      +

      The output is:

      +
      [[TokenSpan(token=2, start=32, end=33)],
      + [TokenSpan(token=15, start=35, end=37), TokenSpan(token=1, start=37, end=38), TokenSpan(token=13, start=41, end=42)],
      + [TokenSpan(token=7, start=44, end=45), TokenSpan(token=15, start=45, end=46), TokenSpan(token=1, start=47, end=48), TokenSpan(token=7, start=50, end=51)],
      + [TokenSpan(token=20, start=54, end=55), TokenSpan(token=6, start=58, end=60), TokenSpan(token=9, start=63, end=64), TokenSpan(token=2, start=65, end=66), TokenSpan(token=5, start=72, end=73), TokenSpan(token=8, start=79, end=80), TokenSpan(token=2, start=83, end=84), TokenSpan(token=7, start=85, end=86), TokenSpan(token=16, start=88, end=89)],
      + [TokenSpan(token=17, start=93, end=94), TokenSpan(token=3, start=95, end=96), TokenSpan(token=8, start=101, end=102), TokenSpan(token=2, start=110, end=111), TokenSpan(token=13, start=113, end=114), TokenSpan(token=3, start=114, end=115)],
      + [TokenSpan(token=10, start=116, end=117), TokenSpan(token=3, start=119, end=120)],
      + [TokenSpan(token=1, start=124, end=125), TokenSpan(token=7, start=127, end=128)],
      + [TokenSpan(token=7, start=129, end=130), TokenSpan(token=15, start=130, end=131), TokenSpan(token=2, start=132, end=133), TokenSpan(token=8, start=136, end=137)],
      + [TokenSpan(token=10, start=141, end=142), TokenSpan(token=5, start=144, end=145), TokenSpan(token=10, start=148, end=149), TokenSpan(token=3, start=151, end=152), TokenSpan(token=4, start=153, end=154), TokenSpan(token=7, start=155, end=156)]
      +]
      +
      +
      +
      def preview_word(waveform, spans, num_frames, transcript, sample_rate=bundle.sample_rate):
      +    ratio = waveform.size(1) / num_frames
      +    x0 = int(ratio * spans[0].start)
      +    x1 = int(ratio * spans[-1].end)
      +    print(f"{transcript} {x0 / sample_rate:.3f} - {x1 / sample_rate:.3f} sec")
      +    segment = waveform[:, x0:x1]
      +    return IPython.display.Audio(segment.numpy(), rate=sample_rate)
      +num_frames = emission.size(1)
      +
      +
      +
      preview_word(waveform, word_spans[0], num_frames, transcript[0])
      +preview_word(waveform, word_spans[1], num_frames, transcript[1])
      +preview_word(waveform, word_spans[2], num_frames, transcript[2])
      +preview_word(waveform, word_spans[3], num_frames, transcript[3])
      +preview_word(waveform, word_spans[4], num_frames, transcript[4])
      +preview_word(waveform, word_spans[5], num_frames, transcript[5])
      +preview_word(waveform, word_spans[6], num_frames, transcript[6])
      +preview_word(waveform, word_spans[7], num_frames, transcript[7])
      +preview_word(waveform, word_spans[8], num_frames, transcript[8])
      +
      +
      +

      The segmented wave of each word along with its time stamp is given below:

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      WordTimeWave
      i0.644 - 0.664 sec + +
      had0.704 - 0.845 sec + +
      that0.885 - 1.026 sec + +
      curiosity1.086 - 1.790 sec + +
      beside1.871 - 2.314 sec + +
      me2.334 - 2.414 sec + +
      at2.495 - 2.575 sec + +
      this2.595 - 2.756 sec + +
      moment2.837 - 3.138 sec + +

      We repost the whole wave below for ease of reference:

      + + + + + + + + + + + +
      Wave filenameContentText
      Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav + + + i had that curiosity beside me at this moment +
      +
      +

      Summary

      +

      Congratulations! You have succeeded in using the FST-based approach to +compute alignment of a test wave.

      +
      +
      + + +
      +
      + +
      +
      +
      +
      + + + + \ No newline at end of file diff --git a/genindex.html b/genindex.html index 68c5c180e..495feb476 100644 --- a/genindex.html +++ b/genindex.html @@ -48,6 +48,7 @@
    • Docker
    • Frequently Asked Questions (FAQs)
    • Model export
    • +
    • FST-based forced alignment
    +
  • FST-based forced alignment +
  • diff --git a/installation/index.html b/installation/index.html index 88f151281..c8c709904 100644 --- a/installation/index.html +++ b/installation/index.html @@ -74,6 +74,7 @@
  • Docker
  • Frequently Asked Questions (FAQs)
  • Model export
  • +
  • FST-based forced alignment
    • Recipes
    • diff --git a/model-export/export-model-state-dict.html b/model-export/export-model-state-dict.html index aed7e897b..662824d68 100644 --- a/model-export/export-model-state-dict.html +++ b/model-export/export-model-state-dict.html @@ -64,6 +64,7 @@
    • Export to ncnn
    +
  • FST-based forced alignment
    • Recipes
    • diff --git a/model-export/export-ncnn-conv-emformer.html b/model-export/export-ncnn-conv-emformer.html index 7428faab8..a9edf6a86 100644 --- a/model-export/export-ncnn-conv-emformer.html +++ b/model-export/export-ncnn-conv-emformer.html @@ -72,6 +72,7 @@
    +
  • FST-based forced alignment
  • Caution

    -

    Please use a more recent version of PyTorch. For instance, torch 1.8 -may not work.

    +

    torch > 2.0 may not work. If you get errors while building pnnx, please switch +to torch < 2.0.

    1. Download the pre-trained model

    diff --git a/model-export/export-ncnn-lstm.html b/model-export/export-ncnn-lstm.html index e2e2f8a24..9c59f785b 100644 --- a/model-export/export-ncnn-lstm.html +++ b/model-export/export-ncnn-lstm.html @@ -21,7 +21,7 @@ - + @@ -72,6 +72,7 @@ +
  • FST-based forced alignment
    • Recipes
    • @@ -121,8 +122,8 @@

      Caution

      -

      Please use a more recent version of PyTorch. For instance, torch 1.8 -may not work.

      +

      torch > 2.0 may not work. If you get errors while building pnnx, please switch +to torch < 2.0.

      1. Download the pre-trained model

      @@ -806,7 +807,7 @@ with int8

      diff --git a/model-export/export-ncnn-zipformer.html b/model-export/export-ncnn-zipformer.html index 809384dd2..548516559 100644 --- a/model-export/export-ncnn-zipformer.html +++ b/model-export/export-ncnn-zipformer.html @@ -71,6 +71,7 @@
    +
  • FST-based forced alignment
    • Recipes
    • @@ -120,8 +121,8 @@

      Caution

      -

      Please use a more recent version of PyTorch. For instance, torch 1.8 -may not work.

      +

      torch > 2.0 may not work. If you get errors while building pnnx, please switch +to torch < 2.0.

      1. Download the pre-trained model

      diff --git a/model-export/export-ncnn.html b/model-export/export-ncnn.html index c588ec055..07154b153 100644 --- a/model-export/export-ncnn.html +++ b/model-export/export-ncnn.html @@ -63,6 +63,7 @@
    +
  • FST-based forced alignment
    • Recipes
    • diff --git a/model-export/export-onnx.html b/model-export/export-onnx.html index d84417fb6..7965543d8 100644 --- a/model-export/export-onnx.html +++ b/model-export/export-onnx.html @@ -65,6 +65,7 @@
    • Export to ncnn
    +
  • FST-based forced alignment
    • Recipes
    • diff --git a/model-export/export-with-torch-jit-script.html b/model-export/export-with-torch-jit-script.html index 2cc3cb5d9..81beb80a4 100644 --- a/model-export/export-with-torch-jit-script.html +++ b/model-export/export-with-torch-jit-script.html @@ -63,6 +63,7 @@
    • Export to ncnn
    +
  • FST-based forced alignment
    • Recipes
    • diff --git a/model-export/export-with-torch-jit-trace.html b/model-export/export-with-torch-jit-trace.html index bcbf85a9a..0870162ab 100644 --- a/model-export/export-with-torch-jit-trace.html +++ b/model-export/export-with-torch-jit-trace.html @@ -63,6 +63,7 @@
    • Export to ncnn
    +
  • FST-based forced alignment
    • Recipes
    • diff --git a/model-export/index.html b/model-export/index.html index 36ec7e9ef..ff6e57332 100644 --- a/model-export/index.html +++ b/model-export/index.html @@ -58,6 +58,7 @@
    • Export to ncnn
    +
  • FST-based forced alignment
    • Recipes
    • diff --git a/objects.inv b/objects.inv index 0a9fba1de6b1aa6d190bb1760830f97599f59354..5233e738e39df59996984fd897212668240620ce 100644 GIT binary patch delta 2047 zcmVnS+n9+CsS(@ds^-V)ns++;V7wauixXk>}I%UCNZ zBIU$=`tk>oNQsiDwR=gt1n>a_K>#F`6e+nYiu;J>Dftg}^RlYPpvxkuk0j>~D-XpF%nO_d*KmSktQ|J0!p*L=zL%yKNYhXZzPHtBpN*j_>Tn7Y z;sKN6uBeWr!hgpirMpKgyoAZmvZy#oG0COFDlAwqJCLf3ah~M8U=V^N1DTcnPjO)j zUkAW1=(lsUR+`j$G@1}-LV_6?ntC=ePD=b5bP11D$$=#mEjiXkJkS`IdH(Y$2EIN= zSBeK2_!SVLfU`K?*ZX)+v>9ym@qg3ht+^Z??0S8ap!C7*W`nj> zoU^n}NHwQ#u>L;$TH_^fBFTvqr(o3cWpjEf!jhtr(*C+z8JO`JbtrP?{SZ-{* zt67tw{7kR~wH=`zLjcydq)6^bjsW7oee+}Y(pI+ zf1p*7%XAts!s~KenZb$`>xk9?AG+#BkQy1?j0NdRrzo|J73aC&JlC8rUVlznA#6^_Vk4B4j}3~kH6fB&H)^u3 zbU19XNbk;w7tzy-43O>8(dmIKAPcV21E!18_;3Z>sN;rAC`+&^NH7V(r>qp665}Fs z=pS*OMo+6hK$ZcgSO8xC5b(OZy*d|ZLlKlwNDy>g0_!ryk5Bfj1hI^g1M`0T7;e|| z{(oz`#^_&KK2s>PNS4)If7;ULC(#O_e;T2QIql-_%uMp~H?*D=`Cf~3lRct0>|XRa zpKHQomSyP0yEmWN%V6hfPVEU#HMeJ4UbSsTYwT`$r^VyBIh!y(u&(;{zg;=7j9z9+S-gkbhB==q*4qB*$<~9u2=%$x=sL;3_d=P*w@* z3eApjd>1p(w+rS({1<0*uY4emV!NG%Hq8paKME9=WmUwG6Q-ofqkL z+4jqz=RN~&4BXIyHyBWH7S$3Pw>@uKHKNJ>gLN2YkO0a!0z}&gAgV-aO$%y&BXn)> z1w$d*1Sg~okrip*wVvlx(eRC(RDV^I@cefPT{E)y3ZdV&Jo6=jX_?pEfeT5GiM8Pb zr!=vOhz~zhJ);RfSHwsXMe99g{hXe5FZ6@nuc!5acXYuETk^@J@iL)ZL(e95z6JGC zYd5T?^`0*9qKV!K10+v>Wj}2;Ujy&s=bVP|GppZ;)%OUx(2nld>UC(f5Pt`Gc1Sf_ zJ3THT9Ob=y#0{a9sYUCq3w>VX#u>@DRgcQ578Tb#EUBHI5ynorq@RG(SuMB34Na-(Qw+_to@fid+NpWHn1gE*U5u4(4=PIMkzXj#Q+TyoJ7>|h{*0dt|eg`hKq zQM9XyBZ}p7MBD3hyV3|8kbh=F>m)+N>XK9sRCIrxLT9cxLELR|Co*OH(A+_YyE!_g zSZTFgWMdBlFs7nFXPG$6=5Y2;c;Zs(DcU}6z}zmj7arP2r#d5|wZV{wo;LC$Ydb7Z z>q3BQ>vqQ(J=i=TPxD;g5-oPTB?k~!`81r9eHEr?>8O@B=k#K14Joe*53 z;>!YT>=AUi5rZdGbZO$L)bqZ6dv&|@G-tsQ48-8UMh=H+ICyf2S#HT(y_&8(emYLr z9i!sC9fJKMr@I&xFwvbjjoq_*S}wO|1V~%f6$D`!dMk-26x78=9*^`XrU~)BLF@JP zgcY0~DPI!Lh5#(e^?&+$JF7vjCf!%He>Aux%|M`k-2OEa2`0p%NOTA;i@`_2@?wc& z4FRp`Z^AaktOjY~5(Sdqn29-wTRF4!xXmVAL+Ft{fEk+E5xeeT{UnT=Srq5$j>LXi zZ#9R06*3&Fj_%6XXYZbveZV_z#}l<%$g9SLr`DHoK^5Xq6MuaBtkcoJLfPp!+O6=p zDq#3OSHI9BAD`+%7eYU=JAAj@hU0P55@B0yLrX6E2D%?8XJhgflg9aSy$$ilKYOtz znI95PjcD3-UACXO?O(Pu^QEv`+qt@;p1bP4FmMXX+PL7*q92)#Rr-pjX(>)b9oJ?Oybs d|HYyAHNoO%2j|xY&;0f@GmYWkT-C@;*$9ggk~-O{%DlSXvf{vgEfcx+59F zKckw&X+`L2Qx=%AnnZb89Pr!i?J7&}>XcT5#K%>VQkG_!w0}Q8vOGJB0Ut|ztm9vR z2uTsrL_u5@tWNJ5#+|GL1o!!r5lJa2V?oHFBE6#bWtNpc5IYhiL`aHEQ~~3H<6{cv zLK{V_M3-gU39kP z;sKLHZ1xRl?-4Dr-g(ObW4JHRdXq9!XtAxQL5EFmOYXfz3+&C$+GF zuL9sF^y@iVOHcB7w4M-nLR=YXo(3E#BNcuFzW9pO@sY-LS~09hJfsn>isJD(1mB#a zE2)Dte1(BHJ`(srLO5L!^FLB{#934vnnQFTiUwVM{C{+Lt3M78b@hCtp;&|4%?9o2 zsGvy`lX}kI==uBTE033;iG(JSnp{!Mm(KaE360BISo{0#Y+%M~)T4-*`_GylBeAjZ zzM*Y~@}poHDjr)kh5&5Hq>S%LZCPh+9M)5g^aiXhtpy5s}sMoYJ24sD3IeS?O}XA95<+t>#w z9@4rjL^=&AVNKhLk|Sdttd7!Ra;~k0!)phygFgbuI4TRtfRu>^ ze@i(pm0f1jmDQ}xSdgw%ijvz{YMyh=bEWy}^?xJ_&N(KFNk}Un4pOnB5Q?lDwpmv! zIBc>|?aq*u;q!_Nh|SW``++PV3a<16)Ol%qxB_j|YeOa!C0G_Dm;~38EP1Cy8P6Q* zM^q%?^Xd9~ zb$?xB_-|UhP$+ar2J5~*?d0>5=#0=mt!PO}ZMzNrXK-u|2X3+Fd3n4TBO#na`eDPK$A;v?j|;FZ99Sboh0CJ|!+6_u z>Q=Pk|2i?1bVLxT@gP+XFjQTaxh|vD?F_UrXhSF0VnE_rl#)!`?$~0anl_1yo`1tQ z5CfK%d_7Z8^6UOnMf(AhM+15|~+C=0FC)-Gqms&072)q8Ha z(=$TpDR;dSa4M@6hPh^nm8qFpTP8PBrpIk3`x@GaK zJEuBhqP)S7ho3I;Lt{HEaDQtg5_x@sd zD~E$;mzd>D=IYgS?OiCZzVwVSgpR}gAs2%v{% zmSfv>o}Yzw!H1$k-hYvpZ)iKuTfYjqbyY`uWgM#aZz_Gjdu_{`PP>s;joF@BU)+W= z#Gxkm_F1Q+0YlO0SlX@aOI5(_|6KjH9{KpxCA1+76T4;YcDt=RZaN`stKHVH%f5l{ zhm=v5y`iLVzFhCN_~RdgSQE+*F}t5c>l8GkFBiK%I~3Docker
    • Frequently Asked Questions (FAQs)
    • Model export
    • +
    • FST-based forced alignment
    • Recipes
        diff --git a/recipes/Finetune/from_supervised/finetune_zipformer.html b/recipes/Finetune/from_supervised/finetune_zipformer.html index b7120b746..6eee87c57 100644 --- a/recipes/Finetune/from_supervised/finetune_zipformer.html +++ b/recipes/Finetune/from_supervised/finetune_zipformer.html @@ -51,6 +51,7 @@
      • Docker
      • Frequently Asked Questions (FAQs)
      • Model export
      • +
      • FST-based forced alignment
      • Recipes
        • Recipes
          • Recipes
            • Recipes
                diff --git a/recipes/Non-streaming-ASR/aishell/stateless_transducer.html b/recipes/Non-streaming-ASR/aishell/stateless_transducer.html index dbedbbb41..3f1759c05 100644 --- a/recipes/Non-streaming-ASR/aishell/stateless_transducer.html +++ b/recipes/Non-streaming-ASR/aishell/stateless_transducer.html @@ -51,6 +51,7 @@
              • Docker
              • Frequently Asked Questions (FAQs)
              • Model export
              • +
              • FST-based forced alignment
              • Recipes
                • Recipes
                  • Recipes
                      diff --git a/recipes/Non-streaming-ASR/librispeech/conformer_ctc.html b/recipes/Non-streaming-ASR/librispeech/conformer_ctc.html index 96e47b371..e0fb5c97f 100644 --- a/recipes/Non-streaming-ASR/librispeech/conformer_ctc.html +++ b/recipes/Non-streaming-ASR/librispeech/conformer_ctc.html @@ -51,6 +51,7 @@
                    • Docker
                    • Frequently Asked Questions (FAQs)
                    • Model export
                    • +
                    • FST-based forced alignment
                    • Recipes
                        diff --git a/recipes/Non-streaming-ASR/librispeech/distillation.html b/recipes/Non-streaming-ASR/librispeech/distillation.html index 8e124ed37..72cb4a7ac 100644 --- a/recipes/Non-streaming-ASR/librispeech/distillation.html +++ b/recipes/Non-streaming-ASR/librispeech/distillation.html @@ -51,6 +51,7 @@
                      • Docker
                      • Frequently Asked Questions (FAQs)
                      • Model export
                      • +
                      • FST-based forced alignment
                      • Recipes
                        • Recipes
                            diff --git a/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.html b/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.html index 0d1214529..6f7940f1c 100644 --- a/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.html +++ b/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.html @@ -51,6 +51,7 @@
                          • Docker
                          • Frequently Asked Questions (FAQs)
                          • Model export
                          • +
                          • FST-based forced alignment
                          • Recipes
                              diff --git a/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.html b/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.html index 98af9e8e2..259438a87 100644 --- a/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.html +++ b/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.html @@ -51,6 +51,7 @@
                            • Docker
                            • Frequently Asked Questions (FAQs)
                            • Model export
                            • +
                            • FST-based forced alignment
                            • Recipes
                                diff --git a/recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.html b/recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.html index 983d90ace..2cbd3b2aa 100644 --- a/recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.html +++ b/recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.html @@ -51,6 +51,7 @@
                              • Docker
                              • Frequently Asked Questions (FAQs)
                              • Model export
                              • +
                              • FST-based forced alignment
                              • Recipes
                                  diff --git a/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.html b/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.html index d78b98a8e..0327d1909 100644 --- a/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.html +++ b/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.html @@ -51,6 +51,7 @@
                                • Docker
                                • Frequently Asked Questions (FAQs)
                                • Model export
                                • +
                                • FST-based forced alignment
                                • Recipes
                                  • Recipes
                                    • Recipes
                                      • Recipes
                                        • Recipes
                                          • Recipes
                                            • Recipes
                                              • Recipes
                                                • Recipes
                                                  • Recipes
                                                    • Recipes
                                                        diff --git a/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.html b/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.html index 5b7b37dc5..ab15498ea 100644 --- a/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.html +++ b/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.html @@ -51,6 +51,7 @@
                                                      • Docker
                                                      • Frequently Asked Questions (FAQs)
                                                      • Model export
                                                      • +
                                                      • FST-based forced alignment
                                                      • Recipes
                                                          diff --git a/recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.html b/recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.html index 82fef8315..3fb74f38a 100644 --- a/recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.html +++ b/recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.html @@ -51,6 +51,7 @@
                                                        • Docker
                                                        • Frequently Asked Questions (FAQs)
                                                        • Model export
                                                        • +
                                                        • FST-based forced alignment
                                                        • Recipes
                                                            diff --git a/recipes/Streaming-ASR/librispeech/zipformer_transducer.html b/recipes/Streaming-ASR/librispeech/zipformer_transducer.html index 899786d75..4f47ef222 100644 --- a/recipes/Streaming-ASR/librispeech/zipformer_transducer.html +++ b/recipes/Streaming-ASR/librispeech/zipformer_transducer.html @@ -51,6 +51,7 @@
                                                          • Docker
                                                          • Frequently Asked Questions (FAQs)
                                                          • Model export
                                                          • +
                                                          • FST-based forced alignment
                                                          • Recipes
                                                            • Recipes
                                                              • Recipes
                                                                • Recipes
                                                                  • Recipes
                                                                    • Recipes
                                                                    • diff --git a/searchindex.js b/searchindex.js index 354ea262e..b95a7ae67 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["contributing/code-style", "contributing/doc", "contributing/how-to-create-a-recipe", "contributing/index", "decoding-with-langugage-models/LODR", "decoding-with-langugage-models/index", "decoding-with-langugage-models/rescoring", "decoding-with-langugage-models/shallow-fusion", "docker/index", "docker/intro", "faqs", "for-dummies/data-preparation", "for-dummies/decoding", "for-dummies/environment-setup", "for-dummies/index", "for-dummies/model-export", "for-dummies/training", "huggingface/index", "huggingface/pretrained-models", "huggingface/spaces", "index", "installation/index", "model-export/export-model-state-dict", "model-export/export-ncnn", "model-export/export-ncnn-conv-emformer", "model-export/export-ncnn-lstm", "model-export/export-ncnn-zipformer", "model-export/export-onnx", "model-export/export-with-torch-jit-script", "model-export/export-with-torch-jit-trace", "model-export/index", "recipes/Finetune/adapter/finetune_adapter", "recipes/Finetune/from_supervised/finetune_zipformer", "recipes/Finetune/index", "recipes/Non-streaming-ASR/aishell/conformer_ctc", "recipes/Non-streaming-ASR/aishell/index", "recipes/Non-streaming-ASR/aishell/stateless_transducer", "recipes/Non-streaming-ASR/aishell/tdnn_lstm_ctc", "recipes/Non-streaming-ASR/index", "recipes/Non-streaming-ASR/librispeech/conformer_ctc", "recipes/Non-streaming-ASR/librispeech/distillation", "recipes/Non-streaming-ASR/librispeech/index", "recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless", "recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc", "recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip", "recipes/Non-streaming-ASR/librispeech/zipformer_mmi", "recipes/Non-streaming-ASR/timit/index", "recipes/Non-streaming-ASR/timit/tdnn_ligru_ctc", "recipes/Non-streaming-ASR/timit/tdnn_lstm_ctc", "recipes/Non-streaming-ASR/yesno/index", "recipes/Non-streaming-ASR/yesno/tdnn", "recipes/RNN-LM/index", "recipes/RNN-LM/librispeech/lm-training", "recipes/Streaming-ASR/index", "recipes/Streaming-ASR/introduction", "recipes/Streaming-ASR/librispeech/index", "recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer", "recipes/Streaming-ASR/librispeech/pruned_transducer_stateless", "recipes/Streaming-ASR/librispeech/zipformer_transducer", "recipes/TTS/index", "recipes/TTS/ljspeech/vits", "recipes/TTS/vctk/vits", "recipes/index"], "filenames": ["contributing/code-style.rst", "contributing/doc.rst", "contributing/how-to-create-a-recipe.rst", "contributing/index.rst", "decoding-with-langugage-models/LODR.rst", "decoding-with-langugage-models/index.rst", "decoding-with-langugage-models/rescoring.rst", "decoding-with-langugage-models/shallow-fusion.rst", "docker/index.rst", "docker/intro.rst", "faqs.rst", "for-dummies/data-preparation.rst", "for-dummies/decoding.rst", "for-dummies/environment-setup.rst", "for-dummies/index.rst", "for-dummies/model-export.rst", "for-dummies/training.rst", "huggingface/index.rst", "huggingface/pretrained-models.rst", "huggingface/spaces.rst", "index.rst", "installation/index.rst", "model-export/export-model-state-dict.rst", "model-export/export-ncnn.rst", "model-export/export-ncnn-conv-emformer.rst", "model-export/export-ncnn-lstm.rst", "model-export/export-ncnn-zipformer.rst", "model-export/export-onnx.rst", "model-export/export-with-torch-jit-script.rst", "model-export/export-with-torch-jit-trace.rst", "model-export/index.rst", "recipes/Finetune/adapter/finetune_adapter.rst", "recipes/Finetune/from_supervised/finetune_zipformer.rst", "recipes/Finetune/index.rst", "recipes/Non-streaming-ASR/aishell/conformer_ctc.rst", "recipes/Non-streaming-ASR/aishell/index.rst", "recipes/Non-streaming-ASR/aishell/stateless_transducer.rst", "recipes/Non-streaming-ASR/aishell/tdnn_lstm_ctc.rst", "recipes/Non-streaming-ASR/index.rst", "recipes/Non-streaming-ASR/librispeech/conformer_ctc.rst", "recipes/Non-streaming-ASR/librispeech/distillation.rst", "recipes/Non-streaming-ASR/librispeech/index.rst", "recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst", "recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.rst", "recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.rst", "recipes/Non-streaming-ASR/librispeech/zipformer_mmi.rst", "recipes/Non-streaming-ASR/timit/index.rst", "recipes/Non-streaming-ASR/timit/tdnn_ligru_ctc.rst", "recipes/Non-streaming-ASR/timit/tdnn_lstm_ctc.rst", "recipes/Non-streaming-ASR/yesno/index.rst", "recipes/Non-streaming-ASR/yesno/tdnn.rst", "recipes/RNN-LM/index.rst", "recipes/RNN-LM/librispeech/lm-training.rst", "recipes/Streaming-ASR/index.rst", "recipes/Streaming-ASR/introduction.rst", "recipes/Streaming-ASR/librispeech/index.rst", "recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst", "recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.rst", "recipes/Streaming-ASR/librispeech/zipformer_transducer.rst", "recipes/TTS/index.rst", "recipes/TTS/ljspeech/vits.rst", "recipes/TTS/vctk/vits.rst", "recipes/index.rst"], "titles": ["Follow the code style", "Contributing to Documentation", "How to create a recipe", "Contributing", "LODR for RNN Transducer", "Decoding with language models", "LM rescoring for Transducer", "Shallow fusion for Transducer", "Docker", "Introduction", "Frequently Asked Questions (FAQs)", "Data Preparation", "Decoding", "Environment setup", "Icefall for dummies tutorial", "Model Export", "Training", "Huggingface", "Pre-trained models", "Huggingface spaces", "Icefall", "Installation", "Export model.state_dict()", "Export to ncnn", "Export ConvEmformer transducer models to ncnn", "Export LSTM transducer models to ncnn", "Export streaming Zipformer transducer models to ncnn", "Export to ONNX", "Export model with torch.jit.script()", "Export model with torch.jit.trace()", "Model export", "Finetune from a pre-trained Zipformer model with adapters", "Finetune from a supervised pre-trained Zipformer model", "Fine-tune a pre-trained model", "Conformer CTC", "aishell", "Stateless Transducer", "TDNN-LSTM CTC", "Non Streaming ASR", "Conformer CTC", "Distillation with HuBERT", "LibriSpeech", "Pruned transducer statelessX", "TDNN-LSTM-CTC", "Zipformer CTC Blank Skip", "Zipformer MMI", "TIMIT", "TDNN-LiGRU-CTC", "TDNN-LSTM-CTC", "YesNo", "TDNN-CTC", "RNN-LM", "Train an RNN language model", "Streaming ASR", "Introduction", "LibriSpeech", "LSTM Transducer", "Pruned transducer statelessX", "Zipformer Transducer", "TTS", "VITS-LJSpeech", "VITS-VCTK", "Recipes"], "terms": {"we": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61, 62], "us": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 30, 31, 32, 34, 35, 36, 37, 39, 40, 43, 47, 48, 50, 52, 54, 60, 61], "tool": [0, 10, 21, 24], "make": [0, 1, 3, 24, 25, 26, 31, 34, 36, 39, 54], "consist": [0, 36, 42, 56, 57, 58], "possibl": [0, 2, 3, 34, 39], "black": 0, "format": [0, 24, 25, 26, 31, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "flake8": 0, "check": [0, 21, 39, 52, 60], "qualiti": [0, 35], "isort": 0, "sort": [0, 21, 52], "import": [0, 9, 10, 15, 21, 24, 57, 58], "The": [0, 1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 21, 22, 24, 25, 26, 31, 32, 34, 35, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "version": [0, 9, 13, 15, 20, 21, 22, 24, 25, 26, 34, 36, 37, 39, 42, 43, 47, 48, 57], "abov": [0, 4, 6, 7, 10, 13, 15, 22, 24, 25, 26, 27, 34, 35, 36, 37, 39, 42, 44, 45, 50, 54, 56, 57, 58, 60], "ar": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, 22, 24, 25, 26, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "22": [0, 9, 15, 21, 24, 25, 31, 39, 47, 48, 50], "3": [0, 4, 6, 7, 9, 10, 11, 15, 20, 22, 23, 27, 30, 31, 37, 40, 42, 43, 44, 45, 50, 52, 56, 57, 58, 60, 61], "0": [0, 1, 4, 6, 7, 9, 11, 13, 15, 20, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "5": [0, 7, 15, 23, 30, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60], "4": [0, 4, 5, 6, 7, 9, 10, 11, 13, 15, 20, 22, 23, 30, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "10": [0, 7, 9, 15, 20, 21, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "1": [0, 4, 6, 7, 9, 11, 13, 15, 20, 22, 23, 27, 28, 29, 30, 31, 32, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "after": [0, 1, 6, 9, 11, 12, 13, 16, 19, 21, 22, 24, 25, 26, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60], "run": [0, 2, 8, 10, 11, 13, 14, 15, 19, 20, 21, 24, 25, 26, 27, 30, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 61], "command": [0, 1, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, 22, 24, 25, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "git": [0, 4, 6, 7, 9, 13, 15, 21, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 43, 47, 48, 50, 52], "clone": [0, 4, 6, 7, 9, 13, 21, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 43, 47, 48, 50, 52], "http": [0, 1, 2, 4, 6, 7, 9, 10, 11, 13, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "github": [0, 2, 6, 9, 11, 13, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60], "com": [0, 2, 6, 9, 11, 13, 18, 19, 21, 22, 24, 25, 28, 29, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60], "k2": [0, 2, 9, 10, 13, 15, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 56, 57, 58, 60], "fsa": [0, 2, 9, 13, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 36, 39, 42, 44, 45, 56, 57, 58, 60], "icefal": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18, 19, 22, 23, 27, 28, 29, 30, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61, 62], "cd": [0, 1, 2, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "pip": [0, 1, 6, 10, 13, 15, 21, 24, 27, 36, 60], "instal": [0, 1, 4, 6, 10, 14, 15, 17, 19, 20, 22, 23, 27, 30, 31, 32, 40, 42, 44, 45, 50, 56, 57, 58, 59], "pre": [0, 3, 4, 6, 7, 8, 9, 15, 17, 19, 20, 21, 23, 30, 40, 60, 62], "commit": [0, 21], "whenev": 0, "you": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "automat": [0, 14, 19, 40], "hook": 0, "invok": 0, "fail": 0, "If": [0, 2, 4, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 25, 26, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "ani": [0, 4, 6, 7, 13, 21, 34, 36, 37, 39, 40, 42, 44, 45, 50, 56, 57], "your": [0, 1, 2, 4, 6, 7, 9, 11, 13, 17, 19, 20, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60], "wa": [0, 22, 39, 43], "success": [0, 21, 24, 25], "pleas": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "fix": [0, 9, 10, 13, 24, 25, 26, 39], "issu": [0, 4, 6, 7, 10, 21, 24, 25, 39, 40, 57, 58], "report": [0, 9, 10, 31, 40], "some": [0, 1, 4, 6, 9, 22, 24, 25, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "i": [0, 1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60], "e": [0, 2, 4, 5, 6, 7, 13, 24, 25, 26, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "modifi": [0, 23, 30, 34, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58], "file": [0, 2, 9, 14, 15, 19, 20, 22, 24, 25, 26, 28, 29, 30, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 61], "place": [0, 21, 22, 36, 39, 43], "so": [0, 4, 6, 7, 9, 13, 19, 20, 21, 22, 24, 25, 26, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "statu": 0, "failur": 0, "see": [0, 1, 6, 7, 9, 15, 19, 21, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58], "which": [0, 2, 4, 6, 7, 9, 11, 12, 15, 19, 21, 22, 24, 25, 26, 27, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 57, 58, 60], "ha": [0, 2, 20, 21, 23, 24, 25, 26, 27, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 54, 56, 57, 58], "been": [0, 21, 23, 24, 25, 26, 36], "befor": [0, 1, 11, 13, 15, 21, 22, 24, 25, 26, 27, 28, 31, 32, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "further": [0, 4, 6, 7, 15], "chang": [0, 4, 6, 7, 10, 21, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "all": [0, 9, 11, 13, 14, 18, 19, 22, 24, 25, 26, 28, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58], "again": [0, 24, 25, 50], "should": [0, 2, 4, 6, 11, 13, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60], "succe": 0, "thi": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61, 62], "time": [0, 21, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "succeed": 0, "want": [0, 4, 6, 7, 11, 13, 15, 21, 22, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60, 61], "can": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "do": [0, 2, 4, 6, 13, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60], "Or": 0, "without": [0, 4, 6, 7, 9, 15, 17, 19, 34, 39], "your_changed_fil": 0, "py": [0, 2, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "sphinx": 1, "write": [1, 2, 3], "have": [1, 2, 4, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "prepar": [1, 3, 4, 8, 14, 16, 20, 22, 33, 59], "environ": [1, 10, 11, 12, 14, 16, 20, 24, 25, 26, 31, 32, 34, 35, 36, 37, 39, 40, 42, 43, 47, 48, 50, 57, 58], "doc": [1, 22, 54], "r": [1, 13, 21, 24, 25, 26, 47, 48], "requir": [1, 4, 6, 11, 13, 15, 21, 26, 31, 32, 40, 52, 57, 58, 60, 61], "txt": [1, 4, 9, 11, 13, 15, 21, 22, 24, 25, 26, 27, 28, 29, 31, 34, 36, 37, 39, 43, 47, 48, 50, 52, 60, 61], "set": [1, 4, 6, 7, 10, 12, 13, 16, 21, 24, 25, 26, 31, 32, 33, 34, 36, 37, 39, 40, 42, 44, 45, 50, 52, 56, 57, 58], "up": [1, 21, 22, 24, 25, 26, 31, 34, 37, 39, 40, 42, 43, 44, 45, 57, 58], "readi": [1, 34, 39, 40, 52], "refer": [1, 2, 5, 6, 7, 11, 13, 15, 21, 22, 23, 24, 25, 26, 28, 29, 31, 34, 36, 37, 39, 42, 43, 44, 47, 48, 50, 52, 54, 57, 58, 60], "restructuredtext": 1, "primer": 1, "familiar": 1, "build": [1, 9, 15, 21, 22, 24, 25, 26, 34, 36, 39, 59], "local": [1, 9, 15, 21, 42, 44, 45, 52, 56, 57, 58], "preview": 1, "what": [1, 2, 11, 15, 21, 24, 25, 26, 36, 54, 60], "look": [1, 2, 4, 6, 7, 14, 18, 21, 24, 25, 26, 34, 36, 37, 39, 40], "like": [1, 2, 9, 11, 19, 24, 25, 26, 34, 36, 37, 39, 42, 44, 45, 50, 54, 56, 57], "publish": [1, 22, 35], "html": [1, 2, 10, 11, 13, 15, 21, 23, 24, 25, 26, 27, 28, 29, 42, 56, 57, 58, 60], "gener": [1, 6, 9, 14, 15, 22, 24, 25, 26, 27, 28, 29, 33, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58, 60, 61], "view": [1, 8, 20, 24, 25, 26, 34, 36, 37, 39, 42, 44, 45, 50, 56, 57, 58], "follow": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "python3": [1, 9, 10, 13, 15, 21, 25, 26], "m": [1, 15, 21, 24, 25, 26, 36, 42, 44, 45, 47, 48, 56, 57, 58], "server": [1, 19, 56], "It": [1, 2, 6, 7, 9, 11, 14, 15, 17, 21, 23, 24, 25, 26, 27, 28, 29, 31, 34, 35, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60, 61], "print": [1, 12, 16, 21, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "serv": [1, 42, 44, 45, 56, 57, 58], "port": [1, 14, 31, 32, 40, 42, 44, 45, 56, 57, 58], "8000": [1, 11, 15, 50], "open": [1, 4, 6, 7, 9, 20, 22, 24, 25, 26, 35, 36, 39, 40], "browser": [1, 17, 19, 42, 44, 45, 56, 57, 58], "go": [1, 7, 34, 36, 39, 42, 44, 45, 56, 57, 58, 60], "read": [2, 11, 15, 21, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "code": [2, 3, 8, 10, 13, 15, 20, 21, 24, 25, 26, 34, 39, 40, 42, 43, 47, 48, 50, 54, 57, 58], "style": [2, 3, 20], "adjust": [2, 52, 60, 61], "design": 2, "python": [2, 9, 13, 15, 21, 22, 24, 25, 26, 27, 28, 29, 34, 36, 39, 42, 44, 45, 52, 56, 57, 58, 60, 61], "recommend": [2, 6, 7, 9, 21, 31, 32, 34, 36, 37, 39, 40, 42, 57, 58], "test": [2, 4, 9, 15, 20, 22, 23, 30, 31, 32, 34, 36, 37, 39, 40, 43, 44, 47, 48, 52, 60, 61], "valid": [2, 21, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "dataset": [2, 10, 11, 13, 14, 21, 22, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60, 61], "lhots": [2, 9, 11, 13, 15, 20, 22, 24, 25, 26, 34, 36, 39], "readthedoc": [2, 11, 21], "io": [2, 9, 11, 13, 15, 21, 23, 24, 25, 26, 27, 28, 29, 42, 56, 57, 58, 60], "en": [2, 11, 21, 24], "latest": [2, 9, 11, 13, 19, 21, 39, 40, 42, 43, 44, 45, 56, 57, 58], "index": [2, 21, 23, 24, 25, 26, 27, 28, 29, 56, 57, 58], "yesno": [2, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 38, 50, 62], "veri": [2, 3, 7, 13, 24, 25, 26, 31, 32, 36, 47, 48, 50, 57, 58], "good": [2, 7], "exampl": [2, 11, 13, 19, 20, 22, 24, 25, 26, 28, 29, 30, 40, 43, 47, 48, 50], "speech": [2, 11, 13, 14, 19, 20, 21, 23, 33, 35, 36, 50, 60, 61, 62], "pull": [2, 4, 6, 7, 9, 24, 25, 26, 27, 31, 32, 34, 36, 39, 52, 54], "380": [2, 24, 48], "show": [2, 4, 6, 7, 9, 15, 19, 21, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "add": [2, 11, 24, 25, 26, 34, 36, 37, 57, 62], "new": [2, 3, 9, 13, 19, 21, 24, 25, 26, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 50, 56, 57, 58], "suppos": [2, 9, 57, 58], "would": [2, 11, 22, 24, 25, 26, 39, 43, 57, 58], "name": [2, 9, 10, 13, 15, 22, 24, 25, 26, 27, 34, 36, 42, 44, 45, 52, 57, 58], "foo": [2, 29, 34, 39, 42, 44, 45, 56, 57, 58], "eg": [2, 9, 10, 11, 12, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 29, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "mkdir": [2, 9, 24, 25, 34, 36, 37, 39, 43, 47, 48, 50], "p": [2, 4, 13, 21, 24, 25, 36, 47, 48], "asr": [2, 4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 62], "touch": 2, "sh": [2, 9, 11, 21, 22, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "chmod": 2, "x": [2, 4, 26, 54], "simpl": [2, 12, 14, 16, 21, 36, 52], "own": [2, 11, 31, 32, 40, 42, 52, 57, 58], "otherwis": [2, 24, 25, 26, 32, 34, 36, 39, 40, 42, 44, 45, 56, 57, 58], "librispeech": [2, 4, 6, 7, 10, 18, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 38, 39, 40, 42, 43, 44, 45, 52, 53, 54, 56, 57, 58, 62], "assum": [2, 4, 15, 21, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 40, 42, 43, 47, 48, 50, 52, 56, 57, 58], "fanci": 2, "call": [2, 10, 27, 40, 52], "bar": [2, 29, 34, 39, 42, 44, 45, 56, 57, 58], "organ": 2, "wai": [2, 3, 15, 30, 42, 44, 45, 54, 56, 57, 58], "readm": [2, 34, 36, 37, 39, 43, 47, 48, 50], "md": [2, 18, 22, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "asr_datamodul": [2, 9, 10, 15, 21], "pretrain": [2, 4, 6, 7, 15, 22, 24, 25, 26, 27, 29, 31, 32, 34, 36, 37, 39, 43, 47, 48, 50, 59], "For": [2, 4, 6, 7, 9, 10, 14, 18, 21, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "instanc": [2, 9, 10, 12, 16, 18, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "tdnn": [2, 9, 10, 12, 15, 16, 21, 35, 38, 41, 46, 49], "its": [2, 4, 22, 23, 24, 25, 26, 29, 36, 44, 52], "directori": [2, 9, 11, 13, 20, 21, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "structur": [2, 26], "descript": [2, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "contain": [2, 8, 11, 13, 14, 15, 20, 22, 23, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 62], "inform": [2, 4, 6, 11, 12, 16, 21, 22, 34, 36, 37, 39, 42, 43, 44, 47, 48, 50, 54, 56, 57, 58], "g": [2, 4, 5, 6, 7, 11, 13, 21, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "wer": [2, 5, 9, 12, 15, 21, 22, 31, 32, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "etc": [2, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60], "provid": [2, 11, 15, 19, 21, 22, 23, 24, 25, 26, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 62], "pytorch": [2, 10, 13, 21, 24, 25, 26, 36], "dataload": [2, 21], "take": [2, 7, 9, 22, 40, 42, 50, 52, 57, 58, 60, 61], "input": [2, 22, 24, 25, 26, 34, 36, 37, 39, 43, 47, 48, 50, 54], "checkpoint": [2, 4, 6, 7, 12, 15, 21, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "save": [2, 15, 16, 21, 22, 25, 26, 28, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "dure": [2, 4, 5, 7, 10, 13, 19, 22, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "stage": [2, 21, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "": [2, 4, 6, 7, 9, 14, 15, 16, 21, 22, 24, 25, 26, 27, 28, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "definit": [2, 24, 25], "neural": [2, 4, 6, 7, 31, 34, 39, 52], "network": [2, 31, 34, 36, 39, 42, 44, 45, 52, 56, 57, 58], "script": [2, 6, 7, 13, 14, 20, 21, 29, 30, 34, 36, 37, 39, 40, 43, 47, 48, 50, 52, 56], "infer": [2, 22, 24, 25, 59], "tdnn_lstm_ctc": [2, 37, 43, 48], "conformer_ctc": [2, 34, 39], "get": [2, 9, 13, 14, 15, 19, 21, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 50, 54, 56, 57, 58, 60], "feel": [2, 40, 52, 56], "result": [2, 4, 7, 9, 16, 18, 19, 22, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "everi": [2, 22, 42, 44, 45, 56, 57, 58], "kept": [2, 42, 57, 58], "self": [2, 23, 26, 54], "toler": 2, "duplic": 2, "among": [2, 21], "differ": [2, 9, 12, 21, 24, 25, 26, 27, 31, 32, 33, 34, 35, 39, 40, 42, 54, 56, 57, 58, 60], "invoc": [2, 24, 25], "help": [2, 12, 14, 16, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "blob": [2, 11, 18, 21, 22, 29, 42, 44, 45, 56, 57, 58], "master": [2, 6, 9, 11, 15, 18, 21, 22, 25, 26, 28, 29, 31, 32, 36, 40, 42, 44, 45, 56, 57, 58], "transform": [2, 6, 7, 34, 39, 56], "conform": [2, 28, 35, 36, 38, 41, 42, 44, 56, 57, 58], "base": [2, 4, 7, 13, 26, 31, 32, 34, 36, 37, 39, 40, 42, 44, 45, 52, 56, 57, 58], "lstm": [2, 23, 29, 30, 35, 38, 41, 46, 53, 55], "attent": [2, 26, 36, 37, 40, 54, 57, 58], "lm": [2, 4, 5, 7, 9, 11, 20, 21, 36, 42, 43, 47, 48, 50, 52, 57, 58, 62], "rescor": [2, 5, 20, 37, 43, 45, 47, 48, 50, 52], "demonstr": [2, 14, 15, 17, 19, 22, 27, 31], "consid": [2, 4, 26, 32], "colab": [2, 21], "notebook": [2, 21], "welcom": 3, "There": [3, 4, 15, 24, 25, 26, 27, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "mani": [3, 12, 21, 57, 58], "two": [3, 4, 11, 14, 15, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 61], "them": [3, 5, 6, 17, 18, 19, 24, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "To": [3, 4, 5, 6, 7, 9, 11, 15, 19, 21, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "document": [3, 20, 22, 23, 24, 25, 26, 27, 45, 60], "repositori": [3, 9, 24, 25, 26, 27], "recip": [3, 4, 6, 7, 9, 11, 15, 18, 20, 21, 22, 27, 31, 32, 34, 36, 37, 39, 40, 42, 43, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "In": [3, 4, 6, 10, 15, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 33, 34, 36, 37, 39, 40, 43, 47, 48, 50, 54], "page": [3, 19, 28, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 62], "describ": [3, 5, 8, 9, 17, 22, 24, 25, 27, 28, 29, 30, 34, 36, 37, 39, 42, 43, 47, 48, 57, 58, 60], "how": [3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 24, 25, 26, 27, 30, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "creat": [3, 4, 6, 7, 14, 15, 20, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57], "data": [3, 4, 6, 7, 8, 13, 14, 15, 16, 20, 22, 24, 25, 26, 27, 28, 29, 33, 35, 52, 59], "train": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 20, 22, 23, 28, 29, 30, 51, 54, 59, 62], "decod": [3, 4, 8, 10, 11, 14, 15, 19, 20, 24, 25, 26, 29, 30, 32, 33, 52], "model": [3, 4, 6, 7, 9, 11, 12, 14, 17, 19, 20, 21, 23, 40, 51, 54, 59, 62], "As": [4, 5, 6, 7, 24, 36, 39, 40, 52], "type": [4, 6, 7, 9, 11, 15, 21, 22, 24, 25, 26, 34, 36, 39, 42, 44, 45, 50, 54, 56, 57, 58, 60], "e2": [4, 7, 21, 52], "usual": [4, 6, 7, 12, 34, 36, 37, 39, 40, 42, 44, 45, 52, 56, 57, 58, 60, 61], "an": [4, 5, 6, 7, 9, 11, 13, 15, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 34, 35, 36, 39, 40, 42, 45, 50, 51, 56, 57, 58, 60, 61, 62], "intern": [4, 5], "languag": [4, 7, 11, 19, 20, 34, 36, 37, 51, 60, 62], "learn": [4, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "level": [4, 5, 15, 52], "corpu": [4, 6, 7, 35, 52], "real": 4, "life": 4, "scenario": 4, "often": [4, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "mismatch": [4, 32, 57], "between": [4, 7, 31, 42, 57, 58], "target": [4, 19, 21, 31], "space": [4, 17, 20, 52], "problem": [4, 6, 7, 21, 40], "when": [4, 6, 9, 10, 15, 19, 24, 25, 26, 30, 36, 39, 40, 42, 44, 45, 52, 57, 58], "act": 4, "against": [4, 21], "extern": [4, 5, 6, 7], "tutori": [4, 5, 6, 7, 13, 15, 20, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 52, 56, 57, 58, 60, 61], "low": [4, 24, 25, 33, 60], "order": [4, 13, 21, 24, 25, 26, 34, 37, 39, 43, 47, 48], "densiti": 4, "ratio": 4, "allevi": 4, "effect": [4, 7, 26, 31], "improv": [4, 5, 6, 7, 31, 33, 36, 52], "perform": [4, 6, 7, 23, 31, 32, 33, 36, 40, 57], "languga": 4, "integr": [4, 19, 31], "pruned_transducer_stateless7_stream": [4, 6, 7, 26, 27, 58], "stream": [4, 6, 7, 15, 20, 23, 24, 25, 27, 30, 34, 39, 47, 48, 56, 62], "howev": [4, 6, 7, 22, 25, 33, 40], "easili": [4, 6, 7, 31, 34, 37, 39], "appli": [4, 6, 7, 36, 54], "other": [4, 7, 9, 13, 14, 15, 22, 25, 26, 27, 31, 36, 39, 40, 42, 43, 47, 48, 50, 54, 57, 58, 62], "encount": [4, 6, 7, 10, 21, 26, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "here": [4, 6, 7, 22, 24, 25, 26, 34, 36, 37, 39, 40, 43, 54, 57], "simplic": [4, 6, 7], "same": [4, 6, 7, 21, 22, 24, 25, 26, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58], "domain": [4, 6, 7, 31, 32, 33], "gigaspeech": [4, 6, 7, 18, 28, 31, 32, 56], "first": [4, 6, 9, 10, 11, 21, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "let": [4, 6, 7, 14, 21, 24, 25, 26, 31, 32, 34, 39, 52], "background": 4, "predecessor": 4, "dr": 4, "propos": [4, 36, 54, 58], "address": [4, 9, 15, 19, 21, 22, 24, 25, 26, 36, 42, 45, 56, 57, 58], "sourc": [4, 11, 13, 21, 22, 24, 25, 26, 34, 35, 36, 39], "acoust": [4, 57, 58], "similar": [4, 5, 32, 40, 44, 57, 58], "deriv": 4, "formula": 4, "bay": 4, "theorem": 4, "text": [4, 6, 7, 11, 16, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "score": [4, 5, 7, 34, 39, 42, 57, 58], "left": [4, 24, 26, 31, 36, 57, 58], "y_u": 4, "mathit": 4, "y": 4, "right": [4, 24, 36, 54, 57], "log": [4, 9, 10, 12, 15, 16, 21, 24, 25, 26, 31, 43, 47, 48, 50, 60, 61], "y_": 4, "u": [4, 21, 24, 25, 26, 34, 36, 37, 39, 40, 50], "lambda_1": 4, "p_": 4, "lambda_2": 4, "where": [4, 9, 10, 57], "weight": [4, 15, 34, 37, 39, 44, 45, 52, 56], "respect": 4, "onli": [4, 6, 8, 11, 13, 14, 15, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60, 61], "compar": [4, 24, 25, 26, 32, 57], "shallow": [4, 5, 20, 52], "fusion": [4, 5, 20, 52], "subtract": [4, 5], "work": [4, 9, 13, 15, 24, 25, 26, 39], "treat": [4, 25, 26], "predictor": 4, "joiner": [4, 24, 25, 26, 27, 29, 31, 32, 36, 42, 56, 57, 58], "weak": 4, "captur": 4, "therefor": [4, 10], "n": [4, 5, 6, 11, 21, 34, 40, 42, 44, 45, 47, 48, 56, 57, 58], "gram": [4, 6, 21, 34, 36, 37, 42, 43, 45, 47, 48, 57, 58], "approxim": [4, 5], "ilm": 4, "lead": [4, 7, 12], "rnnt": [4, 42, 57, 58], "bi": [4, 6], "addit": [4, 33], "estim": 4, "li": 4, "choic": 4, "accord": [4, 52], "origin": [4, 5, 31, 32, 33], "paper": [4, 5, 31, 40, 42, 56, 57, 58, 60, 61], "achiev": [4, 6, 7, 31, 32, 52, 54], "both": [4, 32, 42, 44, 45, 54, 56, 57, 58], "intra": 4, "cross": 4, "much": [4, 24, 25, 31, 32], "faster": [4, 6, 31, 60], "evalu": 4, "now": [4, 6, 9, 13, 15, 21, 24, 25, 26, 34, 39, 40, 42, 43, 44, 45, 47, 48, 52, 56, 57, 58], "illustr": [4, 6, 7, 31, 32, 52], "purpos": [4, 6, 7, 24, 25, 31, 32, 52], "from": [4, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 24, 25, 26, 27, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61, 62], "link": [4, 6, 7, 18, 21, 22, 23, 42, 44, 45, 56, 57, 58, 60, 61], "scratch": [4, 6, 7, 32, 42, 44, 45, 52, 56, 57, 58, 60, 61], "prune": [4, 6, 7, 22, 26, 27, 36, 38, 40, 41, 53, 54, 55, 56, 58], "statelessx": [4, 6, 7, 38, 40, 41, 53, 54, 55], "initi": [4, 6, 7, 9, 31, 32, 34, 37], "step": [4, 6, 7, 11, 14, 21, 22, 24, 25, 26, 32, 34, 36, 37, 39, 40, 42, 44, 45, 50, 52, 56, 57, 58], "download": [4, 6, 7, 8, 10, 13, 15, 19, 20, 23, 30, 31, 32, 35, 40, 52, 59], "git_lfs_skip_smudg": [4, 6, 7, 24, 25, 26, 27, 31, 32, 52], "huggingfac": [4, 6, 7, 13, 18, 20, 21, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 43, 44, 45, 47, 48, 50, 52, 56, 60, 61], "co": [4, 6, 7, 18, 19, 21, 22, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 39, 43, 44, 45, 47, 48, 50, 52, 56, 60, 61], "zengwei": [4, 6, 7, 24, 26, 27, 31, 32, 45, 52, 56, 60], "stateless7": [4, 6, 7, 26, 27], "2022": [4, 6, 7, 22, 24, 25, 26, 27, 36, 42, 44, 45, 56, 57], "12": [4, 6, 7, 9, 14, 21, 22, 24, 25, 26, 27, 31, 34, 36, 37, 39, 42, 44, 45, 47, 50, 56, 57, 58, 60, 61], "29": [4, 6, 7, 21, 26, 27, 34, 36, 37, 39, 43, 44, 47, 48], "exp": [4, 6, 7, 9, 15, 16, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "lf": [4, 6, 7, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 43, 45, 47, 48, 50, 52], "includ": [4, 6, 7, 24, 25, 26, 27, 31, 32, 42, 44, 45, 52, 56, 57, 58], "pt": [4, 6, 7, 9, 11, 15, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "ln": [4, 6, 7, 9, 15, 22, 24, 25, 26, 27, 31, 32, 34, 39, 42, 44, 45, 52, 56, 57, 58], "epoch": [4, 6, 7, 9, 12, 15, 16, 21, 22, 24, 25, 26, 27, 28, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "99": [4, 6, 7, 15, 21, 24, 25, 26, 27, 31, 32], "symbol": [4, 5, 6, 7, 21, 36, 42, 57, 58], "load": [4, 6, 7, 9, 15, 21, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "lang_bpe_500": [4, 6, 7, 22, 24, 25, 26, 27, 28, 29, 31, 32, 39, 42, 44, 45, 52, 56, 57, 58], "bpe": [4, 5, 6, 7, 22, 24, 25, 26, 27, 29, 31, 32, 39, 42, 44, 45, 52, 56, 57, 58], "done": [4, 6, 7, 9, 13, 15, 21, 22, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "via": [4, 6, 7, 14, 21, 23, 28, 29, 30, 31, 32, 52], "exp_dir": [4, 6, 7, 9, 15, 21, 24, 25, 26, 36, 39, 40, 42, 44, 45, 57, 58], "avg": [4, 6, 7, 9, 12, 15, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 36, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "averag": [4, 6, 7, 9, 12, 15, 21, 22, 24, 25, 26, 27, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "fals": [4, 6, 7, 9, 15, 21, 22, 24, 25, 26, 31, 32, 34, 36, 39, 40], "dir": [4, 6, 7, 22, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "max": [4, 6, 7, 21, 22, 24, 25, 31, 32, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58, 60, 61], "durat": [4, 6, 7, 11, 22, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "600": [4, 6, 7, 21, 22, 31, 39, 42, 44, 56, 57, 58], "chunk": [4, 6, 7, 24, 26, 27, 31, 57, 58], "len": [4, 6, 7, 26, 27, 58], "32": [4, 6, 7, 21, 24, 25, 26, 27, 31, 34, 36, 37, 58], "method": [4, 5, 7, 15, 19, 22, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 56, 57, 58], "modified_beam_search": [4, 5, 6, 7, 19, 36, 40, 42, 44, 56, 57, 58], "clean": [4, 9, 15, 21, 26, 31, 34, 36, 39, 40, 42, 43, 44, 45, 56, 57, 58], "beam_size_4": [4, 6, 7], "11": [4, 6, 7, 9, 10, 11, 15, 21, 24, 25, 27, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "best": [4, 5, 6, 7, 24, 25, 26, 31, 32, 34, 37, 39], "7": [4, 6, 7, 9, 21, 22, 23, 26, 30, 34, 37, 39, 42, 43, 47, 48, 56, 57], "93": [4, 6, 7, 15], "Then": [4, 6], "necessari": [4, 40, 52], "note": [4, 5, 6, 7, 10, 11, 15, 22, 24, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "960": [4, 31, 32, 39, 42, 44, 45, 56, 57, 58], "hour": [4, 13, 31, 32, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "ezerhouni": [4, 6, 7], "pushd": [4, 6, 7, 27], "popd": [4, 6, 7, 27], "marcoyang": [4, 6], "librispeech_bigram": [4, 6], "2gram": [4, 6], "fst": [4, 11, 21, 36, 50], "modified_beam_search_lm_lodr": 4, "lm_dir": [4, 6, 7, 9, 21, 39], "lm_scale": [4, 6, 7], "42": [4, 9, 15, 21, 25, 31, 34, 39, 50], "lodr_scal": 4, "24": [4, 9, 10, 13, 15, 21, 24, 25, 37, 43, 47, 48, 50], "modified_beam_search_lodr": [4, 5, 6], "scale": [4, 6, 7, 24, 25, 34, 39, 40, 43, 45, 47, 48], "embed": [4, 6, 7, 36, 42, 52, 56, 57, 58], "dim": [4, 6, 7, 24, 25, 26, 31, 36, 42, 52, 57], "2048": [4, 6, 7, 22, 24, 25, 26, 36, 52], "hidden": [4, 6, 7, 25, 52, 56], "num": [4, 6, 7, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 44, 45, 52, 56, 57, 58, 60, 61], "layer": [4, 6, 7, 24, 25, 26, 31, 36, 40, 42, 52, 54, 56, 57, 58], "vocab": [4, 6, 7, 39], "500": [4, 6, 7, 22, 24, 25, 26, 36, 39, 45, 56, 60, 61], "token": [4, 11, 22, 24, 25, 26, 27, 28, 29, 31, 34, 36, 37, 39, 43, 47, 48, 50, 52, 60, 61], "ngram": [4, 39, 43, 47, 48], "2": [4, 6, 7, 9, 11, 13, 15, 20, 22, 23, 30, 31, 32, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "extra": [4, 24, 25, 26, 36, 54, 57, 59], "argument": [4, 7, 15, 31, 32, 40, 54], "need": [4, 6, 11, 13, 14, 15, 19, 21, 22, 23, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58], "given": [4, 9, 11, 12, 13, 15, 21, 22, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 57, 58, 60, 61], "specifi": [4, 7, 10, 12, 15, 16, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "neg": [4, 36], "number": [4, 7, 16, 19, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "obtain": [4, 7, 34, 36, 37, 39, 43, 47, 48], "shown": [4, 7, 31], "below": [4, 7, 9, 11, 12, 13, 14, 15, 16, 21, 24, 25, 26, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 60], "61": [4, 6], "6": [4, 6, 7, 9, 10, 11, 15, 23, 30, 34, 36, 39, 42, 43, 47, 48, 56, 61], "74": [4, 6, 21, 22], "recal": 4, "lowest": [4, 12, 15, 42, 44, 45, 56, 57, 58], "77": [4, 6, 7, 21, 39], "08": [4, 6, 7, 9, 15, 26, 39, 43, 45, 47, 48, 50, 56], "inde": 4, "even": [4, 19, 21, 25], "better": [4, 6], "increas": [4, 6, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "8": [4, 6, 7, 9, 10, 15, 21, 22, 24, 25, 26, 31, 34, 36, 39, 40, 42, 43, 44, 45, 50, 56, 57, 58], "45": [4, 6, 15, 21, 24, 26, 34, 36, 39], "38": [4, 6, 21, 24, 34, 36, 39, 47], "23": [4, 6, 9, 10, 11, 15, 21, 24, 25, 26, 31, 34, 36, 37, 39, 47, 48, 50], "section": [5, 8, 9, 10, 17, 21, 22, 27, 28, 29, 30, 34, 39], "langugag": 5, "transduc": [5, 20, 22, 23, 27, 30, 31, 32, 35, 38, 40, 41, 52, 53, 54, 55], "rnn": [5, 6, 7, 20, 25, 36, 42, 44, 56, 57, 58, 62], "avail": [5, 6, 8, 15, 20, 21, 22, 24, 25, 26, 32, 33, 34, 36, 39, 43, 47, 48, 50, 56], "beam": [5, 22, 56], "search": [5, 6, 7, 18, 19, 59], "realli": [5, 34, 37, 39, 42, 44, 45, 56, 57, 58], "valu": [5, 7, 24, 25, 26, 31, 32, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "t": [5, 13, 14, 15, 21, 24, 25, 26, 27, 28, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "doe": [5, 15, 24, 25, 26, 34, 36, 39, 50], "modified_beam_search_lm_shallow_fus": [5, 6, 7], "interpol": 5, "also": [5, 6, 7, 11, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 29, 31, 34, 36, 37, 39, 42, 44, 45, 50, 52, 54, 56, 57, 58, 60], "known": 5, "bigram": 5, "backoff": 5, "modified_beam_search_lm_rescor": [5, 6], "hypothes": [5, 6], "rnnlm": [5, 6, 52], "re": [5, 6, 10, 34, 37, 39, 40, 42, 44, 45, 54, 56, 57, 58], "rank": [5, 6], "modified_beam_search_lm_rescore_lodr": [5, 6], "lodr": [5, 20, 52], "commonli": [6, 7, 34, 36, 37, 39, 43, 47, 48, 50], "approach": 6, "incorpor": 6, "unlik": 6, "more": [6, 14, 21, 24, 25, 26, 31, 34, 39, 40, 50, 52, 54, 56, 57, 60, 61], "effici": [6, 7, 31, 42, 57, 58], "than": [6, 21, 22, 25, 31, 34, 36, 37, 39, 42, 43, 44, 45, 50, 56, 57, 58], "sinc": [6, 13, 21, 24, 25, 26, 32, 40, 50, 56], "less": [6, 22, 31, 39, 43, 50, 57, 58], "comput": [6, 15, 21, 22, 24, 25, 26, 34, 36, 37, 40, 42, 43, 45, 47, 48, 50, 56, 57, 58], "gpu": [6, 7, 8, 13, 14, 20, 21, 24, 25, 31, 32, 34, 36, 37, 39, 40, 42, 44, 45, 47, 48, 50, 56, 57, 58], "try": [6, 10, 12, 15, 17, 19, 40, 42, 44, 45, 56, 57, 58], "might": [6, 7, 25, 26, 57, 58], "ideal": [6, 7], "mai": [6, 7, 9, 21, 24, 25, 26, 32, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58, 62], "With": [6, 21], "43": [6, 9, 25, 26, 39], "great": 6, "made": [6, 24], "boost": [6, 7], "tabl": [6, 19, 24, 25, 26], "67": [6, 21], "59": [6, 15, 21, 24, 37, 39], "86": 6, "fact": 6, "arpa": [6, 11, 50], "performn": 6, "depend": [6, 14, 15, 21, 34, 39, 59], "kenlm": 6, "kpu": 6, "archiv": [6, 52], "zip": 6, "execut": [6, 7, 13, 24, 31, 34, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "9": [6, 9, 21, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 50, 56, 57, 58], "57": [6, 21, 25, 39, 43], "slightli": 6, "63": [6, 36], "04": [6, 24, 25, 26, 34, 36, 37, 39, 43, 47, 48], "52": [6, 21, 34, 39], "73": 6, "mention": [6, 54], "earlier": 6, "benchmark": [6, 36], "speed": [6, 24, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "132": 6, "95": [6, 35], "177": [6, 21, 22, 25, 26, 36, 37, 39], "96": [6, 21, 31], "210": [6, 47, 48], "262": [6, 7, 15], "62": [6, 7, 21, 39, 43], "65": [6, 7, 21, 24], "352": [6, 7, 39], "58": [6, 7, 10, 21, 39], "488": [6, 7, 24, 25, 26], "400": [6, 9, 35], "610": 6, "870": 6, "156": [6, 15], "203": [6, 15, 22, 39], "255": [6, 25, 26], "160": [6, 15], "263": [6, 9, 15, 21, 25], "singl": [6, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "32g": 6, "v100": [6, 34, 36, 37, 39], "vari": 6, "word": [7, 11, 12, 15, 34, 36, 37, 39, 43, 47, 48, 50, 52], "error": [7, 9, 10, 12, 13, 15, 21, 24, 25, 26, 39], "rate": [7, 12, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "These": [7, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "alreadi": [7, 11, 13, 21, 22, 33], "But": [7, 24, 42, 44, 45, 56, 57, 58], "long": [7, 24, 52, 60, 61], "true": [7, 9, 15, 21, 22, 24, 25, 26, 31, 32, 34, 36, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "either": [7, 15, 19, 34, 36, 37, 39, 57, 58], "choos": [7, 19, 21, 40, 42, 44, 45, 56, 57, 58], "three": [7, 15, 24, 25, 26, 29, 34, 36, 54], "associ": 7, "dimens": [7, 31, 42, 52, 57, 58], "obviou": 7, "rel": [7, 33], "reduct": [7, 15, 21, 24, 25, 44], "around": [7, 32], "A": [7, 14, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 56, 57, 58], "few": [7, 11, 24, 25, 26, 40], "paramet": [7, 14, 22, 24, 25, 26, 28, 31, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 52, 56, 57, 58, 60, 61], "tune": [7, 20, 24, 25, 26, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58, 62], "control": [7, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "too": 7, "small": [7, 31, 32, 33, 36, 47, 48, 50], "fulli": 7, "util": [7, 9, 10, 15, 21, 39], "larg": [7, 13], "domin": 7, "bad": 7, "typic": [7, 31, 34, 36, 37, 39], "activ": [7, 13, 19, 21], "path": [7, 9, 15, 19, 21, 22, 24, 25, 26, 29, 32, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "trade": 7, "off": [7, 24], "accuraci": [7, 24, 25, 33, 35], "larger": [7, 25, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "slower": 7, "built": [8, 9, 21, 60], "imag": [8, 20], "cpu": [8, 12, 13, 14, 15, 16, 20, 21, 22, 24, 25, 26, 28, 34, 42, 44, 45, 50, 57, 58, 60], "still": [8, 24, 25, 26, 33], "introduct": [8, 20, 53, 62], "tag": [8, 20], "cuda": [8, 10, 15, 20, 22, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 56, 57, 58], "enabl": [8, 21, 40], "within": [8, 14, 17, 19, 20, 24, 25], "updat": [8, 24, 25, 26, 31], "host": [9, 22], "hub": 9, "k2fsa": 9, "find": [9, 10, 16, 17, 18, 19, 22, 24, 25, 26, 29, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "dockerfil": 9, "tree": [9, 11, 28, 29, 34, 36, 37, 39, 43, 47, 48, 50, 56], "item": [9, 14], "curl": 9, "registri": 9, "v2": [9, 26, 34, 39], "jq": 9, "give": [9, 11, 15, 36], "someth": [9, 34, 36, 37, 39, 42, 44, 45, 50, 56, 57], "torch2": [9, 13, 15], "cuda12": 9, "cuda11": [9, 10, 21], "torch1": [9, 10, 21], "cuda10": 9, "13": [9, 10, 15, 21, 22, 24, 25, 26, 32, 36, 37, 39, 43, 44, 47], "releas": [9, 15, 21, 22, 24, 25, 26, 34, 36, 39, 60], "torch": [9, 10, 13, 14, 20, 22, 23, 30, 34, 36, 39], "select": [9, 12, 13, 14, 19, 21, 24, 25, 26, 42, 43, 47, 48, 50, 56, 57, 58], "appropri": [9, 21], "combin": [9, 12, 24, 25, 26], "visit": [9, 18, 19, 42, 44, 45, 56, 57, 58, 60, 61], "pkg": 9, "py3": [9, 10, 21], "v1": [9, 34, 37, 39, 43, 47, 48], "current": [9, 19, 24, 25, 36, 40, 54, 56, 57, 58, 60, 61, 62], "ghcr": 9, "alwai": [9, 21, 22], "sudo": [9, 34, 37], "rm": 9, "bin": [9, 13, 21, 24, 25, 26, 34, 39], "bash": 9, "start": [9, 11, 12, 14, 15, 16, 19, 21, 22, 26, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "interfac": 9, "present": [9, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "root": [9, 24, 25, 26, 52], "60c947eac59c": 9, "workspac": 9, "export": [9, 10, 11, 12, 13, 14, 16, 20, 21, 33, 34, 36, 37, 39, 40, 43, 47, 48, 50, 59], "pythonpath": [9, 11, 12, 13, 15, 16, 21, 24, 25, 26], "user": [9, 10, 13, 21], "copi": [9, 21, 54], "switch": [9, 21, 34, 39, 45], "opt": 9, "conda": [9, 10], "lib": [9, 10, 15, 21, 26], "site": [9, 10, 15, 21, 26], "packag": [9, 10, 15, 21, 26, 60, 61], "__init__": [9, 10, 15, 21, 22, 24, 25, 26, 34, 36, 39], "line": [9, 10, 11, 24, 25, 26, 42, 52, 57, 58], "modul": [9, 13, 20, 24, 26, 31, 44, 57], "_k2": [9, 10, 21], "determinizeweightpushingtyp": [9, 10], "importerror": [9, 20], "libcuda": 9, "cannot": [9, 20, 24, 25, 26], "share": [9, 20, 21], "object": [9, 20, 21, 34, 36, 37, 42, 50, 56, 57], "No": [9, 13, 20, 24, 25, 26, 50], "stub": 9, "list": [9, 15, 24, 25, 26, 34, 36, 37, 39, 43, 47, 48], "16": [9, 15, 21, 22, 24, 25, 26, 29, 31, 34, 36, 37, 39, 42, 43, 47, 48, 50, 56, 57, 58], "second": [9, 14, 34, 36, 37, 39, 40, 42, 44, 45, 50, 56, 57, 58], "2023": [9, 15, 21, 24, 25, 26, 31, 32, 44, 52, 61], "01": [9, 11, 15, 21, 24, 36, 37, 39, 40, 44], "02": [9, 11, 21, 22, 24, 25, 26, 31, 36, 39, 42, 48, 56, 57, 60], "06": [9, 15, 21, 22, 24, 31, 32, 37, 39, 43, 50], "info": [9, 15, 21, 22, 24, 25, 26, 31, 34, 36, 37, 39, 43, 47, 48, 50], "264": [9, 21, 26], "posixpath": [9, 15, 21, 24, 25, 26, 36, 39], "lang_dir": [9, 15, 21, 36, 39], "lang_phon": [9, 11, 15, 21, 37, 43, 47, 48, 50], "feature_dim": [9, 15, 21, 22, 24, 25, 26, 34, 36, 39, 50], "search_beam": [9, 15, 21, 34, 39, 50], "20": [9, 14, 15, 21, 22, 24, 26, 31, 32, 34, 36, 37, 39, 42, 43, 47, 48, 50, 52, 57], "output_beam": [9, 15, 21, 34, 39, 50], "min_active_st": [9, 15, 21, 34, 39, 50], "30": [9, 10, 15, 21, 24, 25, 26, 34, 36, 37, 39, 40, 42, 44, 45, 50, 56, 57, 58], "max_active_st": [9, 15, 21, 34, 39, 50], "10000": [9, 15, 21, 34, 39, 50], "use_double_scor": [9, 15, 21, 34, 39, 50], "14": [9, 10, 15, 21, 22, 24, 25, 28, 34, 39, 42, 43, 44, 47, 56, 57, 58], "feature_dir": [9, 15, 21, 39], "fbank": [9, 11, 15, 21, 22, 24, 25, 26, 34, 36, 37, 39, 43, 47, 48, 50], "max_dur": [9, 15, 21, 39], "bucketing_sampl": [9, 15, 21, 39], "num_bucket": [9, 15, 21, 39], "concatenate_cut": [9, 15, 21, 39], "duration_factor": [9, 15, 21, 39], "gap": [9, 15, 21, 39], "on_the_fly_feat": [9, 15, 21, 39], "shuffl": [9, 15, 21, 39], "return_cut": [9, 15, 21, 39], "num_work": [9, 15, 21, 39], "env_info": [9, 15, 21, 22, 24, 25, 26, 34, 36, 39], "sha1": [9, 15, 21, 22, 24, 25, 26, 34, 36, 39], "4c05309499a08454997adf500b56dcc629e35ae5": [9, 21], "date": [9, 15, 21, 22, 24, 25, 26, 34, 36, 39], "tue": [9, 21, 24, 39], "jul": [9, 15, 21], "25": [9, 15, 21, 22, 24, 25, 34, 39, 42, 47, 48, 50, 57], "36": [9, 21, 24, 36, 39, 40], "dev": [9, 10, 15, 21, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "7640d663": 9, "branch": [9, 15, 21, 22, 24, 25, 26, 34, 36, 39, 44], "375520d": 9, "fri": [9, 22], "28": [9, 21, 24, 25, 36, 39, 43, 60], "07": [9, 21, 24, 25, 26, 34, 36, 37, 39], "hostnam": [9, 15, 21, 22, 24, 25, 26, 36], "ip": [9, 15, 21, 22, 24, 25, 26, 36], "172": 9, "17": [9, 21, 22, 24, 25, 26, 34, 39, 47, 48, 56], "401": 9, "lexicon": [9, 11, 15, 21, 34, 36, 37, 39, 40, 42, 44, 45, 50, 56, 57, 58], "168": [9, 15, 21, 43], "compil": [9, 15, 21, 24, 25, 34, 36, 39], "linv": [9, 11, 15, 21, 36, 39, 50], "403": [9, 43], "273": [9, 15, 21, 22, 36], "devic": [9, 15, 21, 22, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 57, 58], "406": [9, 39], "291": [9, 21], "424": 9, "218": [9, 15, 21, 25], "about": [9, 11, 12, 14, 15, 16, 21, 24, 25, 26, 31, 36, 40, 42, 45, 56, 57, 58], "cut": [9, 15, 21, 39], "425": [9, 25, 39], "252": [9, 21], "504": 9, "204": [9, 21, 26, 39], "batch": [9, 15, 21, 24, 25, 26, 34, 36, 37, 39, 42, 44, 45, 52, 56, 57, 58], "process": [9, 15, 21, 22, 24, 25, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "until": [9, 15, 21, 39, 44], "w": [9, 21, 39, 47, 48], "nnpack": 9, "cpp": [9, 24, 28], "53": [9, 15, 21, 26, 34, 42, 43, 48, 56, 57], "could": [9, 24, 25, 26, 31, 32, 33, 34, 37, 52], "reason": [9, 14, 22, 24, 25, 26, 32, 57], "unsupport": 9, "hardwar": 9, "687": 9, "241": [9, 21, 34], "transcript": [9, 15, 21, 34, 35, 36, 37, 39, 42, 43, 47, 48, 56, 57, 58], "store": [9, 11, 15, 21, 39, 52], "recog": [9, 15, 21, 36, 39], "test_set": [9, 15, 21, 50], "688": 9, "564": [9, 15, 21], "240": [9, 15, 21, 34, 50], "ins": [9, 15, 21, 39, 50], "del": [9, 15, 21, 39, 50], "sub": [9, 15, 21, 39, 50], "690": 9, "249": [9, 21, 25], "wrote": [9, 15, 21, 39], "detail": [9, 11, 15, 21, 23, 27, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 54, 56, 57, 58, 60, 61], "stat": [9, 15, 21, 39], "err": [9, 15, 21, 36, 39], "316": [9, 21, 39], "congratul": [9, 13, 21, 24, 25, 26, 34, 37, 39, 43, 47, 48, 50, 60], "finish": [9, 14, 34, 36, 37, 39, 40, 42, 43, 47, 48, 50, 57, 58], "successfulli": [9, 13, 21, 24, 25, 26, 60], "collect": [10, 13, 21, 52], "post": 10, "correspond": [10, 18, 19], "solut": 10, "One": 10, "torchaudio": [10, 13, 20, 54], "cu111": 10, "torchvis": 10, "f": [10, 13, 15, 21, 47, 48, 60], "org": [10, 13, 21, 35, 36, 42, 52, 56, 57, 58], "whl": [10, 13, 21], "torch_stabl": [10, 13, 21], "throw": [10, 24, 25, 26], "while": [10, 16, 21, 24, 25, 26, 31, 34, 36, 37, 39, 40, 42, 44, 45, 52, 56, 57, 58], "That": [10, 11, 14, 15, 16, 24, 25, 40, 42, 56, 57, 58], "cu11": 10, "correct": 10, "traceback": 10, "most": [10, 57, 58], "recent": [10, 24, 25, 26], "last": 10, "yesnoasrdatamodul": 10, "home": [10, 24, 25, 34, 39], "xxx": [10, 22, 24, 25, 26], "next": [10, 13, 14, 19, 21, 24, 25, 26, 39, 40, 42, 43, 44, 45, 52, 56, 57, 58], "gen": [10, 13, 14, 19, 21, 39, 40, 42, 43, 44, 45, 56, 57, 58], "kaldi": [10, 11, 13, 14, 19, 21, 39, 40, 42, 43, 44, 45, 56, 57, 58], "34": [10, 24, 25], "datamodul": 10, "add_eo": 10, "add_so": 10, "get_text": 10, "39": [10, 21, 24, 26, 36, 39, 43, 47], "tensorboard": [10, 16, 21, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "summarywrit": 10, "miniconda3": 10, "env": 10, "yyi": 10, "loosevers": 10, "uninstal": 10, "setuptool": [10, 13, 21], "yangyifan": 10, "anaconda3": 10, "dev20230112": 10, "linux": [10, 13, 14, 19, 21, 23, 24, 25, 26, 27], "x86_64": [10, 21, 24], "egg": 10, "handl": [10, 34, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "except": [10, 22], "anoth": 10, "occur": 10, "pruned_transducer_stateless7_ctc_b": [10, 44], "104": [10, 15, 21], "rais": 10, "anaconda": 10, "maco": [10, 13, 14, 19, 23, 24, 25, 26, 27], "probabl": [10, 36, 42, 44, 56, 57, 58], "variabl": [10, 12, 13, 16, 21, 24, 25, 26, 34, 37, 39, 40, 42, 44, 45, 56, 57, 58], "dyld_library_path": 10, "conda_prefix": 10, "locat": [10, 16, 24], "libpython": 10, "abl": 10, "insid": [10, 29], "codna_prefix": 10, "ld_library_path": 10, "setup": [11, 14, 20, 21, 24, 31, 32, 34, 36, 37, 39, 40, 42, 43, 47, 48, 50, 57, 58, 60, 61], "everyth": [11, 23], "tmp": [11, 12, 13, 15, 16, 21, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60], "each": [11, 15, 22, 24, 25, 27, 31, 34, 36, 37, 39, 42, 44, 45, 52, 54, 56, 57, 58], "exist": 11, "anyth": [11, 17, 19], "els": 11, "wonder": [11, 15], "url": [11, 34, 36, 37, 39, 42, 44, 45, 50, 56, 57], "varieti": 11, "folder": [11, 21, 22, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "wav": [11, 15, 22, 24, 25, 26, 27, 29, 34, 36, 37, 39, 42, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "scp": 11, "feat": 11, "put": [11, 13, 21, 24, 25, 44, 57], "l": [11, 21, 24, 25, 26, 36, 47, 48, 50], "waves_yesno": [11, 15, 21], "tar": [11, 21, 60], "gz": [11, 21, 52], "l41": 11, "extract": [11, 21, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "yesno_cuts_test": 11, "jsonl": [11, 22], "yesno_cuts_train": 11, "yesno_feats_test": 11, "lca": 11, "yesno_feats_train": 11, "hlg": [11, 15, 21, 43, 47, 48, 50], "l_disambig": [11, 50], "lexicon_disambig": [11, 50], "manifest": [11, 21, 31, 32, 40], "yesno_recordings_test": 11, "yesno_recordings_train": 11, "yesno_supervisions_test": 11, "yesno_supervisions_train": 11, "18": [11, 21, 24, 25, 26, 34, 36, 37, 39, 42, 43, 47, 48, 56, 57, 58], "thei": [11, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "idea": [11, 15, 54], "examin": 11, "relat": [11, 22, 31, 32, 34, 36, 39, 43, 47, 48, 50, 60, 61], "gunzip": 11, "c": [11, 21, 36, 37, 42, 44, 45, 50, 56, 57, 58, 60], "head": [11, 21, 31, 36, 54], "output": [11, 12, 13, 15, 22, 24, 25, 26, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60], "id": [11, 34, 37, 39, 43, 47, 48], "0_0_0_0_1_1_1_1": 11, "channel": [11, 19, 21, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "sampling_r": 11, "num_sampl": 11, "50800": 11, "35": [11, 21, 22, 24, 25, 26, 36, 39, 56], "channel_id": 11, "0_0_0_1_0_1_1_0": 11, "48880": 11, "0_0_1_0_0_1_1_0": 11, "48160": 11, "audio": [11, 21, 47, 48, 60], "l300": 11, "mean": [11, 14, 15, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58], "field": [11, 35], "per": [11, 36, 42, 57, 58], "recording_id": 11, "NO": [11, 15, 50], "ye": [11, 15, 50], "hebrew": [11, 50], "supervis": [11, 20, 33, 62], "l510": 11, "furthermor": [11, 36], "featur": [11, 21, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58], "compress": [11, 21], "lilcom": [11, 21], "cutset": [11, 32], "recordingset": 11, "supervisionset": 11, "featureset": 11, "num_fram": 11, "635": 11, "num_featur": 11, "frame_shift": 11, "storage_typ": 11, "lilcom_chunki": 11, "storage_path": 11, "storage_kei": 11, "13000": 11, "3570": 11, "record": [11, 19, 25, 26, 34, 35, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "monocut": 11, "611": 11, "16570": 11, "12964": 11, "2929": 11, "602": 11, "32463": 11, "12936": 11, "2696": 11, "actual": [11, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "separ": [11, 27, 52], "lang": [11, 21, 22, 36, 39, 45], "quit": [12, 14, 16, 33, 34, 36, 37, 39, 42, 44, 45, 52, 56, 57, 58], "cuda_visible_devic": [12, 16, 21, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "usag": [12, 15, 16, 22, 24, 25, 26, 28, 29, 43, 47, 48, 50, 59], "one": [12, 19, 22, 24, 25, 26, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60], "tini": [13, 14], "well": [13, 22, 31, 50, 62], "hundr": 13, "thousand": 13, "virtualenv": [13, 21], "icefall_env": [13, 15], "interpret": 13, "usr": 13, "prefix": [13, 22], "pkg_resourc": 13, "wheel": [13, 21, 24], "remeb": 13, "continu": [13, 15, 24, 25, 26, 27, 34, 36, 37, 39, 42, 44, 45, 50, 56, 57], "caution": [13, 34, 39], "matter": [13, 21, 24], "torchaduio": 13, "from_wheel": [13, 15, 21], "dev20231220": 13, "china": [13, 21, 35], "\u4e2d\u56fd\u56fd\u5185\u7528\u6237": [13, 21], "\u5982\u679c\u8bbf\u95ee\u4e0d\u4e86": [13, 21], "\u8bf7\u4f7f\u7528": [13, 21], "cn": [13, 21], "anytim": 13, "modulenotfounderror": 13, "don": [13, 14, 15, 21, 24, 25, 26, 28, 32, 34, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "walk": 14, "recognit": [14, 19, 20, 23, 24, 25, 33, 35, 36, 50, 62], "system": [14, 52], "out": [14, 40, 52], "minut": [14, 52], "sequenti": 14, "part": [14, 15, 19, 21, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58, 60, 61], "window": [14, 19, 23, 24, 25, 26, 27], "commun": 14, "appreci": 14, "virtual": 14, "curiou": 14, "quick": 14, "state_dict": [14, 20, 30, 34, 36, 37, 39, 43, 47, 48, 50], "jit": [14, 20, 23, 30, 39], "onnx": [14, 20, 22, 30, 31, 59, 61], "torchscript": [15, 23, 28, 29, 30], "trace": [15, 20, 23, 28, 30], "explain": 15, "kind": [15, 39, 42, 44, 45, 56, 57, 58], "produc": [15, 23, 42, 44, 45, 56, 57, 58], "03": [15, 21, 22, 25, 31, 36, 39, 47, 48, 56, 60], "912": [15, 22], "76": [15, 21, 50], "lr": [15, 21, 31, 32, 36, 56], "weight_decai": [15, 21], "1e": [15, 21], "start_epoch": [15, 21], "best_train_loss": [15, 21, 22, 24, 25, 26], "inf": [15, 21, 22, 24, 25, 26], "best_valid_loss": [15, 21, 22, 24, 25, 26], "best_train_epoch": [15, 21, 22, 24, 25, 26], "best_valid_epoch": [15, 21, 22, 25, 26], "batch_idx_train": [15, 21, 22, 24, 25, 26], "log_interv": [15, 21, 22, 24, 25, 26], "reset_interv": [15, 21, 22, 24, 25, 26], "valid_interv": [15, 21, 22, 24, 25, 26], "beam_siz": [15, 21, 22, 36], "sum": [15, 21], "913": 15, "950": 15, "971": [15, 48], "106": [15, 21, 25, 39], "Not": 15, "974": 15, "111": [15, 21, 39], "kei": [15, 24, 25, 26, 39], "bia": 15, "running_mean": 15, "running_var": 15, "num_batches_track": 15, "output_linear": 15, "48": [15, 21, 24, 25, 31, 34, 36], "089": 15, "090": 15, "ad79f1c699c684de9785ed6ca5edb805a41f78c3": 15, "wed": [15, 21, 24, 34, 36, 39], "26": [15, 21, 24, 25, 26, 36, 39, 48], "09": [15, 22, 25, 34, 36, 37, 39, 56], "aa073f6": 15, "none": [15, 21, 34, 39], "9a47c08": 15, "mon": [15, 25, 26], "aug": [15, 40], "50": [15, 21, 22, 24, 25, 26, 39, 42, 47, 56, 57, 58], "privat": 15, "fangjun": [15, 21, 22, 24, 25, 26, 36, 39], "macbook": 15, "pro": [15, 34, 39], "127": [15, 21, 24, 25, 50], "092": 15, "103": 15, "272": 15, "109": [15, 21, 34, 39], "112": [15, 24, 25, 26], "115": [15, 24, 25, 34, 39], "253": 15, "386": 15, "556": 15, "557": 15, "558": 15, "248": [15, 36], "559": 15, "315": [15, 24, 34, 36, 37, 39, 43], "ident": 15, "kaldifeat": 15, "csukuangfj": [15, 21, 22, 24, 25, 27, 34, 36, 37, 39, 43, 47, 48, 50, 56, 60], "dev20231221": 15, "0_0_0_1_0_0_0_1": [15, 50], "0_0_1_0_0_0_1_0": [15, 50], "19": [15, 22, 24, 25, 26, 31, 32, 34, 39, 43, 47, 48], "208": [15, 39], "136": [15, 39], "num_class": [15, 34, 39, 50], "sample_r": [15, 22, 34, 36, 39, 50], "words_fil": [15, 34, 39, 50], "sound_fil": [15, 22, 34, 36, 39, 50], "142": [15, 24, 34, 37, 39], "144": [15, 39], "212": 15, "213": [15, 50], "construct": [15, 22, 24, 25, 26, 34, 36, 37, 39, 43, 47, 48, 50], "170": [15, 43], "sound": [15, 22, 24, 25, 26, 29, 30, 34, 36, 37, 39, 43, 47, 48, 50], "224": 15, "176": [15, 24, 36, 39], "304": [15, 25], "214": [15, 36, 39], "47": [15, 21, 24, 25, 26, 32, 34, 39], "44": [15, 21, 24, 25, 31, 39, 47, 48], "666": 15, "667": 15, "670": 15, "677": [15, 24], "100": [15, 21, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "843": 15, "cpu_jit": [15, 28, 34, 39, 42, 44, 45, 57, 58], "confus": [15, 28], "move": [15, 28, 42, 44, 45, 57, 58], "map_loc": 15, "resid": 15, "default": [15, 24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "jit_pretrain": [15, 29, 44, 45, 56], "nn": [15, 36, 42, 44, 45, 56, 57, 58], "56": [15, 21, 24, 25, 39, 47], "00": [15, 21, 24, 34, 36, 37, 39, 43, 47, 48, 50], "603": 15, "121": [15, 43], "nn_model": [15, 34, 39], "129": [15, 37], "640": [15, 21, 26], "134": [15, 34], "641": 15, "138": [15, 34, 36], "148": [15, 31], "642": 15, "154": [15, 37], "727": 15, "190": [15, 43], "192": [15, 26, 31, 39], "export_onnx": 15, "onnxruntim": [15, 27], "888": [15, 34], "83": [15, 39, 43], "892": 15, "diagnost": 15, "verbos": 15, "warn": 15, "21": [15, 21, 22, 24, 31, 34, 36, 39, 47, 48], "047": [15, 36], "meta_data": 15, "model_typ": 15, "model_author": 15, "comment": 15, "non": [15, 20, 39, 54, 57, 62], "vocab_s": [15, 22, 24, 25, 26, 36], "049": 15, "140": [15, 21, 37], "int8": [15, 23, 30, 61], "quantiz": [15, 23, 30, 40], "075": 15, "onnx_quant": 15, "538": [15, 39], "tensor": [15, 21, 25, 26, 34, 36, 37, 39, 42, 50, 56, 57], "transpose_1_output_0": 15, "081": 15, "151": [15, 24], "float32": [15, 24, 25, 26], "onnx_pretrain": [15, 27], "260": [15, 26, 39], "166": 15, "171": [15, 21, 37, 39, 47, 48], "173": 15, "267": [15, 25, 36, 47, 48], "270": 15, "180": [15, 25, 34, 39], "279": [15, 39], "196": 15, "318": [15, 24, 25], "232": 15, "234": [15, 39], "deploi": [15, 27, 34, 39], "sherpa": [15, 19, 23, 28, 29, 30, 56, 59], "framework": [15, 19, 42, 57], "_": [15, 40], "ncnn": [15, 20, 30], "youtub": [17, 20, 39, 40, 42, 43, 44, 45, 56, 57, 58], "video": [17, 20, 39, 40, 42, 43, 44, 45, 56, 57, 58], "upload": [18, 19, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "specif": [18, 27, 36], "aishel": [18, 20, 34, 36, 37, 38, 62], "wenetspeech": [18, 28], "ipad": 19, "phone": 19, "screenshot": [19, 34, 36, 37, 39, 40, 42, 50, 56, 57], "chines": [19, 35, 36], "english": [19, 32, 50, 56], "greedi": 19, "click": [19, 21, 34, 36, 37, 39, 42, 44, 45, 50, 56, 57], "button": 19, "submit": 19, "wait": 19, "moment": 19, "bottom": [19, 42, 44, 45, 56, 57, 58], "subscrib": [19, 21, 39, 40, 42, 43, 44, 45, 56, 57, 58], "nadira": [19, 21, 39, 40, 42, 43, 44, 45, 56, 57, 58], "povei": [19, 21, 39, 40, 42, 43, 44, 45, 56, 57, 58], "www": [19, 21, 35, 39, 40, 42, 43, 44, 45, 52, 56, 57, 58], "uc_vaumpkminz1pnkfxan9mw": [19, 21, 39, 40, 42, 43, 44, 45, 56, 57, 58], "dummi": [20, 39], "toolkit": 20, "cudnn": 20, "docker": [20, 21], "frequent": 20, "ask": [20, 60], "question": 20, "faq": 20, "oserror": 20, "libtorch_hip": 20, "attributeerror": 20, "distutil": 20, "attribut": [20, 26, 39], "libpython3": 20, "timit": [20, 38, 47, 48, 62], "tt": [20, 60, 61, 62], "vit": [20, 59, 62], "ljspeech": [20, 59, 62], "vctk": [20, 59, 62], "fine": [20, 40, 62], "finetun": [20, 33, 62], "zipform": [20, 23, 27, 30, 33, 38, 41, 52, 53, 55, 62], "adapt": [20, 33, 62], "contribut": 20, "support": [21, 23, 24, 25, 26, 34, 36, 39, 42, 44, 45, 54, 56, 57, 58, 60, 61], "guid": 21, "suggest": [21, 32, 42, 44, 45, 56, 57, 58], "strongli": 21, "point": [21, 22, 34, 37, 39, 40, 42, 44, 45, 56, 57, 58], "sever": [21, 22, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 54, 56, 57, 58], "just": [21, 24, 25, 26, 52, 54], "kuangfangjun": [21, 24, 25, 26], "cpython3": 21, "final": [21, 22, 24, 25, 39, 43], "64": [21, 22, 24, 31, 36, 57], "9422m": 21, "creator": 21, "cpython3posix": 21, "dest": 21, "star": [21, 24, 25, 26], "fj": [21, 22, 24, 25, 26, 36, 39], "clear": 21, "no_vcs_ignor": 21, "global": 21, "seeder": 21, "fromappdata": 21, "bundl": 21, "app_data_dir": 21, "ad": [21, 24, 25, 26, 34, 36, 37, 39, 42, 44, 45, 50, 54, 56, 57, 58], "seed": 21, "bashactiv": 21, "cshellactiv": 21, "fishactiv": 21, "nushellactiv": 21, "powershellactiv": 21, "pythonactiv": 21, "determin": 21, "nvidia": [21, 34, 36, 37, 39], "smi": 21, "49": [21, 24, 25, 39, 48, 50], "510": 21, "driver": 21, "greater": 21, "our": [21, 24, 25, 26, 28, 29, 39, 40, 42, 54, 57, 58], "case": [21, 22, 24, 25, 26, 33, 42, 44, 45, 56, 57, 58], "verifi": 21, "nvcc": 21, "copyright": 21, "2005": 21, "2019": 21, "corpor": 21, "wed_oct_23_19": 21, "38_pdt_2019": 21, "v10": 21, "89": [21, 34], "cu116": 21, "compat": 21, "stabl": 21, "matrix": 21, "2bcu116": 21, "cp38": 21, "linux_x86_64": 21, "1983": 21, "mb": [21, 24, 25, 26], "________________________________________": 21, "gb": [21, 36], "764": 21, "kb": [21, 24, 25, 26, 47, 48], "eta": 21, "satisfi": 21, "extens": 21, "__version__": 21, "dev20230725": 21, "pypi": 21, "tuna": 21, "tsinghua": 21, "edu": 21, "resolv": 21, "main": [21, 34, 39, 54], "ubuntu": [21, 24, 25, 26], "2bcuda11": 21, "manylinux_2_17_x86_64": 21, "manylinux2014_x86_64": 21, "graphviz": 21, "cach": [21, 26], "de": [21, 22, 24, 25, 26, 36], "5e": 21, "fcbb22c68208d39edff467809d06c9d81d7d27426460ebc598e55130c1aa": 21, "o": 21, "cento": 21, "2009": 21, "core": 21, "cmake": [21, 24, 25, 34, 39], "27": [21, 24, 25, 26, 31, 32, 34, 36, 43, 48], "gcc": 21, "cmake_cuda_flag": 21, "wno": 21, "deprec": [21, 36], "lineinfo": 21, "expt": 21, "extend": 21, "lambda": 21, "use_fast_math": 21, "xptxa": 21, "gencod": 21, "arch": 21, "compute_35": 21, "sm_35": 21, "compute_50": 21, "sm_50": 21, "compute_60": 21, "sm_60": 21, "compute_61": 21, "sm_61": 21, "compute_70": 21, "sm_70": 21, "compute_75": 21, "sm_75": 21, "compute_80": 21, "sm_80": 21, "compute_86": 21, "sm_86": 21, "donnx_namespac": 21, "onnx_c2": 21, "compute_52": 21, "sm_52": 21, "xcudaf": 21, "diag_suppress": 21, "cc_clobber_ignor": 21, "integer_sign_chang": 21, "useless_using_declar": 21, "set_but_not_us": 21, "field_without_dll_interfac": 21, "base_class_has_different_dll_interfac": 21, "dll_interface_conflict_none_assum": 21, "dll_interface_conflict_dllexport_assum": 21, "implicit_return_from_non_void_funct": 21, "unsigned_compare_with_zero": 21, "declared_but_not_referenc": 21, "bad_friend_decl": 21, "relax": 21, "constexpr": 21, "d_glibcxx_use_cxx11_abi": 21, "option": [21, 23, 27, 30, 36, 40, 43, 47, 48, 50], "wall": 21, "strict": [21, 26, 35], "overflow": 21, "unknown": 21, "pragma": 21, "cmake_cxx_flag": 21, "unus": 21, "nvtx": 21, "disabl": [21, 22, 24, 25], "debug": 21, "sync": 21, "kernel": [21, 24, 26, 31, 36], "memori": [21, 24, 31, 34, 36, 39, 54], "alloc": 21, "214748364800": 21, "byte": [21, 24, 25, 26], "200": [21, 22, 24, 25, 26, 34, 39, 40, 47, 48, 50], "abort": 21, "__file__": 21, "cpython": [21, 24], "gnu": [21, 24], "req": 21, "vq12fd5i": 21, "filter": 21, "quiet": [21, 35], "7640d663469b22cd0b36f3246ee9b849cd25e3b7": 21, "metadata": [21, 47, 48], "pyproject": 21, "toml": 21, "cytoolz": 21, "3b": 21, "a7828d575aa17fb7acaf1ced49a3655aa36dad7e16eb7e6a2e4df0dda76f": 21, "33": [21, 24, 25, 34, 35, 36, 39, 47], "pyyaml": 21, "c8": 21, "6b": 21, "6600ac24725c7388255b2f5add93f91e58a5d7efaf4af244fdbcc11a541b": 21, "ma": 21, "nylinux_2_17_x86_64": 21, "736": 21, "dataclass": 21, "2f": 21, "1095cdc2868052dd1e64520f7c0d5c8c550ad297e944e641dbf1ffbb9a5d": 21, "dev0": 21, "7640d66": 21, "a8": 21, "df0a69c52bd085ca1ad4e5c4c1a5c680e25f9477d8e49316c4ff1e5084a4": 21, "linux_2_17_x86_64": 21, "87": [21, 24], "tqdm": 21, "e6": 21, "a2cff6306177ae6bc73bc0665065de51dfb3b9db7373e122e2735faf0d97": 21, "numpi": 21, "audioread": 21, "5d": 21, "cb": 21, "82a002441902dccbe427406785db07af10182245ee639ea9f4d92907c923": 21, "377": 21, "tabul": 21, "40": [21, 24, 25, 26, 37, 39, 43, 47, 48], "4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854": 21, "1a": 21, "70": 21, "e63223f8116931d365993d4a6b7ef653a4d920b41d03de7c59499962821f": 21, "97": [21, 24, 34], "ab": [21, 42, 56, 57, 58], "c3": 21, "57f0601a2d4fe15de7a553c00adbc901425661bf048f2a22dfc500caf121": 21, "intervaltre": 21, "fb": 21, "396d568039d21344639db96d940d40eb62befe704ef849b27949ded5c3bb": 21, "soundfil": 21, "bd": 21, "0602167a213d9184fc688b1086dc6d374b7ae8c33eccf169f9b50ce6568c": 21, "py2": 21, "46": [21, 25, 34, 39], "toolz": 21, "7f": 21, "5c": 21, "922a3508f5bda2892be3df86c74f9cf1e01217c2b1f8a0ac4841d903e3e9": 21, "55": [21, 24, 37, 39, 47], "sortedcontain": 21, "9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621c": 21, "cffi": 21, "b7": 21, "8b": 21, "06f30caa03b5b3ac006de4f93478dbd0239e2a16566d81a106c322dc4f79": 21, "15": [21, 22, 24, 25, 26, 31, 32, 36, 37, 39, 47, 50, 52], "442": 21, "pycpars": 21, "d5": 21, "5f610ebe421e85889f2e55e33b7f9a6795bd982198517d912eb1c76e1a53": 21, "118": [21, 39], "filenam": [21, 24, 25, 26, 27, 28, 29, 44, 45, 56, 58, 60, 61], "size": [21, 22, 24, 25, 26, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "687627": 21, "sha256": 21, "cbf0a4d2d0b639b33b91637a4175bc251d6a021a069644ecb1a9f2b3a83d072a": 21, "ephem": 21, "wwtk90_m": 21, "7a": 21, "8e": 21, "a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f": 21, "23704": 21, "5e2d3537c96ce9cf0f645a654c671163707bf8cb8d9e358d0e2b0939a85ff4c2": 21, "9c": 21, "f19ae5a03f8862d9f0776b0c0570f1fdd60a119d90954e3f39": 21, "26098": 21, "2604170976cfffe0d2f678cb1a6e5b525f561cd50babe53d631a186734fec9f9": 21, "f3": 21, "ed": 21, "2b": 21, "c179ebfad4e15452d6baef59737f27beb9bfb442e0620f7271": 21, "remot": 21, "enumer": 21, "12942": 21, "count": 21, "total": [21, 25, 26, 31, 34, 36, 37, 39, 40, 42, 43, 50, 56, 57], "delta": 21, "reus": 21, "pack": [21, 52, 57, 58], "12875": 21, "receiv": 21, "mib": 21, "8835": 21, "41": [21, 24, 26, 34, 36, 47, 50], "dl_dir": [21, 34, 37, 39, 40, 42, 44, 45, 56, 57, 58], "___________________________________________________": 21, "70m": 21, "1mb": 21, "718": 21, "compute_fbank_yesno": 21, "_______________________________________________________________________________": 21, "90": [21, 24], "82it": 21, "778": 21, "______________________________________________________________________________": 21, "256": [21, 26, 31, 47, 48], "92it": 21, "51": [21, 24, 34, 39, 50], "66": [21, 25, 32], "project": 21, "kaldilm": 21, "csrc": [21, 39], "arpa_file_pars": 21, "cc": 21, "void": 21, "arpafilepars": 21, "std": 21, "istream": 21, "79": 21, "92": [21, 39], "275": [21, 34], "compile_hlg": 21, "124": [21, 34, 39], "276": 21, "convert": [21, 24, 25, 26, 39], "309": 21, "ctc_topo": 21, "max_token_id": 21, "310": 21, "314": 21, "intersect": [21, 42, 57, 58], "323": 21, "lg": [21, 42, 45, 57, 58], "shape": [21, 26], "connect": [21, 22, 31, 39, 42, 43, 56, 57, 58], "68": [21, 39], "class": [21, 39], "71": [21, 39, 43], "341": 21, "rag": 21, "raggedtensor": 21, "remov": [21, 34, 36, 37, 39, 43, 47, 48], "disambigu": 21, "354": 21, "91": 21, "remove_epsilon": 21, "445": 21, "arc": 21, "compos": 21, "h": 21, "446": 21, "447": 21, "segment": 21, "fault": 21, "dump": 21, "protocol_buffers_python_implement": 21, "674": 21, "interest": [21, 40, 42, 44, 45, 56, 57, 58], "936": 21, "481": 21, "482": 21, "world_siz": [21, 40], "master_port": 21, "12354": 21, "num_epoch": 21, "3fb0a43": 21, "thu": [21, 22, 24, 25, 26, 36, 39, 43], "05": [21, 22, 24, 25, 31, 32, 34, 36, 37, 39, 48, 52, 61], "74279": [21, 22, 24, 25, 26, 36], "1220091118": 21, "57c4d55446": 21, "sph26": 21, "941": 21, "949": 21, "495": 21, "965": [21, 34], "146": 21, "244": 21, "967": 21, "149": [21, 24, 39], "199": [21, 39, 43], "singlecutsampl": 21, "205": [21, 39], "968": 21, "565": [21, 39], "422": 21, "loss": [21, 24, 25, 34, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "065": 21, "over": [21, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "2436": 21, "frame": [21, 31, 36, 42, 44, 57, 58], "tot_loss": 21, "681": [21, 24], "4561": 21, "2828": 21, "7076": 21, "22192": 21, "54": [21, 25, 26, 39, 43, 47, 48], "167": 21, "444": 21, "9002": 21, "18067": 21, "011": 21, "2555": 21, "2695": 21, "484": 21, "34971": 21, "331": [21, 24, 25, 39, 43], "4688": 21, "368": 21, "75": [21, 24], "633": 21, "2532": 21, "242": [21, 34, 39], "1139": 21, "1592": 21, "522": [21, 39], "1627": 21, "209": [21, 43], "07055": 21, "1175": 21, "07091": 21, "847": 21, "07731": 21, "427": [21, 25, 39], "04391": 21, "05341": 21, "884": 21, "04384": 21, "387": [21, 48], "03458": 21, "04616": 21, "707": [21, 34, 39], "03379": 21, "758": [21, 39], "433": [21, 39], "01054": 21, "980": [21, 39], "009014": 21, "009974": 21, "489": [21, 34], "01085": 21, "258": [21, 47, 48], "01172": 21, "01055": 21, "621": [21, 50], "01074": 21, "699": 21, "866": 21, "01044": 21, "844": 21, "008942": 21, "221": [21, 39], "01082": 21, "970": [21, 39], "01169": 21, "247": 21, "01073": 21, "326": [21, 25], "555": 21, "840": 21, "841": 21, "855": 21, "868": 21, "882": 21, "883": 21, "157": 21, "701": 21, "702": [21, 39], "704": [21, 34, 47], "fun": [21, 24, 25], "variou": [21, 27, 30, 62], "period": [22, 24], "disk": 22, "optim": [22, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "resum": [22, 31, 32, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "strip": 22, "reduc": [22, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "pruned_transducer_stateless3": [22, 28, 54], "almost": [22, 42, 54, 57, 58], "dict": [22, 26], "stateless3": [22, 24], "repo": [22, 27], "those": 22, "wave": [22, 24, 25, 26, 34, 39], "iter": [22, 24, 25, 26, 29, 42, 44, 45, 56, 57, 58], "1224000": 22, "greedy_search": [22, 31, 32, 36, 42, 44, 56, 57, 58], "test_wav": [22, 24, 25, 26, 27, 34, 36, 37, 39, 43, 47, 48, 50], "1089": [22, 24, 25, 26, 27, 39, 43], "134686": [22, 24, 25, 26, 27, 39, 43], "0001": [22, 24, 25, 26, 27, 39, 43], "1221": [22, 24, 25, 39, 43], "135766": [22, 24, 25, 39, 43], "0002": [22, 24, 25, 39, 43], "multipl": [22, 34, 36, 37, 39, 43, 47, 48, 50], "Its": [22, 24, 25, 26, 39], "233": [22, 24, 25], "265": 22, "3000": [22, 24, 25, 26], "80": [22, 24, 25, 26, 34, 36, 39], "subsampling_factor": [22, 25, 26, 34, 36, 39], "encoder_dim": [22, 24, 25, 26], "512": [22, 24, 25, 26, 31, 34, 36, 39], "nhead": [22, 24, 26, 34, 36, 39, 42, 57], "dim_feedforward": [22, 24, 25, 36], "num_encoder_lay": [22, 24, 25, 26, 36], "decoder_dim": [22, 24, 25, 26], "joiner_dim": [22, 24, 25, 26], "model_warm_step": [22, 24, 25], "4810e00d8738f1a21278b0156a42ff396a2d40ac": 22, "oct": [22, 39], "miss": [22, 24, 25, 26, 36, 39], "cu102": [22, 24, 25, 26], "1013": 22, "c39cba5": 22, "dirti": [22, 24, 25, 34, 39], "ceph": [22, 34, 36, 39], "0324160024": 22, "65bfd8b584": 22, "jjlbn": 22, "bpe_model": [22, 24, 25, 26, 39], "16000": [22, 34, 36, 37, 39, 43, 44, 47, 48], "max_context": 22, "max_stat": 22, "context_s": [22, 24, 25, 26, 36], "max_sym_per_fram": [22, 36], "simulate_stream": 22, "decode_chunk_s": 22, "left_context": 22, "dynamic_chunk_train": 22, "causal_convolut": 22, "short_chunk_s": [22, 26, 57, 58], "num_left_chunk": [22, 26], "blank_id": [22, 24, 25, 26, 36], "unk_id": 22, "271": [22, 25], "612": 22, "458": 22, "giga": [22, 25, 56], "623": 22, "277": 22, "78648040": 22, "951": [22, 39], "285": [22, 36, 39], "952": 22, "295": [22, 34, 36, 37, 39], "957": 22, "301": [22, 39], "700": 22, "329": [22, 25, 39], "388": 22, "earli": [22, 24, 25, 26, 39, 43], "nightfal": [22, 24, 25, 26, 39, 43], "THE": [22, 24, 25, 26, 39, 43], "yellow": [22, 24, 25, 26, 39, 43], "lamp": [22, 24, 25, 26, 39, 43], "light": [22, 24, 25, 26, 39, 43], "AND": [22, 24, 25, 26, 39, 43], "THERE": [22, 24, 25, 26, 39, 43], "squalid": [22, 24, 25, 26, 39, 43], "quarter": [22, 24, 25, 26, 39, 43], "OF": [22, 24, 25, 26, 39, 43], "brothel": [22, 24, 25, 26, 39, 43], "god": [22, 39, 43], "AS": [22, 39, 43], "direct": [22, 39, 43], "consequ": [22, 39, 43], "sin": [22, 39, 43], "man": [22, 39, 43], "punish": [22, 39, 43], "had": [22, 39, 43], "her": [22, 39, 43], "love": [22, 39, 43], "child": [22, 39, 43], "whose": [22, 36, 39, 43], "ON": [22, 24, 39, 43], "THAT": [22, 39, 43], "dishonor": [22, 39, 43], "bosom": [22, 39, 43], "TO": [22, 39, 43], "parent": [22, 39, 43], "forev": [22, 39, 43], "WITH": [22, 39, 43], "race": [22, 39, 43], "descent": [22, 39, 43], "mortal": [22, 39, 43], "BE": [22, 39, 43], "bless": [22, 39, 43], "soul": [22, 39, 43], "IN": [22, 39, 43], "heaven": [22, 39, 43], "yet": [22, 24, 25, 39, 43], "THESE": [22, 39, 43], "thought": [22, 39, 43], "affect": [22, 39, 43], "hester": [22, 39, 43], "prynn": [22, 39, 43], "hope": [22, 35, 39, 43], "apprehens": [22, 39, 43], "390": 22, "down": [22, 34, 39, 42, 44, 45, 56, 57, 58], "reproduc": [22, 39], "9999": [22, 44, 45, 56], "symlink": 22, "pass": [22, 26, 34, 36, 37, 39, 42, 44, 45, 54, 56, 57, 58], "convemform": [23, 30, 54], "platform": [23, 27], "android": [23, 24, 25, 26, 27, 60], "raspberri": [23, 27], "pi": [23, 27], "\u7231\u82af\u6d3e": 23, "maix": 23, "iii": 23, "axera": 23, "rv1126": 23, "static": 23, "binari": [23, 24, 25, 26, 34, 36, 37, 39, 42, 50, 56, 57, 60], "pnnx": [23, 30], "encod": [23, 27, 29, 30, 31, 34, 36, 37, 39, 42, 43, 44, 50, 54, 56, 57, 58], "conv": [24, 25], "emform": [24, 25, 28], "stateless2": [24, 25, 56], "pretrained_model": [24, 25, 26], "online_transduc": 24, "jit_xxx": [24, 25, 26], "anywher": [24, 25], "submodul": 24, "recurs": 24, "init": 24, "dcmake_build_typ": [24, 34, 39], "dncnn_python": 24, "dncnn_build_benchmark": 24, "dncnn_build_exampl": 24, "dncnn_build_tool": 24, "j4": 24, "pwd": 24, "src": [24, 26], "compon": [24, 54], "ncnn2int8": [24, 25], "am": 24, "sai": [24, 25, 26, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58], "later": [24, 25, 26, 34, 37, 39, 42, 43, 44, 45, 47, 48, 56, 57, 58], "termin": 24, "tencent": [24, 25], "modif": [24, 36], "offici": 24, "synchron": 24, "renam": [24, 25, 26], "conv_emformer_transducer_stateless2": [24, 54], "length": [24, 26, 36, 52, 57, 58], "cnn": [24, 26, 31], "31": [24, 25, 26, 31, 39], "context": [24, 31, 36, 42, 54, 56, 57, 58], "configur": [24, 26, 36, 40, 43, 47, 48, 50, 60, 61], "accordingli": [24, 25, 26], "yourself": [24, 25, 26, 40, 57, 58], "220": [24, 36, 37, 39], "229": [24, 34], "best_v": 24, "alid_epoch": 24, "subsampl": [24, 57, 58], "ing_factor": 24, "a34171ed85605b0926eebbd0463d059431f4f74a": 24, "dec": 24, "ver": 24, "ion": 24, "530e8a1": 24, "op": 24, "1220120619": [24, 25, 26], "7695ff496b": [24, 25, 26], "s9n4w": [24, 25, 26], "icefa": 24, "ll": 24, "transdu": 24, "cer": 24, "use_averaged_model": [24, 25, 26], "cnn_module_kernel": [24, 26], "left_context_length": 24, "chunk_length": 24, "right_context_length": 24, "memory_s": 24, "231": [24, 25, 26], "053": 24, "022": 24, "708": [24, 34, 36, 39, 50], "75490012": 24, "320": [24, 36], "682": 24, "lh": [24, 25, 26], "rw": [24, 25, 26], "289m": 24, "jan": [24, 25, 26], "289": 24, "roughli": [24, 25, 26], "equal": [24, 25, 26, 57, 58], "1024": [24, 25, 26, 31, 56], "287": [24, 50], "1010k": [24, 25], "decoder_jit_trac": [24, 25, 26, 29, 56, 58], "283m": 24, "encoder_jit_trac": [24, 25, 26, 29, 56, 58], "0m": [24, 25], "joiner_jit_trac": [24, 25, 26, 29, 56, 58], "sure": [24, 25, 26], "found": [24, 25, 26, 34, 36, 37, 39, 42, 44, 45, 50, 56, 57], "param": [24, 25, 26], "503k": [24, 25], "437": [24, 25, 26], "142m": 24, "79k": 24, "5m": [24, 25], "architectur": [24, 25, 26, 56], "editor": [24, 25, 26], "content": [24, 25, 26], "283": [24, 26], "1010": [24, 25], "503": [24, 25], "convers": [24, 25, 26], "half": [24, 25, 26, 42, 57, 58], "v": [24, 25, 26, 39, 47, 48], "float16": [24, 25, 26], "occupi": [24, 25, 26], "twice": [24, 25, 26], "smaller": [24, 25, 26, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "fp16": [24, 25, 26, 31, 32, 42, 44, 45, 52, 56, 57, 58, 60, 61], "won": [24, 25, 26, 27, 34, 37, 39, 40, 42, 44, 45, 56, 57, 58], "accept": [24, 25, 26], "216": [24, 34, 39, 47, 48], "encoder_param_filenam": [24, 25, 26], "encoder_bin_filenam": [24, 25, 26], "decoder_param_filenam": [24, 25, 26], "decoder_bin_filenam": [24, 25, 26], "joiner_param_filenam": [24, 25, 26], "joiner_bin_filenam": [24, 25, 26], "sound_filenam": [24, 25, 26], "141": 24, "328": 24, "336": 24, "106000": [24, 25, 26, 39, 43], "581": [24, 43], "381": 24, "7767517": [24, 25, 26], "1060": 24, "1342": 24, "in0": [24, 25, 26], "explan": [24, 25, 26], "magic": [24, 25, 26], "intermedi": [24, 25, 26], "increment": [24, 25, 26], "1061": 24, "sherpametadata": [24, 25, 26], "sherpa_meta_data1": [24, 25, 26], "newli": [24, 25, 26], "must": [24, 25, 26, 57], "eas": [24, 25, 26], "pair": [24, 25, 26], "sad": [24, 25, 26], "rememb": [24, 25, 26], "anymor": [24, 25, 26], "flexibl": [24, 25, 26, 31], "edit": [24, 25, 26], "arm": [24, 25, 26], "aarch64": [24, 25, 26], "onc": [24, 25], "mayb": [24, 25], "year": [24, 25], "_jit_trac": [24, 25], "fp32": [24, 25], "doubl": [24, 25], "j": [24, 25, 34, 39], "py38": [24, 25, 26], "arg": [24, 25], "wave_filenam": [24, 25], "16k": [24, 25], "hz": [24, 25, 47, 48], "mono": [24, 25], "calibr": [24, 25], "cat": [24, 25], "eof": [24, 25], "calcul": [24, 25, 44, 57, 58], "has_gpu": [24, 25], "config": [24, 25], "use_vulkan_comput": [24, 25], "88": [24, 36], "conv_87": 24, "942385": [24, 25], "threshold": [24, 25, 44], "938493": 24, "968131": 24, "conv_88": 24, "442448": 24, "549335": 24, "167552": 24, "conv_89": 24, "228289": 24, "001738": 24, "871552": 24, "linear_90": 24, "976146": 24, "101789": 24, "267128": 24, "linear_91": 24, "962030": 24, "162033": 24, "602713": 24, "linear_92": 24, "323041": 24, "853959": 24, "953129": 24, "linear_94": 24, "905416": 24, "648006": 24, "323545": 24, "linear_93": 24, "474093": 24, "200188": 24, "linear_95": 24, "888012": 24, "403563": 24, "483986": 24, "linear_96": 24, "856741": 24, "398679": 24, "524273": 24, "linear_97": 24, "635942": 24, "613655": 24, "590950": 24, "linear_98": 24, "460340": 24, "670146": 24, "398010": 24, "linear_99": 24, "532276": 24, "585537": 24, "119396": 24, "linear_101": 24, "585871": 24, "719224": 24, "205809": 24, "linear_100": 24, "751382": 24, "081648": 24, "linear_102": 24, "593344": 24, "450581": 24, "551147": 24, "linear_103": 24, "592681": 24, "705824": 24, "257959": 24, "linear_104": 24, "752957": 24, "980955": 24, "110489": 24, "linear_105": 24, "696240": 24, "877193": 24, "608953": 24, "linear_106": 24, "059659": 24, "643138": 24, "048950": 24, "linear_108": 24, "975461": 24, "589567": 24, "671457": 24, "linear_107": 24, "190381": 24, "515701": 24, "linear_109": 24, "710759": 24, "305635": 24, "082436": 24, "linear_110": 24, "531228": 24, "731162": 24, "159557": 24, "linear_111": 24, "528083": 24, "259322": 24, "211544": 24, "linear_112": 24, "148807": 24, "500842": 24, "087374": 24, "linear_113": 24, "592566": 24, "948851": 24, "166611": 24, "linear_115": 24, "437109": 24, "608947": 24, "642395": 24, "linear_114": 24, "193942": 24, "503904": 24, "linear_116": 24, "966980": 24, "200896": 24, "676392": 24, "linear_117": 24, "451303": 24, "061664": 24, "951344": 24, "linear_118": 24, "077262": 24, "965800": 24, "023804": 24, "linear_119": 24, "671615": 24, "847613": 24, "198460": 24, "linear_120": 24, "625638": 24, "131427": 24, "556595": 24, "linear_122": 24, "274080": 24, "888716": 24, "978189": 24, "linear_121": 24, "420480": 24, "429659": 24, "linear_123": 24, "826197": 24, "599617": 24, "281532": 24, "linear_124": 24, "396383": 24, "325849": 24, "335875": 24, "linear_125": 24, "337198": 24, "941410": 24, "221970": 24, "linear_126": 24, "699965": 24, "842878": 24, "224073": 24, "linear_127": 24, "775370": 24, "884215": 24, "696438": 24, "linear_129": 24, "872276": 24, "837319": 24, "254213": 24, "linear_128": 24, "180057": 24, "687883": 24, "linear_130": 24, "150427": 24, "454298": 24, "765789": 24, "linear_131": 24, "112692": 24, "924847": 24, "025545": 24, "linear_132": 24, "852893": 24, "116593": 24, "749626": 24, "linear_133": 24, "517084": 24, "024665": 24, "275314": 24, "linear_134": 24, "683807": 24, "878618": 24, "743618": 24, "linear_136": 24, "421055": 24, "322729": 24, "086264": 24, "linear_135": 24, "309880": 24, "917679": 24, "linear_137": 24, "827781": 24, "744595": 24, "915554": 24, "linear_138": 24, "422395": 24, "742882": 24, "402161": 24, "linear_139": 24, "527538": 24, "866123": 24, "849449": 24, "linear_140": 24, "128619": 24, "657793": 24, "266134": 24, "linear_141": 24, "839593": 24, "845993": 24, "021378": 24, "linear_143": 24, "442304": 24, "099039": 24, "889746": 24, "linear_142": 24, "325038": 24, "849592": 24, "linear_144": 24, "929444": 24, "618206": 24, "605080": 24, "linear_145": 24, "382126": 24, "321095": 24, "625010": 24, "linear_146": 24, "894987": 24, "867645": 24, "836517": 24, "linear_147": 24, "915313": 24, "906028": 24, "886522": 24, "linear_148": 24, "614287": 24, "908151": 24, "496181": 24, "linear_150": 24, "724932": 24, "485588": 24, "312899": 24, "linear_149": 24, "161146": 24, "606939": 24, "linear_151": 24, "164453": 24, "847355": 24, "719223": 24, "linear_152": 24, "086471": 24, "984121": 24, "222834": 24, "linear_153": 24, "099524": 24, "991601": 24, "816805": 24, "linear_154": 24, "054585": 24, "489706": 24, "286930": 24, "linear_155": 24, "389185": 24, "100321": 24, "963501": 24, "linear_157": 24, "982999": 24, "154796": 24, "637253": 24, "linear_156": 24, "537706": 24, "875190": 24, "linear_158": 24, "420287": 24, "502287": 24, "531588": 24, "linear_159": 24, "014746": 24, "423280": 24, "477261": 24, "linear_160": 24, "633553": 24, "715335": 24, "220921": 24, "linear_161": 24, "371849": 24, "117830": 24, "815203": 24, "linear_162": 24, "492933": 24, "126283": 24, "623318": 24, "linear_164": 24, "697504": 24, "825712": 24, "317358": 24, "linear_163": 24, "078367": 24, "008038": 24, "linear_165": 24, "023975": 24, "836278": 24, "577358": 24, "linear_166": 24, "860619": 24, "259792": 24, "493614": 24, "linear_167": 24, "380934": 24, "496160": 24, "107042": 24, "linear_168": 24, "691216": 24, "733317": 24, "831076": 24, "linear_169": 24, "723948": 24, "952728": 24, "129707": 24, "linear_171": 24, "034811": 24, "366547": 24, "665123": 24, "linear_170": 24, "356277": 24, "710501": 24, "linear_172": 24, "556884": 24, "729481": 24, "166058": 24, "linear_173": 24, "033039": 24, "207264": 24, "442120": 24, "linear_174": 24, "597379": 24, "658676": 24, "768131": 24, "linear_2": [24, 25], "293503": 24, "305265": 24, "877850": 24, "linear_1": [24, 25], "812222": 24, "766452": 24, "487047": 24, "linear_3": [24, 25], "999999": 24, "999755": 24, "031174": 24, "wish": [24, 25], "955k": 24, "18k": 24, "inparam": [24, 25], "inbin": [24, 25], "outparam": [24, 25], "outbin": [24, 25], "99m": 24, "78k": 24, "774k": [24, 25], "496": [24, 25, 39, 43], "replac": [24, 25], "774": [24, 25], "linear": [24, 25, 36], "convolut": [24, 25, 44, 54, 57], "exact": [24, 25], "4x": [24, 25], "comparison": 24, "468000": [25, 29, 56], "lstm_transducer_stateless2": [25, 29, 56], "862": 25, "222": [25, 37, 39], "865": 25, "is_pnnx": 25, "62e404dd3f3a811d73e424199b3408e309c06e1a": [25, 26], "6d7a559": [25, 26], "feb": [25, 26, 36], "147": [25, 26], "rnn_hidden_s": 25, "aux_layer_period": 25, "235": 25, "239": [25, 36], "472": 25, "595": 25, "324": 25, "83137520": 25, "596": 25, "325": 25, "257024": 25, "781812": 25, "327": 25, "84176356": 25, "182": [25, 26, 34, 43], "158": 25, "183": [25, 47, 48], "335": 25, "101": 25, "tracerwarn": [25, 26], "boolean": [25, 26], "caus": [25, 26, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "incorrect": [25, 26, 36], "flow": [25, 26], "constant": [25, 26], "futur": [25, 26, 36, 62], "need_pad": 25, "bool": 25, "259": [25, 34], "339": 25, "207": [25, 37, 39], "84": [25, 34], "324m": 25, "321": [25, 34], "107": [25, 43], "318m": 25, "159m": 25, "21k": 25, "159": [25, 39, 50], "37": [25, 34, 36, 39, 47], "861": 25, "266": [25, 26, 39, 43], "431": 25, "342": 25, "343": 25, "379": 25, "268": [25, 39, 43], "317m": 25, "317": 25, "conv_15": 25, "930708": 25, "972025": 25, "conv_16": 25, "978855": 25, "031788": 25, "456645": 25, "conv_17": 25, "868437": 25, "830528": 25, "218575": 25, "linear_18": 25, "107259": 25, "194808": 25, "293236": 25, "linear_19": 25, "193777": 25, "634748": 25, "401705": 25, "linear_20": 25, "259933": 25, "606617": 25, "722160": 25, "linear_21": 25, "186600": 25, "790260": 25, "512129": 25, "linear_22": 25, "759041": 25, "265832": 25, "050053": 25, "linear_23": 25, "931209": 25, "099090": 25, "979767": 25, "linear_24": 25, "324160": 25, "215561": 25, "321835": 25, "linear_25": 25, "800708": 25, "599352": 25, "284134": 25, "linear_26": 25, "492444": 25, "153369": 25, "274391": 25, "linear_27": 25, "660161": 25, "720994": 25, "674126": 25, "linear_28": 25, "415265": 25, "174434": 25, "007133": 25, "linear_29": 25, "038418": 25, "118534": 25, "724262": 25, "linear_30": 25, "072084": 25, "936867": 25, "259155": 25, "linear_31": 25, "342712": 25, "599489": 25, "282787": 25, "linear_32": 25, "340535": 25, "120308": 25, "701103": 25, "linear_33": 25, "846987": 25, "630030": 25, "985939": 25, "linear_34": 25, "686298": 25, "204571": 25, "607586": 25, "linear_35": 25, "904821": 25, "575518": 25, "756420": 25, "linear_36": 25, "806659": 25, "585589": 25, "118401": 25, "linear_37": 25, "402340": 25, "047157": 25, "162680": 25, "linear_38": 25, "174589": 25, "923361": 25, "030258": 25, "linear_39": 25, "178576": 25, "556058": 25, "807705": 25, "linear_40": 25, "901954": 25, "301267": 25, "956539": 25, "linear_41": 25, "839805": 25, "597429": 25, "716181": 25, "linear_42": 25, "178945": 25, "651595": 25, "895699": 25, "829245": 25, "627592": 25, "637907": 25, "746186": 25, "255032": 25, "167313": 25, "000000": 25, "999756": 25, "031013": 25, "345k": 25, "17k": 25, "218m": 25, "counterpart": 25, "bit": [25, 34, 36, 37, 39, 43, 50], "4532": 25, "feedforward": [26, 31, 36, 42, 57], "384": [26, 31, 39], "unmask": [26, 31], "downsampl": [26, 31, 35], "factor": [26, 31, 34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "473": [26, 39], "246": [26, 36, 39, 47, 48], "477": 26, "warm_step": 26, "2000": [26, 37], "feedforward_dim": 26, "attention_dim": [26, 34, 36, 39], "encoder_unmasked_dim": 26, "zipformer_downsampling_factor": 26, "decode_chunk_len": 26, "257": [26, 36, 47, 48], "023": 26, "zipformer2": 26, "419": 26, "At": [26, 34, 39], "stack": 26, "downsampling_factor": 26, "037": 26, "655": 26, "346": 26, "68944004": 26, "347": 26, "260096": 26, "348": [26, 47], "716276": 26, "656": [26, 39], "349": 26, "69920376": 26, "351": 26, "353": 26, "174": [26, 39], "175": 26, "1344": 26, "assert": 26, "cached_len": 26, "num_lay": 26, "1348": 26, "cached_avg": 26, "1352": 26, "cached_kei": 26, "1356": 26, "cached_v": 26, "1360": 26, "cached_val2": 26, "1364": 26, "cached_conv1": 26, "1368": 26, "cached_conv2": 26, "1373": 26, "left_context_len": 26, "1884": 26, "x_size": 26, "2442": 26, "2449": 26, "2469": 26, "2473": 26, "2483": 26, "kv_len": 26, "k": [26, 42, 47, 48, 56, 57, 58], "2570": 26, "attn_output": 26, "bsz": 26, "num_head": 26, "seq_len": 26, "head_dim": 26, "2926": 26, "lorder": 26, "2652": 26, "2653": 26, "embed_dim": 26, "2666": 26, "1543": 26, "in_x_siz": 26, "1637": 26, "1643": 26, "in_channel": 26, "1571": 26, "1763": 26, "src1": 26, "src2": 26, "1779": 26, "dim1": 26, "1780": 26, "dim2": 26, "_trace": 26, "958": 26, "tracer": 26, "instead": [26, 36, 57], "tupl": 26, "namedtupl": 26, "absolut": 26, "know": [26, 40], "side": 26, "allow": [26, 42, 57], "behavior": [26, 36], "_c": 26, "_create_method_from_trac": 26, "646": 26, "357": 26, "102": [26, 34], "embedding_out": 26, "686": 26, "361": [26, 39, 43], "735": 26, "69": 26, "269m": 26, "269": [26, 34, 47, 48], "725": [26, 43], "1022k": 26, "266m": 26, "8m": 26, "509k": 26, "133m": 26, "152k": 26, "4m": 26, "1022": 26, "133": 26, "509": 26, "360": 26, "365": 26, "280": [26, 39], "372": [26, 34], "state": [26, 34, 36, 37, 39, 42, 44, 45, 52, 56, 57, 58], "026": 26, "410": 26, "411": [26, 39], "2028": 26, "2547": 26, "2029": 26, "23316": 26, "23317": 26, "23318": 26, "23319": 26, "23320": 26, "amount": [26, 33, 35], "pad": [26, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "conv2dsubsampl": 26, "arrai": 26, "23300": 26, "element": 26, "repo_url": 27, "basenam": 27, "why": 28, "streaming_asr": [28, 29, 56, 57, 58], "conv_emform": 28, "offline_asr": [28, 42], "baz": 29, "compact": 31, "inject": 31, "competit": 31, "full": [31, 32, 39, 40, 42, 44, 45, 56, 57, 58], "subset": [31, 32, 39, 42, 44, 45, 56, 57, 58], "instruct": [31, 32], "intial": [31, 32], "decode_gigaspeech": [31, 32], "1000": [31, 32, 39, 60, 61], "insert": 31, "residu": 31, "zipformer2encoderlay": 31, "remain": 31, "untouch": 31, "experi": [31, 32, 34, 36, 37, 39, 40, 42, 44, 45, 50, 56, 57, 58], "do_finetun": [31, 32], "use_adapt": 31, "adapter_dim": 31, "zipformer_adapt": 31, "world": [31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 52, 56, 57, 58, 60, 61], "exp_giga_finetune_adapt": 31, "_adapter_dim": 31, "045": 31, "13022": 31, "ckpt": [31, 32], "certain": [31, 32, 33], "bottleneck": 31, "notic": 31, "trainal": 31, "2024": [31, 60], "808": [31, 39, 47], "1277": 31, "761344": 31, "trainabl": 31, "whole": [31, 32, 39, 43, 47, 48, 57, 58], "entir": 31, "deactiv": 31, "keep": [31, 36, 42, 57, 58], "768": 31, "1536": 31, "queri": 31, "po": 31, "causal": [31, 57], "128": [31, 39], "previou": [32, 52], "stateless": [32, 35, 38, 42, 56, 57, 58], "due": [32, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "vocabulari": [32, 36], "use_mux": 32, "exp_giga_finetun": 32, "_mux": 32, "0045": 32, "mux": 32, "13024": 32, "forget": 32, "quickli": 32, "mix": 32, "maintain": 32, "ones": 32, "lower": [32, 56], "public": 33, "capabl": 33, "high": [33, 35, 60], "label": 33, "1best": [34, 37, 39, 43, 44, 45, 47, 48], "automag": [34, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "stop": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "By": [34, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "musan": [34, 37, 39, 40, 42, 44, 45, 56, 57, 58], "apt": [34, 37], "permiss": [34, 37], "commandlin": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "multi": [34, 36, 37, 39, 40, 42, 44, 45, 54, 56, 57, 58], "machin": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "ddp": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "implement": [34, 36, 37, 39, 40, 42, 44, 45, 54, 56, 57, 58], "utter": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "oom": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "decai": [34, 37, 39, 44, 45, 56], "warmup": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "function": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "get_param": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "directli": [34, 36, 37, 39, 40, 42, 44, 45, 56, 57, 58], "perturb": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "3x150": [34, 36, 37], "450": [34, 36, 37], "visual": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "logdir": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "labelsmooth": 34, "tensorflow": [34, 36, 37, 39, 42, 44, 45, 50, 56, 57], "press": [34, 36, 37, 39, 42, 44, 45, 50, 56, 57, 58], "ctrl": [34, 36, 37, 39, 42, 44, 45, 50, 56, 57, 58], "engw8ksktzqs24zbv5dgcg": 34, "2021": [34, 37, 39, 43, 47, 48, 50], "22t11": 34, "scan": [34, 36, 37, 39, 42, 50, 56, 57], "116068": 34, "scalar": [34, 36, 37, 39, 42, 50, 56, 57], "listen": [34, 36, 37, 42, 50, 56, 57], "xxxx": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "saw": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "consol": [34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "avoid": [34, 36, 39], "nbest": [34, 39, 45], "lattic": [34, 37, 39, 42, 43, 47, 48, 57, 58], "uniqu": [34, 39, 42, 57, 58], "pkufool": [34, 37, 43], "icefall_asr_aishell_conformer_ctc": 34, "transcrib": [34, 36, 37, 39], "lang_char": [34, 36], "bac009s0764w0121": [34, 36, 37], "bac009s0764w0122": [34, 36, 37], "bac009s0764w0123": [34, 36, 37], "tran": [34, 37, 39, 43, 47, 48], "graph": [34, 37, 39, 42, 43, 47, 48, 57, 58], "conveni": [34, 37, 39, 40], "eo": [34, 37, 39], "soxi": [34, 36, 37, 39, 43, 50], "sampl": [34, 36, 37, 39, 43, 44, 50, 57, 58], "precis": [34, 36, 37, 39, 42, 43, 50, 57, 58], "67263": [34, 36, 37], "cdda": [34, 36, 37, 39, 43, 50], "sector": [34, 36, 37, 39, 43, 50], "135k": [34, 36, 37], "256k": [34, 36, 37, 39], "sign": [34, 36, 37, 39, 50], "integ": [34, 36, 37, 39, 50], "pcm": [34, 36, 37, 39, 50], "65840": [34, 36, 37], "308": [34, 36, 37], "625": [34, 36, 37], "132k": [34, 36, 37], "64000": [34, 36, 37], "300": [34, 36, 37, 39, 40, 42, 52, 57], "128k": [34, 36, 37, 50], "displai": [34, 36, 37, 39], "topologi": [34, 39], "num_decoder_lay": [34, 39], "vgg_frontend": [34, 36, 39], "use_feat_batchnorm": [34, 39], "f2fd997f752ed11bbef4c306652c433e83f9cf12": 34, "sun": 34, "sep": 34, "33cfe45": 34, "d57a873": 34, "nov": [34, 39], "hw": 34, "kangwei": 34, "icefall_aishell3": 34, "k2_releas": 34, "tokens_fil": 34, "num_path": [34, 39, 42, 57, 58], "ngram_lm_scal": [34, 39], "attention_decoder_scal": [34, 39], "nbest_scal": [34, 39], "sos_id": [34, 39], "eos_id": [34, 39], "4336": [34, 36], "131": [34, 39], "293": [34, 39], "369": [34, 39], "\u751a": [34, 36], "\u81f3": [34, 36], "\u51fa": [34, 36], "\u73b0": [34, 36], "\u4ea4": [34, 36], "\u6613": [34, 36], "\u51e0": [34, 36], "\u4e4e": [34, 36], "\u505c": [34, 36], "\u6b62": 34, "\u7684": [34, 36, 37], "\u60c5": [34, 36], "\u51b5": [34, 36], "\u4e00": [34, 36], "\u4e8c": [34, 36], "\u7ebf": [34, 36, 37], "\u57ce": [34, 36], "\u5e02": [34, 36], "\u867d": [34, 36], "\u7136": [34, 36], "\u4e5f": [34, 36, 37], "\u5904": [34, 36], "\u4e8e": [34, 36], "\u8c03": [34, 36], "\u6574": [34, 36], "\u4e2d": [34, 36, 37], "\u4f46": [34, 36, 37], "\u56e0": [34, 36], "\u4e3a": [34, 36], "\u805a": [34, 36], "\u96c6": [34, 36], "\u4e86": [34, 36, 37], "\u8fc7": [34, 36], "\u591a": [34, 36], "\u516c": [34, 36], "\u5171": [34, 36], "\u8d44": [34, 36], "\u6e90": [34, 36], "371": 34, "683": 34, "684": [34, 50], "651": [34, 50], "654": 34, "659": 34, "752": 34, "887": 34, "340": 34, "370": 34, "\u751a\u81f3": [34, 37], "\u51fa\u73b0": [34, 37], "\u4ea4\u6613": [34, 37], "\u51e0\u4e4e": [34, 37], "\u505c\u6b62": 34, "\u60c5\u51b5": [34, 37], "\u4e00\u4e8c": [34, 37], "\u57ce\u5e02": [34, 37], "\u867d\u7136": [34, 37], "\u5904\u4e8e": [34, 37], "\u8c03\u6574": [34, 37], "\u56e0\u4e3a": [34, 37], "\u805a\u96c6": [34, 37], "\u8fc7\u591a": [34, 37], "\u516c\u5171": [34, 37], "\u8d44\u6e90": [34, 37], "recor": [34, 39], "highest": [34, 39], "966": 34, "821": 34, "822": 34, "826": 34, "916": 34, "345": 34, "889": 34, "limit": [34, 36, 39, 54, 57], "upgrad": [34, 39], "NOT": [34, 36, 39, 50], "checkout": [34, 39], "hlg_decod": [34, 39], "four": [34, 39], "messag": [34, 39, 42, 44, 45, 56, 57, 58], "use_gpu": [34, 39], "word_tabl": [34, 39], "forward": [34, 39, 44], "cu": [34, 39], "int": [34, 39], "char": [34, 39], "98": 34, "150": [34, 39], "693": [34, 47], "165": [34, 39], "nnet_output": [34, 39], "185": [34, 39, 50], "217": [34, 39], "mandarin": 35, "beij": 35, "shell": 35, "technologi": 35, "ltd": 35, "peopl": 35, "accent": 35, "area": 35, "invit": 35, "particip": 35, "conduct": 35, "indoor": 35, "fidel": 35, "microphon": 35, "16khz": 35, "manual": 35, "through": 35, "profession": 35, "annot": 35, "inspect": 35, "free": [35, 40, 52, 56], "academ": 35, "moder": 35, "research": 35, "openslr": [35, 52], "ctc": [35, 38, 41, 45, 46, 49], "conv1d": [36, 42, 56, 57, 58], "tanh": 36, "borrow": 36, "ieeexplor": 36, "ieee": 36, "stamp": 36, "jsp": 36, "arnumb": 36, "9054419": 36, "predict": [36, 40, 42, 56, 57, 58], "charact": 36, "unit": 36, "87939824": 36, "optimized_transduc": 36, "technqiu": 36, "end": [36, 42, 44, 45, 50, 56, 57, 58, 60, 61], "maximum": 36, "emit": 36, "simplifi": [36, 54], "significantli": 36, "degrad": 36, "exactli": 36, "unprun": 36, "advantag": 36, "minim": 36, "pruned_transducer_stateless": [36, 42, 54, 57], "altern": 36, "though": 36, "transducer_stateless_modifi": 36, "pr": 36, "ram": 36, "tri": 36, "prob": [36, 56], "219": [36, 39], "lagz6hrcqxoigbfd5e0y3q": 36, "03t14": 36, "8477": 36, "250": [36, 43], "sym": [36, 42, 57, 58], "beam_search": [36, 42, 57, 58], "decoding_method": 36, "beam_4": 36, "ensur": 36, "poor": 36, "531": [36, 37], "994": [36, 39], "027": 36, "encoder_out_dim": 36, "f4fefe4882bc0ae59af951da3f47335d5495ef71": 36, "50d2281": 36, "mar": 36, "0815224919": 36, "75d558775b": 36, "mmnv8": 36, "72": [36, 39], "878": [36, 48], "880": 36, "891": 36, "113": [36, 39], "userwarn": 36, "__floordiv__": 36, "round": 36, "toward": 36, "trunc": 36, "floor": 36, "div": 36, "b": [36, 39, 47, 48], "rounding_mod": 36, "divis": 36, "x_len": 36, "163": [36, 39], "\u6ede": 36, "322": 36, "759": 36, "760": 36, "919": 36, "922": 36, "929": 36, "046": 36, "319": [36, 39], "798": 36, "831": [36, 48], "215": [36, 39, 43], "402": 36, "topk_hyp_index": 36, "topk_index": 36, "logit": 36, "583": [36, 48], "lji9mwuorlow3jkdhxwk8a": 37, "13t11": 37, "4454": 37, "icefall_asr_aishell_tdnn_lstm_ctc": 37, "858": [37, 39], "389": [37, 39], "161": [37, 39], "536": 37, "539": 37, "917": 37, "\u505c\u6ede": 37, "mmi": [38, 41], "blank": [38, 41], "skip": [38, 40, 41, 42, 56, 57, 58], "distil": [38, 41], "hubert": [38, 41], "ligru": [38, 46], "libri": [39, 40, 42, 44, 45, 56, 57, 58], "3x960": [39, 42, 44, 45, 56, 57, 58], "2880": [39, 42, 44, 45, 56, 57, 58], "lzgnetjwrxc3yghnmd4kpw": 39, "24t16": 39, "4540": 39, "sentenc": [39, 52], "piec": 39, "And": [39, 42, 44, 45, 56, 57, 58], "neither": 39, "nor": 39, "5000": 39, "033": 39, "537": 39, "full_libri": [39, 40], "464": 39, "548": 39, "776": 39, "652": [39, 50], "109226120": 39, "714": [39, 47], "206": 39, "944": 39, "1328": 39, "443": [39, 43], "2563": 39, "494": 39, "592": 39, "1715": 39, "52576": 39, "1424": 39, "807": 39, "506": 39, "362": 39, "1477": 39, "2922": 39, "4295": 39, "52343": 39, "396": 39, "3584": 39, "432": 39, "680": [39, 47], "_pickl": 39, "unpicklingerror": 39, "invalid": 39, "hlg_modifi": 39, "g_4_gram": [39, 43, 47, 48], "sentencepiec": 39, "875": [39, 43], "212k": 39, "267440": [39, 43], "1253": [39, 43], "535k": 39, "77200": [39, 43], "154k": 39, "554": 39, "7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4": 39, "8d93169": 39, "601": 39, "025": 39, "broffel": 39, "osom": 39, "723": 39, "775": 39, "881": 39, "571": 39, "857": 39, "979": 39, "055": 39, "117": 39, "051": 39, "363": 39, "959": [39, 48], "546": 39, "598": 39, "599": [39, 43], "833": 39, "834": 39, "915": 39, "076": 39, "110": 39, "397": 39, "999": [39, 42, 57, 58], "concaten": 39, "bucket": 39, "sampler": 39, "ctc_decod": 39, "ngram_lm_rescor": 39, "attention_rescor": 39, "105": 39, "125": [39, 50], "228": 39, "543": 39, "topo": 39, "547": 39, "729": 39, "703": 39, "545": 39, "122": 39, "126": 39, "135": [39, 50], "153": [39, 50], "945": 39, "475": 39, "191": [39, 47, 48], "398": 39, "515": 39, "deseri": 39, "441": 39, "fsaclass": 39, "loadfsa": 39, "const": 39, "string": 39, "c10": 39, "ignor": 39, "589": 39, "attention_scal": 39, "162": 39, "169": [39, 47, 48], "188": 39, "984": 39, "624": 39, "519": [39, 48], "632": 39, "645": [39, 50], "243": 39, "303": 39, "179": 39, "knowledg": 40, "vector": 40, "mvq": 40, "kd": 40, "pruned_transducer_stateless4": [40, 42, 54, 57], "theoret": 40, "applic": 40, "minor": 40, "stop_stag": [40, 60, 61], "thing": 40, "distillation_with_hubert": 40, "Of": 40, "cours": 40, "xl": 40, "proce": 40, "960h": [40, 44], "use_extracted_codebook": 40, "augment": 40, "th": [40, 47, 48], "embedding_lay": 40, "num_codebook": 40, "under": [40, 52], "vq_fbank_layer36_cb8": 40, "whola": 40, "snippet": 40, "echo": 40, "awk": 40, "split": 40, "pruned_transducer_stateless6": 40, "12359": 40, "spec": 40, "warp": 40, "paid": 40, "suitabl": [42, 56, 57, 58], "pruned_transducer_stateless2": [42, 54, 57], "pruned_transducer_stateless5": [42, 54, 57], "scroll": [42, 44, 45, 56, 57, 58], "arxiv": [42, 56, 57, 58], "2206": [42, 56, 57, 58], "13236": [42, 56, 57, 58], "rework": [42, 54, 57], "daniel": [42, 57, 58], "joint": [42, 56, 57, 58], "contrari": [42, 56, 57, 58], "convent": [42, 56, 57, 58], "recurr": [42, 56, 57, 58], "2x": [42, 57, 58], "littl": [42, 57], "436000": [42, 44, 45, 56, 57, 58], "438000": [42, 44, 45, 56, 57, 58], "qogspbgsr8kzcrmmie9jgw": 42, "20t15": [42, 56, 57], "4468": [42, 56, 57], "210171": [42, 56, 57], "access": [42, 44, 45, 56, 57, 58], "googl": [42, 44, 45, 56, 57, 58], "6008": [42, 44, 45, 56, 57, 58], "localhost": [42, 44, 45, 56, 57, 58], "expos": [42, 44, 45, 56, 57, 58], "proxi": [42, 44, 45, 56, 57, 58], "bind_al": [42, 44, 45, 56, 57, 58], "fast_beam_search": [42, 44, 56, 57, 58], "474000": [42, 56, 57, 58], "largest": [42, 57, 58], "posterior": [42, 44, 57, 58], "algorithm": [42, 57, 58], "pdf": [42, 45, 57, 58], "1211": [42, 57, 58], "3711": [42, 57, 58], "espnet": [42, 57, 58], "net": [42, 57, 58], "beam_search_transduc": [42, 57, 58], "basic": [42, 57], "topk": [42, 57, 58], "expand": [42, 57, 58], "mode": [42, 57, 58], "being": [42, 57, 58], "hardcod": [42, 57, 58], "composit": [42, 57, 58], "log_prob": [42, 57, 58], "hard": [42, 54, 57, 58], "2211": [42, 57, 58], "00484": [42, 57, 58], "fast_beam_search_lg": [42, 57, 58], "trivial": [42, 57, 58], "fast_beam_search_nbest": [42, 57, 58], "random_path": [42, 57, 58], "shortest": [42, 57, 58], "fast_beam_search_nbest_lg": [42, 57, 58], "logic": [42, 57, 58], "smallest": [42, 56, 57, 58], "normal": [43, 47, 48, 50, 57], "icefall_asr_librispeech_tdnn": 43, "lstm_ctc": 43, "flac": 43, "116k": 43, "140k": 43, "343k": 43, "164k": 43, "105k": 43, "174k": 43, "pretraind": 43, "584": [43, 48], "791": 43, "245": 43, "098": 43, "099": 43, "methond": [43, 47, 48], "631": 43, "010": 43, "guidanc": 44, "bigger": 44, "simpli": 44, "discard": 44, "prevent": 44, "lconv": 44, "encourag": [44, 45, 56], "stabil": [44, 45], "doesn": 44, "warm": [44, 45], "xyozukpeqm62hbilud4upa": [44, 45], "ctc_guide_decode_b": 44, "pretrained_ctc": 44, "jit_pretrained_ctc": 44, "100h": 44, "yfyeung": 44, "wechat": 45, "zipformer_mmi": 45, "worker": [45, 56], "hp": 45, "tdnn_ligru_ctc": 47, "enough": [47, 48, 50, 52], "luomingshuang": [47, 48], "icefall_asr_timit_tdnn_ligru_ctc": 47, "pretrained_average_9_25": 47, "fdhc0_si1559": [47, 48], "felc0_si756": [47, 48], "fmgd0_si1564": [47, 48], "ffprobe": [47, 48], "show_format": [47, 48], "nistspher": [47, 48], "database_id": [47, 48], "database_vers": [47, 48], "utterance_id": [47, 48], "dhc0_si1559": [47, 48], "sample_min": [47, 48], "4176": [47, 48], "sample_max": [47, 48], "5984": [47, 48], "bitrat": [47, 48], "pcm_s16le": [47, 48], "s16": [47, 48], "elc0_si756": [47, 48], "1546": [47, 48], "1989": [47, 48], "mgd0_si1564": [47, 48], "7626": [47, 48], "10573": [47, 48], "660": 47, "695": 47, "697": 47, "819": 47, "829": 47, "sil": [47, 48], "dh": [47, 48], "ih": [47, 48], "uw": [47, 48], "ah": [47, 48], "ii": [47, 48], "z": [47, 48], "aa": [47, 48], "ei": [47, 48], "dx": [47, 48], "d": [47, 48, 52], "uh": [47, 48], "ng": [47, 48, 60], "eh": [47, 48], "jh": [47, 48], "er": [47, 48], "ai": [47, 48], "hh": [47, 48], "aw": 47, "ae": [47, 48], "705": 47, "715": 47, "720": 47, "251": [47, 48], "ch": 47, "icefall_asr_timit_tdnn_lstm_ctc": 48, "pretrained_average_16_25": 48, "816": 48, "827": 48, "unk": 48, "739": 48, "977": 48, "978": 48, "981": 48, "ow": 48, "ykubhb5wrmosxykid1z9eg": 50, "23t23": 50, "icefall_asr_yesno_tdnn": 50, "0_0_1_0_0_1_1_1": 50, "0_0_1_0_1_0_0_1": 50, "0_0_1_1_0_0_0_1": 50, "0_0_1_1_0_1_1_0": 50, "0_0_1_1_1_0_0_0": 50, "0_0_1_1_1_1_0_0": 50, "0_1_0_0_0_1_0_0": 50, "0_1_0_0_1_0_1_0": 50, "0_1_0_1_0_0_0_0": 50, "0_1_0_1_1_1_0_0": 50, "0_1_1_0_0_1_1_1": 50, "0_1_1_1_0_0_1_0": 50, "0_1_1_1_1_0_1_0": 50, "1_0_0_0_0_0_0_0": 50, "1_0_0_0_0_0_1_1": 50, "1_0_0_1_0_1_1_1": 50, "1_0_1_1_0_1_1_1": 50, "1_0_1_1_1_1_0_1": 50, "1_1_0_0_0_1_1_1": 50, "1_1_0_0_1_0_1_1": 50, "1_1_0_1_0_1_0_0": 50, "1_1_0_1_1_0_0_1": 50, "1_1_0_1_1_1_1_0": 50, "1_1_1_0_0_1_0_1": 50, "1_1_1_0_1_0_1_0": 50, "1_1_1_1_0_0_1_0": 50, "1_1_1_1_1_0_0_0": 50, "1_1_1_1_1_1_1_1": 50, "54080": 50, "507": 50, "108k": 50, "119": 50, "650": 50, "139": 50, "143": 50, "198": 50, "181": 50, "186": 50, "187": 50, "correctli": 50, "simplest": 50, "nnlm": 52, "complet": 52, "wget": [52, 60], "resourc": 52, "norm": 52, "gzip": 52, "prepare_lm_training_data": 52, "lm_data": 52, "grab": 52, "cup": 52, "coffe": 52, "sort_lm_training_data": 52, "sorted_lm_data": 52, "statist": 52, "lm_data_stat": 52, "aforement": 52, "repeat": 52, "rnn_lm": 52, "tie": 52, "hyper": [52, 60, 61], "coupl": [52, 60, 61], "dai": [52, 60, 61], "former": 54, "mask": [54, 57, 58], "wenet": 54, "did": 54, "request": 54, "complic": 54, "techniqu": 54, "bank": 54, "memor": 54, "histori": 54, "introduc": 54, "variant": 54, "pruned_stateless_emformer_rnnt2": 54, "conv_emformer_transducer_stateless": 54, "ourself": 54, "mechan": 54, "onlin": 56, "lstm_transducer_stateless": 56, "prepare_giga_speech": 56, "cj2vtpiwqhkn9q1tx6ptpg": 56, "dynam": [57, 58], "short": [57, 58], "2012": 57, "05481": 57, "flag": 57, "indic": [57, 58], "whether": 57, "sequenc": [57, 58], "uniformli": [57, 58], "seen": [57, 58], "97vkxf80ru61cnp2alwzzg": 57, "streaming_decod": [57, 58], "wise": [57, 58], "parallel": [57, 58], "bath": [57, 58], "parallelli": [57, 58], "seem": 57, "benefit": 57, "320m": 58, "550": 58, "basicli": 58, "scriptmodul": 58, "jit_trace_export": 58, "jit_trace_pretrain": 58, "monoton": 59, "align": 59, "condit": [60, 61], "variat": [60, 61], "autoencod": [60, 61], "adversari": [60, 61], "piper_phonem": 60, "numba": 60, "espnet_tts_frontend": 60, "monotonic_align": [60, 61], "build_ext": [60, 61], "inplac": [60, 61], "medium": 60, "ground": [60, 61], "truth": [60, 61], "test_onnx": [60, 61], "program": 60, "kotlin": 60, "java": 60, "swift": 60, "offlin": 60, "espeak": 60, "bz2": 60, "xf": 60, "thread": 60, "countri": 60, "plai": 60, "350": 61, "zrjin": 61, "synthesi": 62, "task": 62}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"follow": 0, "code": [0, 9], "style": 0, "contribut": [1, 3], "document": 1, "how": [2, 22, 28, 29], "creat": [2, 13, 21], "recip": [2, 62], "data": [2, 9, 11, 21, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "prepar": [2, 9, 11, 21, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "train": [2, 9, 16, 18, 21, 24, 25, 26, 27, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "decod": [2, 5, 6, 7, 9, 12, 21, 22, 27, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "pre": [2, 18, 24, 25, 26, 27, 31, 32, 33, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58], "model": [2, 5, 15, 18, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 52, 56, 57, 58, 60, 61], "lodr": [4, 6], "rnn": [4, 51, 52], "transduc": [4, 6, 7, 24, 25, 26, 36, 42, 56, 57, 58], "wer": [4, 6, 7, 39], "differ": [4, 6, 7], "beam": [4, 6, 7, 36], "size": [4, 6, 7], "languag": [5, 52], "lm": [6, 39, 51], "rescor": [6, 34, 39], "base": 6, "method": 6, "v": 6, "shallow": [6, 7], "fusion": [6, 7], "The": [6, 36], "number": 6, "each": 6, "field": 6, "i": 6, "test": [6, 7, 21, 24, 25, 26], "clean": [6, 7], "other": 6, "time": [6, 7], "docker": [8, 9], "introduct": [9, 54], "view": 9, "avail": 9, "tag": 9, "cuda": [9, 21], "enabl": 9, "imag": 9, "cpu": 9, "onli": 9, "download": [9, 11, 21, 24, 25, 26, 27, 34, 36, 37, 39, 42, 43, 44, 45, 47, 48, 50, 56, 57, 58, 60, 61], "run": [9, 22, 60], "gpu": 9, "yesno": [9, 49], "within": 9, "contain": 9, "updat": 9, "frequent": 10, "ask": 10, "question": 10, "faq": 10, "oserror": 10, "libtorch_hip": 10, "so": 10, "cannot": 10, "open": 10, "share": 10, "object": 10, "file": [10, 11, 27, 60], "directori": 10, "attributeerror": 10, "modul": 10, "distutil": 10, "ha": 10, "attribut": 10, "version": 10, "importerror": 10, "libpython3": 10, "10": 10, "1": [10, 21, 24, 25, 26, 34, 36, 37, 39], "0": [10, 21], "No": 10, "For": [11, 12, 13, 15, 16], "more": [11, 12, 13, 15, 16], "curiou": [11, 12, 13, 15, 16], "A": 11, "quick": 11, "look": 11, "gener": 11, "environ": [13, 21], "setup": 13, "virtual": [13, 21], "instal": [13, 21, 24, 25, 26, 34, 36, 37, 39, 43, 47, 48, 60], "depend": [13, 60], "icefal": [13, 14, 20, 21, 24, 25, 26], "dummi": 14, "tutori": 14, "export": [15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 42, 44, 45, 56, 57, 58, 60, 61], "paramet": 15, "via": [15, 24, 25, 26], "state_dict": [15, 22, 42, 44, 45, 56, 57, 58], "torch": [15, 21, 24, 25, 26, 28, 29, 42, 44, 45, 56, 57, 58], "jit": [15, 24, 25, 26, 28, 29, 42, 44, 45, 56, 57, 58], "script": [15, 28, 42, 44, 45, 57, 58], "onnx": [15, 27, 60], "huggingfac": [17, 19], "space": 19, "youtub": [19, 21], "video": [19, 21], "content": [20, 33, 62], "toolkit": 21, "cudnn": 21, "torchaudio": 21, "2": [21, 24, 25, 26, 34, 36, 37, 39], "k2": 21, "3": [21, 24, 25, 26, 34, 36, 39], "lhots": 21, "4": [21, 24, 25, 26], "exampl": [21, 27, 34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "5": [21, 24, 25, 26], "6": [21, 24, 25, 26], "your": 21, "when": [22, 28, 29], "us": [22, 28, 29, 42, 44, 45, 56, 57, 58], "py": 22, "ncnn": [23, 24, 25, 26], "convemform": 24, "pnnx": [24, 25, 26], "trace": [24, 25, 26, 29, 56, 58], "torchscript": [24, 25, 26], "modifi": [24, 25, 26, 36], "encod": [24, 25, 26], "sherpa": [24, 25, 26, 27, 42, 57, 58, 60], "7": [24, 25], "option": [24, 25, 34, 37, 39, 42, 44, 45, 56, 57, 58], "int8": [24, 25], "quantiz": [24, 25], "lstm": [25, 37, 43, 48, 56], "stream": [26, 38, 53, 54, 57, 58], "zipform": [26, 31, 32, 44, 45, 58], "sound": 27, "finetun": [31, 32], "from": [31, 32], "adapt": 31, "fine": [31, 32, 33], "tune": [31, 32, 33], "supervis": 32, "tabl": [33, 62], "conform": [34, 39, 54], "ctc": [34, 37, 39, 43, 44, 47, 48, 50], "configur": [34, 37, 39, 42, 44, 45, 56, 57, 58], "log": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58], "usag": [34, 36, 37, 39, 42, 44, 45, 56, 57, 58, 60], "case": [34, 36, 37, 39], "kaldifeat": [34, 36, 37, 39, 43, 47, 48, 50], "hlg": [34, 37, 39], "attent": [34, 39], "colab": [34, 36, 37, 39, 43, 47, 48, 50], "notebook": [34, 36, 37, 39, 43, 47, 48, 50], "deploy": [34, 39], "c": [34, 39], "aishel": 35, "stateless": 36, "loss": 36, "todo": 36, "greedi": 36, "search": [36, 60, 61], "tdnn": [37, 43, 47, 48, 50], "non": 38, "asr": [38, 53], "comput": 39, "n": 39, "gram": 39, "distil": 40, "hubert": 40, "codebook": 40, "index": 40, "librispeech": [41, 55], "prune": [42, 57], "statelessx": [42, 57], "pretrain": [42, 44, 45, 56, 57, 58, 60, 61], "deploi": [42, 57, 58], "infer": [43, 47, 48, 50, 60, 61], "blank": 44, "skip": 44, "mmi": 45, "timit": 46, "ligru": 47, "an": 52, "emform": 54, "which": 56, "simul": [57, 58], "real": [57, 58], "tt": 59, "vit": [60, 61], "ljspeech": 60, "extra": 60, "build": [60, 61], "monoton": [60, 61], "align": [60, 61], "lexicon": 60, "vctk": 61}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"Follow the code style": [[0, "follow-the-code-style"]], "Contributing to Documentation": [[1, "contributing-to-documentation"]], "How to create a recipe": [[2, "how-to-create-a-recipe"]], "Data Preparation": [[2, "data-preparation"], [11, "data-preparation"], [36, "data-preparation"]], "Training": [[2, "training"], [9, "training"], [16, "training"], [21, "training"], [34, "training"], [36, "training"], [37, "training"], [39, "training"], [40, "training"], [42, "training"], [43, "training"], [44, "training"], [45, "training"], [47, "training"], [48, "training"], [50, "training"], [56, "training"], [57, "training"], [58, "training"], [60, "training"], [61, "training"]], "Decoding": [[2, "decoding"], [9, "decoding"], [12, "decoding"], [21, "decoding"], [31, "decoding"], [34, "decoding"], [36, "decoding"], [37, "decoding"], [39, "decoding"], [40, "decoding"], [42, "decoding"], [43, "decoding"], [44, "decoding"], [45, "decoding"], [47, "decoding"], [48, "decoding"], [50, "decoding"], [56, "decoding"], [57, "decoding"], [58, "decoding"]], "Pre-trained model": [[2, "pre-trained-model"]], "Contributing": [[3, "contributing"]], "LODR for RNN Transducer": [[4, "lodr-for-rnn-transducer"]], "WER of LODR with different beam sizes": [[4, "id1"]], "Decoding with language models": [[5, "decoding-with-language-models"]], "LM rescoring for Transducer": [[6, "lm-rescoring-for-transducer"]], "WERs of LM rescoring with different beam sizes": [[6, "id1"]], "WERs of LM rescoring + LODR with different beam sizes": [[6, "id2"]], "LM-rescoring-based methods vs shallow-fusion-based methods (The numbers in each field is WER on test-clean, WER on test-other and decoding time on test-clean)": [[6, "id3"]], "Shallow fusion for Transducer": [[7, "shallow-fusion-for-transducer"]], "WERs and decoding time (on test-clean) of shallow fusion with different beam sizes": [[7, "id2"]], "Docker": [[8, "docker"]], "Introduction": [[9, "introduction"], [54, "introduction"]], "View available tags": [[9, "view-available-tags"]], "CUDA-enabled docker images": [[9, "cuda-enabled-docker-images"]], "CPU-only docker images": [[9, "cpu-only-docker-images"]], "Download a docker image (CUDA)": [[9, "download-a-docker-image-cuda"]], "Download a docker image (CPU)": [[9, "download-a-docker-image-cpu"]], "Run a docker image with GPU": [[9, "run-a-docker-image-with-gpu"]], "Run a docker image with CPU": [[9, "run-a-docker-image-with-cpu"]], "Run yesno within a docker container": [[9, "run-yesno-within-a-docker-container"]], "Update the code": [[9, "update-the-code"]], "Data preparation": [[9, "data-preparation"], [21, "data-preparation"], [31, "data-preparation"], [32, "data-preparation"], [34, "data-preparation"], [37, "data-preparation"], [39, "data-preparation"], [40, "data-preparation"], [42, "data-preparation"], [43, "data-preparation"], [44, "data-preparation"], [45, "data-preparation"], [47, "data-preparation"], [48, "data-preparation"], [50, "data-preparation"], [56, "data-preparation"], [57, "data-preparation"], [58, "data-preparation"], [60, "data-preparation"], [61, "data-preparation"]], "Frequently Asked Questions (FAQs)": [[10, "frequently-asked-questions-faqs"]], "OSError: libtorch_hip.so: cannot open shared object file: no such file or directory": [[10, "oserror-libtorch-hip-so-cannot-open-shared-object-file-no-such-file-or-directory"]], "AttributeError: module \u2018distutils\u2019 has no attribute \u2018version\u2019": [[10, "attributeerror-module-distutils-has-no-attribute-version"]], "ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory": [[10, "importerror-libpython3-10-so-1-0-cannot-open-shared-object-file-no-such-file-or-directory"]], "For the more curious": [[11, "for-the-more-curious"], [12, "for-the-more-curious"], [13, "for-the-more-curious"], [15, "for-the-more-curious"], [16, "for-the-more-curious"]], "A quick look to the generated files": [[11, "a-quick-look-to-the-generated-files"]], "download": [[11, "download"]], "data": [[11, "data"]], "Environment setup": [[13, "environment-setup"]], "Create a virtual environment": [[13, "create-a-virtual-environment"]], "Install dependencies": [[13, "install-dependencies"]], "Install icefall": [[13, "install-icefall"]], "Icefall for dummies tutorial": [[14, "icefall-for-dummies-tutorial"]], "Model Export": [[15, "model-export"]], "Export the model parameters via model.state_dict()": [[15, "export-the-model-parameters-via-model-state-dict"]], "Export via torch.jit.script()": [[15, "export-via-torch-jit-script"]], "Export via torch.onnx.export()": [[15, "export-via-torch-onnx-export"]], "Huggingface": [[17, "huggingface"]], "Pre-trained models": [[18, "pre-trained-models"]], "Huggingface spaces": [[19, "huggingface-spaces"]], "YouTube Video": [[19, "youtube-video"], [21, "youtube-video"]], "Icefall": [[20, "icefall"]], "Contents:": [[20, null]], "Installation": [[21, "installation"]], "(0) Install CUDA toolkit and cuDNN": [[21, "install-cuda-toolkit-and-cudnn"]], "(1) Install torch and torchaudio": [[21, "install-torch-and-torchaudio"]], "(2) Install k2": [[21, "install-k2"]], "(3) Install lhotse": [[21, "install-lhotse"]], "(4) Download icefall": [[21, "download-icefall"]], "Installation example": [[21, "installation-example"]], "(1) Create a virtual environment": [[21, "create-a-virtual-environment"]], "(2) Install CUDA toolkit and cuDNN": [[21, "id1"]], "(3) Install torch and torchaudio": [[21, "id2"]], "(4) Install k2": [[21, "id3"]], "(5) Install lhotse": [[21, "id5"]], "(6) Download icefall": [[21, "id6"]], "Test Your Installation": [[21, "test-your-installation"]], "Export model.state_dict()": [[22, "export-model-state-dict"], [42, "export-model-state-dict"], [44, "export-model-state-dict"], [45, "export-model-state-dict"], [56, "export-model-state-dict"], [57, "export-model-state-dict"], [58, "export-model-state-dict"]], "When to use it": [[22, "when-to-use-it"], [28, "when-to-use-it"], [29, "when-to-use-it"]], "How to export": [[22, "how-to-export"], [28, "how-to-export"], [29, "how-to-export"]], "How to use the exported model": [[22, "how-to-use-the-exported-model"], [28, "how-to-use-the-exported-model"]], "Use the exported model to run decode.py": [[22, "use-the-exported-model-to-run-decode-py"]], "Export to ncnn": [[23, "export-to-ncnn"]], "Export ConvEmformer transducer models to ncnn": [[24, "export-convemformer-transducer-models-to-ncnn"]], "1. Download the pre-trained model": [[24, "download-the-pre-trained-model"], [25, "download-the-pre-trained-model"], [26, "download-the-pre-trained-model"]], "2. Install ncnn and pnnx": [[24, "install-ncnn-and-pnnx"], [25, "install-ncnn-and-pnnx"], [26, "install-ncnn-and-pnnx"]], "3. Export the model via torch.jit.trace()": [[24, "export-the-model-via-torch-jit-trace"], [25, "export-the-model-via-torch-jit-trace"], [26, "export-the-model-via-torch-jit-trace"]], "4. Export torchscript model via pnnx": [[24, "export-torchscript-model-via-pnnx"], [25, "export-torchscript-model-via-pnnx"], [26, "export-torchscript-model-via-pnnx"]], "5. Test the exported models in icefall": [[24, "test-the-exported-models-in-icefall"], [25, "test-the-exported-models-in-icefall"], [26, "test-the-exported-models-in-icefall"]], "6. Modify the exported encoder for sherpa-ncnn": [[24, "modify-the-exported-encoder-for-sherpa-ncnn"], [25, "modify-the-exported-encoder-for-sherpa-ncnn"], [26, "modify-the-exported-encoder-for-sherpa-ncnn"]], "7. (Optional) int8 quantization with sherpa-ncnn": [[24, "optional-int8-quantization-with-sherpa-ncnn"], [25, "optional-int8-quantization-with-sherpa-ncnn"]], "Export LSTM transducer models to ncnn": [[25, "export-lstm-transducer-models-to-ncnn"]], "Export streaming Zipformer transducer models to ncnn": [[26, "export-streaming-zipformer-transducer-models-to-ncnn"]], "Export to ONNX": [[27, "export-to-onnx"]], "sherpa-onnx": [[27, "sherpa-onnx"]], "Example": [[27, "example"]], "Download the pre-trained model": [[27, "download-the-pre-trained-model"], [34, "download-the-pre-trained-model"], [36, "download-the-pre-trained-model"], [37, "download-the-pre-trained-model"], [39, "download-the-pre-trained-model"], [43, "download-the-pre-trained-model"], [47, "download-the-pre-trained-model"], [48, "download-the-pre-trained-model"], [50, "download-the-pre-trained-model"]], "Export the model to ONNX": [[27, "export-the-model-to-onnx"]], "Decode sound files with exported ONNX models": [[27, "decode-sound-files-with-exported-onnx-models"]], "Export model with torch.jit.script()": [[28, "export-model-with-torch-jit-script"]], "Export model with torch.jit.trace()": [[29, "export-model-with-torch-jit-trace"]], "How to use the exported models": [[29, "how-to-use-the-exported-models"]], "Model export": [[30, "model-export"]], "Finetune from a pre-trained Zipformer model with adapters": [[31, "finetune-from-a-pre-trained-zipformer-model-with-adapters"]], "Model preparation": [[31, "model-preparation"], [32, "model-preparation"]], "Fine-tune with adapter": [[31, "fine-tune-with-adapter"]], "Export the model": [[31, "export-the-model"]], "Finetune from a supervised pre-trained Zipformer model": [[32, "finetune-from-a-supervised-pre-trained-zipformer-model"]], "Fine-tune": [[32, "fine-tune"]], "Fine-tune a pre-trained model": [[33, "fine-tune-a-pre-trained-model"]], "Table of Contents": [[33, null], [62, null]], "Conformer CTC": [[34, "conformer-ctc"], [39, "conformer-ctc"]], "Configurable options": [[34, "configurable-options"], [37, "configurable-options"], [39, "configurable-options"], [42, "configurable-options"], [44, "configurable-options"], [45, "configurable-options"], [56, "configurable-options"], [57, "configurable-options"], [58, "configurable-options"]], "Pre-configured options": [[34, "pre-configured-options"], [37, "pre-configured-options"], [39, "pre-configured-options"], [42, "pre-configured-options"], [44, "pre-configured-options"], [45, "pre-configured-options"], [56, "pre-configured-options"], [57, "pre-configured-options"], [58, "pre-configured-options"]], "Training logs": [[34, "training-logs"], [36, "training-logs"], [37, "training-logs"], [39, "training-logs"], [42, "training-logs"], [44, "training-logs"], [45, "training-logs"], [56, "training-logs"], [57, "training-logs"], [58, "training-logs"]], "Usage examples": [[34, "usage-examples"], [36, "usage-examples"], [37, "usage-examples"], [39, "usage-examples"]], "Case 1": [[34, "case-1"], [36, "case-1"], [37, "case-1"], [39, "case-1"]], "Case 2": [[34, "case-2"], [36, "case-2"], [37, "case-2"], [39, "case-2"]], "Case 3": [[34, "case-3"], [36, "case-3"], [39, "case-3"]], "Pre-trained Model": [[34, "pre-trained-model"], [36, "pre-trained-model"], [37, "pre-trained-model"], [39, "pre-trained-model"], [43, "pre-trained-model"], [47, "pre-trained-model"], [48, "pre-trained-model"], [50, "pre-trained-model"]], "Install kaldifeat": [[34, "install-kaldifeat"], [36, "install-kaldifeat"], [37, "install-kaldifeat"], [39, "install-kaldifeat"], [43, "install-kaldifeat"], [47, "install-kaldifeat"], [48, "install-kaldifeat"]], "Usage": [[34, "usage"], [36, "usage"], [37, "usage"], [39, "usage"]], "CTC decoding": [[34, "ctc-decoding"], [39, "ctc-decoding"], [39, "id2"]], "HLG decoding": [[34, "hlg-decoding"], [34, "id2"], [37, "hlg-decoding"], [39, "hlg-decoding"], [39, "id3"]], "HLG decoding + attention decoder rescoring": [[34, "hlg-decoding-attention-decoder-rescoring"]], "Colab notebook": [[34, "colab-notebook"], [36, "colab-notebook"], [37, "colab-notebook"], [39, "colab-notebook"], [43, "colab-notebook"], [47, "colab-notebook"], [48, "colab-notebook"], [50, "colab-notebook"]], "Deployment with C++": [[34, "deployment-with-c"], [39, "deployment-with-c"]], "aishell": [[35, "aishell"]], "Stateless Transducer": [[36, "stateless-transducer"]], "The Model": [[36, "the-model"]], "The Loss": [[36, "the-loss"]], "Todo": [[36, "id1"]], "Greedy search": [[36, "greedy-search"]], "Beam search": [[36, "beam-search"]], "Modified Beam search": [[36, "modified-beam-search"]], "TDNN-LSTM CTC": [[37, "tdnn-lstm-ctc"]], "Non Streaming ASR": [[38, "non-streaming-asr"]], "HLG decoding + LM rescoring": [[39, "hlg-decoding-lm-rescoring"]], "HLG decoding + LM rescoring + attention decoder rescoring": [[39, "hlg-decoding-lm-rescoring-attention-decoder-rescoring"]], "Compute WER with the pre-trained model": [[39, "compute-wer-with-the-pre-trained-model"]], "HLG decoding + n-gram LM rescoring": [[39, "hlg-decoding-n-gram-lm-rescoring"]], "HLG decoding + n-gram LM rescoring + attention decoder rescoring": [[39, "hlg-decoding-n-gram-lm-rescoring-attention-decoder-rescoring"]], "Distillation with HuBERT": [[40, "distillation-with-hubert"]], "Codebook index preparation": [[40, "codebook-index-preparation"]], "LibriSpeech": [[41, "librispeech"], [55, "librispeech"]], "Pruned transducer statelessX": [[42, "pruned-transducer-statelessx"], [57, "pruned-transducer-statelessx"]], "Usage example": [[42, "usage-example"], [44, "usage-example"], [45, "usage-example"], [56, "usage-example"], [57, "usage-example"], [58, "usage-example"]], "Export Model": [[42, "export-model"], [57, "export-model"], [58, "export-model"]], "Export model using torch.jit.script()": [[42, "export-model-using-torch-jit-script"], [44, "export-model-using-torch-jit-script"], [45, "export-model-using-torch-jit-script"], [57, "export-model-using-torch-jit-script"], [58, "export-model-using-torch-jit-script"]], "Download pretrained models": [[42, "download-pretrained-models"], [44, "download-pretrained-models"], [45, "download-pretrained-models"], [56, "download-pretrained-models"], [57, "download-pretrained-models"], [58, "download-pretrained-models"], [60, "download-pretrained-models"], [61, "download-pretrained-models"]], "Deploy with Sherpa": [[42, "deploy-with-sherpa"], [57, "deploy-with-sherpa"], [58, "deploy-with-sherpa"]], "TDNN-LSTM-CTC": [[43, "tdnn-lstm-ctc"], [48, "tdnn-lstm-ctc"]], "Inference with a pre-trained model": [[43, "inference-with-a-pre-trained-model"], [47, "inference-with-a-pre-trained-model"], [48, "inference-with-a-pre-trained-model"], [50, "inference-with-a-pre-trained-model"]], "Zipformer CTC Blank Skip": [[44, "zipformer-ctc-blank-skip"]], "Export models": [[44, "export-models"], [45, "export-models"], [56, "export-models"], [60, "export-models"], [61, "export-models"]], "Zipformer MMI": [[45, "zipformer-mmi"]], "TIMIT": [[46, "timit"]], "TDNN-LiGRU-CTC": [[47, "tdnn-ligru-ctc"]], "YesNo": [[49, "yesno"]], "TDNN-CTC": [[50, "tdnn-ctc"]], "Download kaldifeat": [[50, "download-kaldifeat"]], "RNN-LM": [[51, "rnn-lm"]], "Train an RNN language model": [[52, "train-an-rnn-language-model"]], "Streaming ASR": [[53, "streaming-asr"]], "Streaming Conformer": [[54, "streaming-conformer"]], "Streaming Emformer": [[54, "streaming-emformer"]], "LSTM Transducer": [[56, "lstm-transducer"]], "Which model to use": [[56, "which-model-to-use"]], "Export model using torch.jit.trace()": [[56, "export-model-using-torch-jit-trace"], [58, "export-model-using-torch-jit-trace"]], "Simulate streaming decoding": [[57, "simulate-streaming-decoding"], [58, "simulate-streaming-decoding"]], "Real streaming decoding": [[57, "real-streaming-decoding"], [58, "real-streaming-decoding"]], "Zipformer Transducer": [[58, "zipformer-transducer"]], "TTS": [[59, "tts"]], "VITS-LJSpeech": [[60, "vits-ljspeech"]], "Install extra dependencies": [[60, "install-extra-dependencies"]], "Build Monotonic Alignment Search": [[60, "build-monotonic-alignment-search"], [61, "build-monotonic-alignment-search"]], "Inference": [[60, "inference"], [61, "inference"]], "Usage in sherpa-onnx": [[60, "usage-in-sherpa-onnx"]], "Install sherpa-onnx": [[60, "install-sherpa-onnx"]], "Download lexicon files": [[60, "download-lexicon-files"]], "Run sherpa-onnx": [[60, "run-sherpa-onnx"]], "VITS-VCTK": [[61, "vits-vctk"]], "Recipes": [[62, "recipes"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["contributing/code-style", "contributing/doc", "contributing/how-to-create-a-recipe", "contributing/index", "decoding-with-langugage-models/LODR", "decoding-with-langugage-models/index", "decoding-with-langugage-models/rescoring", "decoding-with-langugage-models/shallow-fusion", "docker/index", "docker/intro", "faqs", "for-dummies/data-preparation", "for-dummies/decoding", "for-dummies/environment-setup", "for-dummies/index", "for-dummies/model-export", "for-dummies/training", "fst-based-forced-alignment/diff", "fst-based-forced-alignment/index", "fst-based-forced-alignment/k2-based", "fst-based-forced-alignment/kaldi-based", "huggingface/index", "huggingface/pretrained-models", "huggingface/spaces", "index", "installation/index", "model-export/export-model-state-dict", "model-export/export-ncnn", "model-export/export-ncnn-conv-emformer", "model-export/export-ncnn-lstm", "model-export/export-ncnn-zipformer", "model-export/export-onnx", "model-export/export-with-torch-jit-script", "model-export/export-with-torch-jit-trace", "model-export/index", "recipes/Finetune/adapter/finetune_adapter", "recipes/Finetune/from_supervised/finetune_zipformer", "recipes/Finetune/index", "recipes/Non-streaming-ASR/aishell/conformer_ctc", "recipes/Non-streaming-ASR/aishell/index", "recipes/Non-streaming-ASR/aishell/stateless_transducer", "recipes/Non-streaming-ASR/aishell/tdnn_lstm_ctc", "recipes/Non-streaming-ASR/index", "recipes/Non-streaming-ASR/librispeech/conformer_ctc", "recipes/Non-streaming-ASR/librispeech/distillation", "recipes/Non-streaming-ASR/librispeech/index", "recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless", "recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc", "recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip", "recipes/Non-streaming-ASR/librispeech/zipformer_mmi", "recipes/Non-streaming-ASR/timit/index", "recipes/Non-streaming-ASR/timit/tdnn_ligru_ctc", "recipes/Non-streaming-ASR/timit/tdnn_lstm_ctc", "recipes/Non-streaming-ASR/yesno/index", "recipes/Non-streaming-ASR/yesno/tdnn", "recipes/RNN-LM/index", "recipes/RNN-LM/librispeech/lm-training", "recipes/Streaming-ASR/index", "recipes/Streaming-ASR/introduction", "recipes/Streaming-ASR/librispeech/index", "recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer", "recipes/Streaming-ASR/librispeech/pruned_transducer_stateless", "recipes/Streaming-ASR/librispeech/zipformer_transducer", "recipes/TTS/index", "recipes/TTS/ljspeech/vits", "recipes/TTS/vctk/vits", "recipes/index"], "filenames": ["contributing/code-style.rst", "contributing/doc.rst", "contributing/how-to-create-a-recipe.rst", "contributing/index.rst", "decoding-with-langugage-models/LODR.rst", "decoding-with-langugage-models/index.rst", "decoding-with-langugage-models/rescoring.rst", "decoding-with-langugage-models/shallow-fusion.rst", "docker/index.rst", "docker/intro.rst", "faqs.rst", "for-dummies/data-preparation.rst", "for-dummies/decoding.rst", "for-dummies/environment-setup.rst", "for-dummies/index.rst", "for-dummies/model-export.rst", "for-dummies/training.rst", "fst-based-forced-alignment/diff.rst", "fst-based-forced-alignment/index.rst", "fst-based-forced-alignment/k2-based.rst", "fst-based-forced-alignment/kaldi-based.rst", "huggingface/index.rst", "huggingface/pretrained-models.rst", "huggingface/spaces.rst", "index.rst", "installation/index.rst", "model-export/export-model-state-dict.rst", "model-export/export-ncnn.rst", "model-export/export-ncnn-conv-emformer.rst", "model-export/export-ncnn-lstm.rst", "model-export/export-ncnn-zipformer.rst", "model-export/export-onnx.rst", "model-export/export-with-torch-jit-script.rst", "model-export/export-with-torch-jit-trace.rst", "model-export/index.rst", "recipes/Finetune/adapter/finetune_adapter.rst", "recipes/Finetune/from_supervised/finetune_zipformer.rst", "recipes/Finetune/index.rst", "recipes/Non-streaming-ASR/aishell/conformer_ctc.rst", "recipes/Non-streaming-ASR/aishell/index.rst", "recipes/Non-streaming-ASR/aishell/stateless_transducer.rst", "recipes/Non-streaming-ASR/aishell/tdnn_lstm_ctc.rst", "recipes/Non-streaming-ASR/index.rst", "recipes/Non-streaming-ASR/librispeech/conformer_ctc.rst", "recipes/Non-streaming-ASR/librispeech/distillation.rst", "recipes/Non-streaming-ASR/librispeech/index.rst", "recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst", "recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.rst", "recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.rst", "recipes/Non-streaming-ASR/librispeech/zipformer_mmi.rst", "recipes/Non-streaming-ASR/timit/index.rst", "recipes/Non-streaming-ASR/timit/tdnn_ligru_ctc.rst", "recipes/Non-streaming-ASR/timit/tdnn_lstm_ctc.rst", "recipes/Non-streaming-ASR/yesno/index.rst", "recipes/Non-streaming-ASR/yesno/tdnn.rst", "recipes/RNN-LM/index.rst", "recipes/RNN-LM/librispeech/lm-training.rst", "recipes/Streaming-ASR/index.rst", "recipes/Streaming-ASR/introduction.rst", "recipes/Streaming-ASR/librispeech/index.rst", "recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst", "recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.rst", "recipes/Streaming-ASR/librispeech/zipformer_transducer.rst", "recipes/TTS/index.rst", "recipes/TTS/ljspeech/vits.rst", "recipes/TTS/vctk/vits.rst", "recipes/index.rst"], "titles": ["Follow the code style", "Contributing to Documentation", "How to create a recipe", "Contributing", "LODR for RNN Transducer", "Decoding with language models", "LM rescoring for Transducer", "Shallow fusion for Transducer", "Docker", "Introduction", "Frequently Asked Questions (FAQs)", "Data Preparation", "Decoding", "Environment setup", "Icefall for dummies tutorial", "Model Export", "Training", "Two approaches", "FST-based forced alignment", "k2-based forced alignment", "Kaldi-based forced alignment", "Huggingface", "Pre-trained models", "Huggingface spaces", "Icefall", "Installation", "Export model.state_dict()", "Export to ncnn", "Export ConvEmformer transducer models to ncnn", "Export LSTM transducer models to ncnn", "Export streaming Zipformer transducer models to ncnn", "Export to ONNX", "Export model with torch.jit.script()", "Export model with torch.jit.trace()", "Model export", "Finetune from a pre-trained Zipformer model with adapters", "Finetune from a supervised pre-trained Zipformer model", "Fine-tune a pre-trained model", "Conformer CTC", "aishell", "Stateless Transducer", "TDNN-LSTM CTC", "Non Streaming ASR", "Conformer CTC", "Distillation with HuBERT", "LibriSpeech", "Pruned transducer statelessX", "TDNN-LSTM-CTC", "Zipformer CTC Blank Skip", "Zipformer MMI", "TIMIT", "TDNN-LiGRU-CTC", "TDNN-LSTM-CTC", "YesNo", "TDNN-CTC", "RNN-LM", "Train an RNN language model", "Streaming ASR", "Introduction", "LibriSpeech", "LSTM Transducer", "Pruned transducer statelessX", "Zipformer Transducer", "TTS", "VITS-LJSpeech", "VITS-VCTK", "Recipes"], "terms": {"we": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66], "us": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 29, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 47, 51, 52, 54, 56, 58, 64, 65], "tool": [0, 10, 25, 28], "make": [0, 1, 3, 20, 28, 29, 30, 35, 38, 40, 43, 58], "consist": [0, 40, 46, 60, 61, 62], "possibl": [0, 2, 3, 38, 43], "black": 0, "format": [0, 28, 29, 30, 35, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "flake8": 0, "check": [0, 25, 43, 56, 64], "qualiti": [0, 39], "isort": 0, "sort": [0, 25, 56], "import": [0, 9, 10, 15, 20, 25, 28, 61, 62], "The": [0, 1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 23, 25, 26, 28, 29, 30, 35, 36, 38, 39, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "version": [0, 9, 13, 15, 24, 25, 26, 28, 29, 30, 38, 40, 41, 43, 46, 47, 51, 52, 61], "abov": [0, 4, 6, 7, 10, 13, 15, 20, 26, 28, 29, 30, 31, 38, 39, 40, 41, 43, 46, 48, 49, 54, 58, 60, 61, 62, 64], "ar": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 25, 26, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "22": [0, 9, 15, 20, 25, 28, 29, 35, 43, 51, 52, 54], "3": [0, 4, 6, 7, 9, 10, 11, 15, 20, 24, 26, 27, 31, 34, 35, 41, 44, 46, 47, 48, 49, 54, 56, 60, 61, 62, 64, 65], "0": [0, 1, 4, 6, 7, 9, 11, 13, 15, 20, 24, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "5": [0, 7, 15, 20, 27, 34, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64], "4": [0, 4, 5, 6, 7, 9, 10, 11, 13, 15, 20, 24, 26, 27, 34, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "10": [0, 7, 9, 15, 20, 24, 25, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "1": [0, 4, 6, 7, 9, 11, 13, 15, 20, 24, 26, 27, 31, 32, 33, 34, 35, 36, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "after": [0, 1, 6, 9, 11, 12, 13, 16, 23, 25, 26, 28, 29, 30, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64], "run": [0, 2, 8, 10, 11, 13, 14, 15, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 65], "command": [0, 1, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16, 20, 25, 26, 28, 29, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "git": [0, 4, 6, 7, 9, 13, 15, 25, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 47, 51, 52, 54, 56], "clone": [0, 4, 6, 7, 9, 13, 25, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 47, 51, 52, 54, 56], "http": [0, 1, 2, 4, 6, 7, 9, 10, 11, 13, 15, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "github": [0, 2, 6, 9, 11, 13, 15, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64], "com": [0, 2, 6, 9, 11, 13, 22, 23, 25, 26, 28, 29, 32, 33, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64], "k2": [0, 2, 9, 10, 13, 15, 17, 18, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 60, 61, 62, 64], "fsa": [0, 2, 9, 13, 15, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 46, 48, 49, 60, 61, 62, 64], "icefal": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16, 20, 22, 23, 26, 27, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66], "cd": [0, 1, 2, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "pip": [0, 1, 6, 10, 13, 15, 25, 28, 31, 40, 64], "instal": [0, 1, 4, 6, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 31, 34, 35, 36, 44, 46, 48, 49, 54, 60, 61, 62, 63], "pre": [0, 3, 4, 6, 7, 8, 9, 15, 21, 23, 24, 25, 27, 34, 44, 64, 66], "commit": [0, 25], "whenev": 0, "you": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "automat": [0, 14, 23, 44], "hook": 0, "invok": 0, "fail": [0, 20], "If": [0, 2, 4, 6, 7, 8, 9, 10, 11, 13, 15, 20, 23, 28, 29, 30, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "ani": [0, 4, 6, 7, 13, 20, 25, 38, 40, 41, 43, 44, 46, 48, 49, 54, 60, 61], "your": [0, 1, 2, 4, 6, 7, 9, 11, 13, 20, 21, 23, 24, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64], "wa": [0, 26, 43, 47], "success": [0, 25, 28, 29], "pleas": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 23, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "fix": [0, 9, 10, 13, 28, 29, 30, 43], "issu": [0, 4, 6, 7, 10, 25, 28, 29, 43, 44, 61, 62], "report": [0, 9, 10, 35, 44], "some": [0, 1, 4, 6, 9, 26, 28, 29, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "i": [0, 1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64], "e": [0, 2, 4, 5, 6, 7, 13, 20, 28, 29, 30, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "modifi": [0, 20, 27, 34, 38, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62], "file": [0, 2, 9, 14, 15, 18, 23, 24, 26, 28, 29, 30, 32, 33, 34, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 65], "place": [0, 25, 26, 40, 43, 47], "so": [0, 4, 6, 7, 9, 13, 23, 24, 25, 26, 28, 29, 30, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "statu": 0, "failur": 0, "see": [0, 1, 6, 7, 9, 15, 23, 25, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62], "which": [0, 2, 4, 6, 7, 9, 11, 12, 15, 17, 23, 25, 26, 28, 29, 30, 31, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 61, 62, 64], "ha": [0, 2, 17, 24, 25, 27, 28, 29, 30, 31, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 58, 60, 61, 62], "been": [0, 25, 27, 28, 29, 30, 40], "befor": [0, 1, 11, 13, 15, 20, 25, 26, 28, 29, 30, 31, 32, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "further": [0, 4, 6, 7, 15], "chang": [0, 4, 6, 7, 10, 20, 25, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "all": [0, 9, 11, 13, 14, 17, 20, 22, 23, 26, 28, 29, 30, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62], "again": [0, 28, 29, 54], "should": [0, 2, 4, 6, 11, 13, 20, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64], "succe": 0, "thi": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 20, 21, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66], "time": [0, 20, 25, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "succeed": [0, 20], "want": [0, 4, 6, 7, 11, 13, 15, 25, 26, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64, 65], "can": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "do": [0, 2, 4, 6, 13, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64], "Or": 0, "without": [0, 4, 6, 7, 9, 15, 17, 20, 21, 23, 38, 43], "your_changed_fil": 0, "py": [0, 2, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16, 20, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "sphinx": 1, "write": [1, 2, 3, 20], "have": [1, 2, 4, 6, 7, 8, 9, 11, 13, 20, 22, 23, 25, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "prepar": [1, 3, 4, 8, 14, 16, 18, 24, 26, 37, 63], "environ": [1, 10, 11, 12, 14, 16, 18, 24, 28, 29, 30, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 51, 52, 54, 61, 62], "doc": [1, 26, 58], "r": [1, 13, 20, 25, 28, 29, 30, 51, 52], "requir": [1, 4, 6, 11, 13, 15, 25, 30, 35, 36, 44, 56, 61, 62, 64, 65], "txt": [1, 4, 9, 11, 13, 15, 20, 25, 26, 28, 29, 30, 31, 32, 33, 35, 38, 40, 41, 43, 47, 51, 52, 54, 56, 64, 65], "set": [1, 4, 6, 7, 10, 12, 13, 16, 20, 25, 28, 29, 30, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48, 49, 54, 56, 60, 61, 62], "up": [1, 25, 26, 28, 29, 30, 35, 38, 41, 43, 44, 46, 47, 48, 49, 61, 62], "readi": [1, 20, 38, 43, 44, 56], "refer": [1, 2, 5, 6, 7, 11, 13, 15, 18, 20, 25, 26, 27, 28, 29, 30, 32, 33, 35, 38, 40, 41, 43, 46, 47, 48, 51, 52, 54, 56, 58, 61, 62, 64], "restructuredtext": 1, "primer": 1, "familiar": 1, "build": [1, 9, 15, 25, 26, 28, 29, 30, 38, 40, 43, 63], "local": [1, 9, 15, 20, 25, 46, 48, 49, 56, 60, 61, 62], "preview": 1, "what": [1, 2, 11, 15, 20, 25, 28, 29, 30, 40, 58, 64], "look": [1, 2, 4, 6, 7, 14, 20, 22, 25, 28, 29, 30, 38, 40, 41, 43, 44], "like": [1, 2, 9, 11, 20, 23, 28, 29, 30, 38, 40, 41, 43, 46, 48, 49, 54, 58, 60, 61], "publish": [1, 26, 39], "html": [1, 2, 10, 11, 13, 15, 20, 25, 27, 28, 29, 30, 31, 32, 33, 46, 60, 61, 62, 64], "gener": [1, 6, 9, 14, 15, 18, 26, 28, 29, 30, 31, 32, 33, 37, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62, 64, 65], "view": [1, 8, 24, 28, 29, 30, 38, 40, 41, 43, 46, 48, 49, 54, 60, 61, 62], "follow": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "python3": [1, 9, 10, 13, 15, 25, 29, 30], "m": [1, 15, 20, 25, 28, 29, 30, 40, 46, 48, 49, 51, 52, 60, 61, 62], "server": [1, 23, 60], "It": [1, 2, 6, 7, 9, 11, 14, 15, 20, 21, 25, 27, 28, 29, 30, 31, 32, 33, 35, 38, 39, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64, 65], "print": [1, 12, 16, 20, 25, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "serv": [1, 46, 48, 49, 60, 61, 62], "port": [1, 14, 17, 35, 36, 44, 46, 48, 49, 60, 61, 62], "8000": [1, 11, 15, 54], "open": [1, 4, 6, 7, 9, 20, 24, 26, 28, 29, 30, 39, 40, 43, 44], "browser": [1, 20, 21, 23, 46, 48, 49, 60, 61, 62], "go": [1, 7, 38, 40, 43, 46, 48, 49, 60, 61, 62, 64], "read": [2, 11, 15, 20, 25, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "code": [2, 3, 8, 10, 13, 15, 17, 20, 24, 25, 28, 29, 30, 38, 43, 44, 46, 47, 51, 52, 54, 58, 61, 62], "style": [2, 3, 24], "adjust": [2, 56, 64, 65], "design": 2, "python": [2, 9, 13, 15, 17, 25, 26, 28, 29, 30, 31, 32, 33, 38, 40, 43, 46, 48, 49, 56, 60, 61, 62, 64, 65], "recommend": [2, 6, 7, 9, 25, 35, 36, 38, 40, 41, 43, 44, 46, 61, 62], "test": [2, 4, 9, 15, 18, 24, 26, 27, 34, 35, 36, 38, 40, 41, 43, 44, 47, 48, 51, 52, 56, 64, 65], "valid": [2, 25, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "dataset": [2, 10, 11, 13, 14, 25, 26, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64, 65], "lhots": [2, 9, 11, 13, 15, 24, 26, 28, 29, 30, 38, 40, 43], "readthedoc": [2, 11, 25], "io": [2, 9, 11, 13, 15, 25, 27, 28, 29, 30, 31, 32, 33, 46, 60, 61, 62, 64], "en": [2, 11, 25, 28], "latest": [2, 9, 11, 13, 23, 25, 43, 44, 46, 47, 48, 49, 60, 61, 62], "index": [2, 25, 27, 28, 29, 30, 31, 32, 33, 60, 61, 62], "yesno": [2, 8, 10, 11, 12, 13, 14, 15, 16, 24, 25, 42, 54, 66], "veri": [2, 3, 7, 13, 28, 29, 30, 35, 36, 40, 51, 52, 54, 61, 62], "good": [2, 7], "exampl": [2, 11, 13, 23, 24, 26, 28, 29, 30, 32, 33, 34, 44, 47, 51, 52, 54], "speech": [2, 11, 13, 14, 23, 24, 25, 27, 37, 39, 40, 54, 64, 65, 66], "pull": [2, 4, 6, 7, 9, 28, 29, 30, 31, 35, 36, 38, 40, 43, 56, 58], "380": [2, 28, 52], "show": [2, 4, 6, 7, 9, 15, 23, 25, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "add": [2, 11, 28, 29, 30, 38, 40, 41, 61, 66], "new": [2, 3, 9, 13, 23, 25, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 54, 60, 61, 62], "suppos": [2, 9, 61, 62], "would": [2, 11, 26, 28, 29, 30, 43, 47, 61, 62], "name": [2, 9, 10, 13, 15, 26, 28, 29, 30, 31, 38, 40, 46, 48, 49, 56, 61, 62], "foo": [2, 33, 38, 43, 46, 48, 49, 60, 61, 62], "eg": [2, 9, 10, 11, 12, 15, 16, 20, 22, 25, 26, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "mkdir": [2, 9, 28, 29, 38, 40, 41, 43, 47, 51, 52, 54], "p": [2, 4, 13, 20, 25, 28, 29, 40, 51, 52], "asr": [2, 4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 20, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 66], "touch": 2, "sh": [2, 9, 11, 25, 26, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "chmod": 2, "x": [2, 4, 20, 30, 58], "simpl": [2, 12, 14, 16, 25, 40, 56], "own": [2, 11, 35, 36, 44, 46, 56, 61, 62], "otherwis": [2, 28, 29, 30, 36, 38, 40, 43, 44, 46, 48, 49, 60, 61, 62], "librispeech": [2, 4, 6, 7, 10, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 35, 36, 42, 43, 44, 46, 47, 48, 49, 56, 57, 58, 60, 61, 62, 66], "assum": [2, 4, 15, 25, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 44, 46, 47, 51, 52, 54, 56, 60, 61, 62], "fanci": 2, "call": [2, 10, 31, 44, 56], "bar": [2, 33, 38, 43, 46, 48, 49, 60, 61, 62], "organ": 2, "wai": [2, 3, 15, 34, 46, 48, 49, 58, 60, 61, 62], "readm": [2, 38, 40, 41, 43, 47, 51, 52, 54], "md": [2, 22, 26, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "asr_datamodul": [2, 9, 10, 15, 25], "pretrain": [2, 4, 6, 7, 15, 26, 28, 29, 30, 31, 33, 35, 36, 38, 40, 41, 43, 47, 51, 52, 54, 63], "For": [2, 4, 6, 7, 9, 10, 14, 20, 22, 25, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "instanc": [2, 9, 10, 12, 16, 22, 28, 29, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "tdnn": [2, 9, 10, 12, 15, 16, 25, 39, 42, 45, 50, 53], "its": [2, 4, 20, 26, 27, 28, 29, 30, 33, 40, 48, 56], "directori": [2, 9, 11, 13, 24, 25, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "structur": [2, 30], "descript": [2, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "contain": [2, 8, 11, 13, 14, 15, 20, 24, 26, 27, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 66], "inform": [2, 4, 6, 11, 12, 16, 25, 26, 38, 40, 41, 43, 46, 47, 48, 51, 52, 54, 58, 60, 61, 62], "g": [2, 4, 5, 6, 7, 11, 13, 20, 25, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "wer": [2, 5, 9, 12, 15, 25, 26, 35, 36, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "etc": [2, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64], "provid": [2, 11, 15, 23, 25, 26, 27, 28, 29, 30, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 66], "pytorch": [2, 10, 13, 20, 25, 28, 29, 30, 40], "dataload": [2, 25], "take": [2, 7, 9, 26, 44, 46, 54, 56, 61, 62, 64, 65], "input": [2, 26, 28, 29, 30, 38, 40, 41, 43, 47, 51, 52, 54, 58], "checkpoint": [2, 4, 6, 7, 12, 15, 20, 25, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "save": [2, 15, 16, 25, 26, 29, 30, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "dure": [2, 4, 5, 7, 10, 13, 20, 23, 26, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "stage": [2, 25, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "": [2, 4, 6, 7, 9, 14, 15, 16, 20, 25, 26, 28, 29, 30, 31, 32, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "definit": [2, 28, 29], "neural": [2, 4, 6, 7, 35, 38, 43, 56], "network": [2, 35, 38, 40, 43, 46, 48, 49, 56, 60, 61, 62], "script": [2, 6, 7, 13, 14, 24, 25, 33, 34, 38, 40, 41, 43, 44, 47, 51, 52, 54, 56, 60], "infer": [2, 26, 28, 29, 63], "tdnn_lstm_ctc": [2, 41, 47, 52], "conformer_ctc": [2, 38, 43], "get": [2, 9, 13, 14, 15, 18, 23, 25, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 54, 58, 60, 61, 62, 64], "feel": [2, 44, 56, 60], "result": [2, 4, 7, 9, 16, 22, 23, 26, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "everi": [2, 26, 46, 48, 49, 60, 61, 62], "kept": [2, 46, 61, 62], "self": [2, 27, 30, 58], "toler": 2, "duplic": 2, "among": [2, 25], "differ": [2, 9, 12, 18, 25, 28, 29, 30, 31, 35, 36, 37, 38, 39, 43, 44, 46, 58, 60, 61, 62, 64], "invoc": [2, 28, 29], "help": [2, 12, 14, 16, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "blob": [2, 11, 22, 25, 26, 33, 46, 48, 49, 60, 61, 62], "master": [2, 6, 9, 11, 15, 22, 25, 26, 29, 30, 32, 33, 35, 36, 40, 44, 46, 48, 49, 60, 61, 62], "transform": [2, 6, 7, 38, 43, 60], "conform": [2, 32, 39, 40, 42, 45, 46, 48, 60, 61, 62], "base": [2, 4, 7, 13, 17, 24, 30, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 56, 60, 61, 62], "lstm": [2, 27, 33, 34, 39, 42, 45, 50, 57, 59], "attent": [2, 30, 40, 41, 44, 58, 61, 62], "lm": [2, 4, 5, 7, 9, 11, 24, 25, 40, 46, 47, 51, 52, 54, 56, 61, 62, 66], "rescor": [2, 5, 24, 41, 47, 49, 51, 52, 54, 56], "demonstr": [2, 14, 15, 21, 23, 26, 31, 35], "consid": [2, 4, 30, 36], "colab": [2, 20, 25], "notebook": [2, 20, 25], "welcom": 3, "There": [3, 4, 15, 28, 29, 30, 31, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "mani": [3, 12, 25, 61, 62], "two": [3, 4, 11, 14, 15, 18, 20, 24, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 65], "them": [3, 5, 6, 21, 22, 23, 28, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "To": [3, 4, 5, 6, 7, 9, 11, 15, 20, 23, 25, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "document": [3, 24, 26, 27, 28, 29, 30, 31, 49, 64], "repositori": [3, 9, 28, 29, 30, 31], "recip": [3, 4, 6, 7, 9, 11, 15, 22, 24, 25, 26, 31, 35, 36, 38, 40, 41, 43, 44, 46, 47, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "In": [3, 4, 6, 10, 15, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 37, 38, 40, 41, 43, 44, 47, 51, 52, 54, 58], "page": [3, 23, 32, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 66], "describ": [3, 5, 8, 9, 17, 18, 20, 21, 26, 28, 29, 31, 32, 33, 34, 38, 40, 41, 43, 46, 47, 51, 52, 61, 62, 64], "how": [3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 18, 20, 21, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "creat": [3, 4, 6, 7, 14, 15, 18, 24, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61], "data": [3, 4, 6, 7, 8, 13, 14, 15, 16, 18, 24, 26, 28, 29, 30, 31, 32, 33, 37, 39, 56, 63], "train": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 18, 20, 21, 23, 24, 26, 27, 32, 33, 34, 55, 58, 63, 66], "decod": [3, 4, 8, 10, 11, 14, 15, 17, 20, 23, 24, 28, 29, 30, 33, 34, 36, 37, 56], "model": [3, 4, 6, 7, 9, 11, 12, 14, 17, 18, 20, 21, 23, 24, 25, 27, 44, 55, 58, 63, 66], "As": [4, 5, 6, 7, 28, 40, 43, 44, 56], "type": [4, 6, 7, 9, 11, 15, 20, 25, 26, 28, 29, 30, 38, 40, 43, 46, 48, 49, 54, 58, 60, 61, 62, 64], "e2": [4, 7, 25, 56], "usual": [4, 6, 7, 12, 38, 40, 41, 43, 44, 46, 48, 49, 56, 60, 61, 62, 64, 65], "an": [4, 5, 6, 7, 9, 11, 13, 15, 18, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 38, 39, 40, 43, 44, 46, 49, 54, 55, 60, 61, 62, 64, 65, 66], "intern": [4, 5], "languag": [4, 7, 11, 23, 24, 38, 40, 41, 55, 64, 66], "learn": [4, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "level": [4, 5, 15, 20, 56], "corpu": [4, 6, 7, 39, 56], "real": 4, "life": 4, "scenario": 4, "often": [4, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "mismatch": [4, 36, 61], "between": [4, 7, 18, 35, 46, 61, 62], "target": [4, 23, 25, 35], "space": [4, 21, 24, 56], "problem": [4, 6, 7, 25, 44], "when": [4, 6, 9, 10, 15, 23, 28, 29, 30, 34, 40, 43, 44, 46, 48, 49, 56, 61, 62], "act": 4, "against": [4, 25], "extern": [4, 5, 6, 7], "tutori": [4, 5, 6, 7, 13, 15, 18, 20, 24, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 56, 60, 61, 62, 64, 65], "low": [4, 28, 29, 37, 64], "order": [4, 13, 17, 25, 28, 29, 30, 38, 41, 43, 47, 51, 52], "densiti": 4, "ratio": [4, 20], "allevi": 4, "effect": [4, 7, 30, 35], "improv": [4, 5, 6, 7, 35, 37, 40, 56], "perform": [4, 6, 7, 18, 27, 35, 36, 37, 40, 44, 61], "languga": 4, "integr": [4, 23, 35], "pruned_transducer_stateless7_stream": [4, 6, 7, 30, 31, 62], "stream": [4, 6, 7, 15, 17, 24, 27, 28, 29, 31, 34, 38, 43, 51, 52, 60, 66], "howev": [4, 6, 7, 26, 29, 37, 44], "easili": [4, 6, 7, 35, 38, 41, 43], "appli": [4, 6, 7, 40, 58], "other": [4, 7, 9, 13, 14, 15, 20, 26, 29, 30, 31, 35, 40, 43, 44, 46, 47, 51, 52, 54, 58, 61, 62, 66], "encount": [4, 6, 7, 10, 25, 30, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "here": [4, 6, 7, 20, 26, 28, 29, 30, 38, 40, 41, 43, 44, 47, 58, 61], "simplic": [4, 6, 7], "same": [4, 6, 7, 20, 25, 26, 28, 29, 30, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62], "domain": [4, 6, 7, 35, 36, 37], "gigaspeech": [4, 6, 7, 22, 32, 35, 36, 60], "first": [4, 6, 9, 10, 11, 25, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "let": [4, 6, 7, 14, 25, 28, 29, 30, 35, 36, 38, 43, 56], "background": 4, "predecessor": 4, "dr": 4, "propos": [4, 40, 58, 62], "address": [4, 9, 15, 23, 25, 26, 28, 29, 30, 40, 46, 49, 60, 61, 62], "sourc": [4, 11, 13, 25, 26, 28, 29, 30, 38, 39, 40, 43], "acoust": [4, 61, 62], "similar": [4, 5, 36, 44, 48, 61, 62], "deriv": 4, "formula": 4, "bay": 4, "theorem": 4, "text": [4, 6, 7, 11, 16, 20, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "score": [4, 5, 7, 38, 43, 46, 61, 62], "left": [4, 28, 30, 35, 40, 61, 62], "y_u": 4, "mathit": 4, "y": [4, 20], "right": [4, 28, 40, 58, 61], "log": [4, 9, 10, 12, 15, 16, 25, 28, 29, 30, 35, 47, 51, 52, 54, 64, 65], "y_": 4, "u": [4, 20, 25, 28, 29, 30, 38, 40, 41, 43, 44, 54], "lambda_1": 4, "p_": 4, "lambda_2": 4, "where": [4, 9, 10, 61], "weight": [4, 15, 38, 41, 43, 48, 49, 56, 60], "respect": 4, "onli": [4, 6, 8, 11, 13, 14, 15, 20, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64, 65], "compar": [4, 17, 28, 29, 30, 36, 61], "shallow": [4, 5, 24, 56], "fusion": [4, 5, 24, 56], "subtract": [4, 5], "work": [4, 9, 13, 15, 28, 29, 30, 43], "treat": [4, 29, 30], "predictor": 4, "joiner": [4, 28, 29, 30, 31, 33, 35, 36, 40, 46, 60, 61, 62], "weak": 4, "captur": 4, "therefor": [4, 10], "n": [4, 5, 6, 11, 20, 25, 38, 44, 46, 48, 49, 51, 52, 60, 61, 62], "gram": [4, 6, 25, 38, 40, 41, 46, 47, 49, 51, 52, 61, 62], "approxim": [4, 5], "ilm": 4, "lead": [4, 7, 12], "rnnt": [4, 46, 61, 62], "bi": [4, 6], "addit": [4, 37], "estim": 4, "li": 4, "choic": 4, "accord": [4, 56], "origin": [4, 5, 35, 36, 37], "paper": [4, 5, 35, 44, 46, 60, 61, 62, 64, 65], "achiev": [4, 6, 7, 35, 36, 56, 58], "both": [4, 36, 46, 48, 49, 58, 60, 61, 62], "intra": 4, "cross": 4, "much": [4, 28, 29, 35, 36], "faster": [4, 6, 35, 64], "evalu": 4, "now": [4, 6, 9, 13, 15, 20, 25, 28, 29, 30, 38, 43, 44, 46, 47, 48, 49, 51, 52, 56, 60, 61, 62], "illustr": [4, 6, 7, 35, 36, 56], "purpos": [4, 6, 7, 28, 29, 35, 36, 56], "from": [4, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66], "link": [4, 6, 7, 22, 25, 26, 27, 46, 48, 49, 60, 61, 62, 64, 65], "scratch": [4, 6, 7, 36, 46, 48, 49, 56, 60, 61, 62, 64, 65], "prune": [4, 6, 7, 26, 30, 31, 40, 42, 44, 45, 57, 58, 59, 60, 62], "statelessx": [4, 6, 7, 42, 44, 45, 57, 58, 59], "initi": [4, 6, 7, 9, 35, 36, 38, 41], "step": [4, 6, 7, 11, 14, 20, 25, 26, 28, 29, 30, 36, 38, 40, 41, 43, 44, 46, 48, 49, 54, 56, 60, 61, 62], "download": [4, 6, 7, 8, 10, 13, 15, 20, 23, 24, 27, 34, 35, 36, 39, 44, 56, 63], "git_lfs_skip_smudg": [4, 6, 7, 28, 29, 30, 31, 35, 36, 56], "huggingfac": [4, 6, 7, 13, 22, 24, 25, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 47, 48, 49, 51, 52, 54, 56, 60, 64, 65], "co": [4, 6, 7, 22, 23, 25, 26, 28, 29, 30, 31, 35, 36, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 54, 56, 60, 64, 65], "zengwei": [4, 6, 7, 28, 30, 31, 35, 36, 49, 56, 60, 64], "stateless7": [4, 6, 7, 30, 31], "2022": [4, 6, 7, 26, 28, 29, 30, 31, 40, 46, 48, 49, 60, 61], "12": [4, 6, 7, 9, 14, 20, 25, 26, 28, 29, 30, 31, 35, 38, 40, 41, 43, 46, 48, 49, 51, 54, 60, 61, 62, 64, 65], "29": [4, 6, 7, 20, 25, 30, 31, 38, 40, 41, 43, 47, 48, 51, 52], "exp": [4, 6, 7, 9, 15, 16, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "lf": [4, 6, 7, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 47, 49, 51, 52, 54, 56], "includ": [4, 6, 7, 28, 29, 30, 31, 35, 36, 46, 48, 49, 56, 60, 61, 62], "pt": [4, 6, 7, 9, 11, 15, 20, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "ln": [4, 6, 7, 9, 15, 26, 28, 29, 30, 31, 35, 36, 38, 43, 46, 48, 49, 56, 60, 61, 62], "epoch": [4, 6, 7, 9, 12, 15, 16, 25, 26, 28, 29, 30, 31, 32, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "99": [4, 6, 7, 15, 20, 25, 28, 29, 30, 31, 35, 36], "symbol": [4, 5, 6, 7, 20, 25, 40, 46, 61, 62], "load": [4, 6, 7, 9, 15, 20, 25, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "lang_bpe_500": [4, 6, 7, 26, 28, 29, 30, 31, 32, 33, 35, 36, 43, 46, 48, 49, 56, 60, 61, 62], "bpe": [4, 5, 6, 7, 26, 28, 29, 30, 31, 33, 35, 36, 43, 46, 48, 49, 56, 60, 61, 62], "done": [4, 6, 7, 9, 13, 15, 25, 26, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "via": [4, 6, 7, 14, 25, 27, 32, 33, 34, 35, 36, 56], "exp_dir": [4, 6, 7, 9, 15, 25, 28, 29, 30, 40, 43, 44, 46, 48, 49, 61, 62], "avg": [4, 6, 7, 9, 12, 15, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 40, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "averag": [4, 6, 7, 9, 12, 15, 25, 26, 28, 29, 30, 31, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "fals": [4, 6, 7, 9, 15, 20, 25, 26, 28, 29, 30, 35, 36, 38, 40, 43, 44], "dir": [4, 6, 7, 20, 26, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "max": [4, 6, 7, 25, 26, 28, 29, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62, 64, 65], "durat": [4, 6, 7, 11, 26, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "600": [4, 6, 7, 25, 26, 35, 43, 46, 48, 60, 61, 62], "chunk": [4, 6, 7, 28, 30, 31, 35, 61, 62], "len": [4, 6, 7, 20, 30, 31, 62], "32": [4, 6, 7, 20, 25, 28, 29, 30, 31, 35, 38, 40, 41, 62], "method": [4, 5, 7, 15, 23, 26, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 60, 61, 62], "modified_beam_search": [4, 5, 6, 7, 23, 40, 44, 46, 48, 60, 61, 62], "clean": [4, 9, 15, 25, 30, 35, 38, 40, 43, 44, 46, 47, 48, 49, 60, 61, 62], "beam_size_4": [4, 6, 7], "11": [4, 6, 7, 9, 10, 11, 15, 20, 25, 28, 29, 31, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "best": [4, 5, 6, 7, 28, 29, 30, 35, 36, 38, 41, 43], "7": [4, 6, 7, 9, 20, 25, 26, 27, 30, 34, 38, 41, 43, 46, 47, 51, 52, 60, 61], "93": [4, 6, 7, 15, 20], "Then": [4, 6], "necessari": [4, 44, 56], "note": [4, 5, 6, 7, 10, 11, 15, 17, 20, 26, 28, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "960": [4, 35, 36, 43, 46, 48, 49, 60, 61, 62], "hour": [4, 13, 35, 36, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "ezerhouni": [4, 6, 7], "pushd": [4, 6, 7, 31], "popd": [4, 6, 7, 31], "marcoyang": [4, 6], "librispeech_bigram": [4, 6], "2gram": [4, 6], "fst": [4, 11, 17, 24, 25, 40, 54], "modified_beam_search_lm_lodr": 4, "lm_dir": [4, 6, 7, 9, 25, 43], "lm_scale": [4, 6, 7], "42": [4, 9, 15, 20, 25, 29, 35, 38, 43, 54], "lodr_scal": 4, "24": [4, 9, 10, 13, 15, 20, 25, 28, 29, 41, 47, 51, 52, 54], "modified_beam_search_lodr": [4, 5, 6], "scale": [4, 6, 7, 28, 29, 38, 43, 44, 47, 49, 51, 52], "embed": [4, 6, 7, 40, 46, 56, 60, 61, 62], "dim": [4, 6, 7, 28, 29, 30, 35, 40, 46, 56, 61], "2048": [4, 6, 7, 26, 28, 29, 30, 40, 56], "hidden": [4, 6, 7, 29, 56, 60], "num": [4, 6, 7, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 56, 60, 61, 62, 64, 65], "layer": [4, 6, 7, 28, 29, 30, 35, 40, 44, 46, 56, 58, 60, 61, 62], "vocab": [4, 6, 7, 43], "500": [4, 6, 7, 26, 28, 29, 30, 40, 43, 49, 60, 64, 65], "token": [4, 11, 20, 26, 28, 29, 30, 31, 32, 33, 35, 38, 40, 41, 43, 47, 51, 52, 54, 56, 64, 65], "ngram": [4, 43, 47, 51, 52], "2": [4, 6, 7, 9, 11, 13, 15, 20, 24, 26, 27, 34, 35, 36, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "extra": [4, 28, 29, 30, 40, 58, 61, 63], "argument": [4, 7, 15, 35, 36, 44, 58], "need": [4, 6, 11, 13, 14, 15, 17, 20, 23, 25, 26, 27, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62], "given": [4, 9, 11, 12, 13, 15, 20, 25, 26, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 61, 62, 64, 65], "specifi": [4, 7, 10, 12, 15, 16, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "neg": [4, 40], "number": [4, 7, 16, 23, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "obtain": [4, 7, 38, 40, 41, 43, 47, 51, 52], "shown": [4, 7, 35], "below": [4, 7, 9, 11, 12, 13, 14, 15, 16, 20, 25, 28, 29, 30, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 64], "61": [4, 6, 20], "6": [4, 6, 7, 9, 10, 11, 15, 20, 27, 34, 38, 40, 43, 46, 47, 51, 52, 60, 65], "74": [4, 6, 20, 25, 26], "recal": 4, "lowest": [4, 12, 15, 46, 48, 49, 60, 61, 62], "77": [4, 6, 7, 20, 25, 43], "08": [4, 6, 7, 9, 15, 20, 30, 43, 47, 49, 51, 52, 54, 60], "inde": 4, "even": [4, 23, 25, 29], "better": [4, 6], "increas": [4, 6, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "8": [4, 6, 7, 9, 10, 15, 20, 25, 26, 28, 29, 30, 35, 38, 40, 43, 44, 46, 47, 48, 49, 54, 60, 61, 62], "45": [4, 6, 15, 20, 25, 28, 30, 38, 40, 43], "38": [4, 6, 20, 25, 28, 38, 40, 43, 51], "23": [4, 6, 9, 10, 11, 15, 20, 25, 28, 29, 30, 35, 38, 40, 41, 43, 51, 52, 54], "section": [5, 8, 9, 10, 18, 20, 21, 25, 26, 31, 32, 33, 34, 38, 43], "langugag": 5, "transduc": [5, 24, 26, 27, 31, 34, 35, 36, 39, 42, 44, 45, 56, 57, 58, 59], "rnn": [5, 6, 7, 24, 29, 40, 46, 48, 60, 61, 62, 66], "avail": [5, 6, 8, 15, 24, 25, 26, 28, 29, 30, 36, 37, 38, 40, 43, 47, 51, 52, 54, 60], "beam": [5, 26, 60], "search": [5, 6, 7, 22, 23, 63], "realli": [5, 38, 41, 43, 46, 48, 49, 60, 61, 62], "valu": [5, 7, 28, 29, 30, 35, 36, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "t": [5, 13, 14, 15, 17, 20, 25, 28, 29, 30, 31, 32, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "doe": [5, 15, 17, 20, 28, 29, 30, 38, 40, 43, 54], "modified_beam_search_lm_shallow_fus": [5, 6, 7], "interpol": 5, "also": [5, 6, 7, 11, 13, 14, 15, 21, 22, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 40, 41, 43, 46, 48, 49, 54, 56, 58, 60, 61, 62, 64], "known": 5, "bigram": 5, "backoff": 5, "modified_beam_search_lm_rescor": [5, 6], "hypothes": [5, 6], "rnnlm": [5, 6, 56], "re": [5, 6, 10, 38, 41, 43, 44, 46, 48, 49, 58, 60, 61, 62], "rank": [5, 6], "modified_beam_search_lm_rescore_lodr": [5, 6], "lodr": [5, 24, 56], "commonli": [6, 7, 38, 40, 41, 43, 47, 51, 52, 54], "approach": [6, 18, 20, 24], "incorpor": 6, "unlik": 6, "more": [6, 14, 25, 28, 29, 30, 35, 38, 43, 44, 54, 56, 58, 60, 61, 64, 65], "effici": [6, 7, 35, 46, 61, 62], "than": [6, 25, 26, 29, 35, 38, 40, 41, 43, 46, 47, 48, 49, 54, 60, 61, 62], "sinc": [6, 13, 20, 25, 28, 29, 30, 36, 44, 54, 60], "less": [6, 26, 35, 43, 47, 54, 61, 62], "comput": [6, 15, 18, 25, 26, 28, 29, 30, 38, 40, 41, 44, 46, 47, 49, 51, 52, 54, 60, 61, 62], "gpu": [6, 7, 8, 13, 14, 24, 25, 28, 29, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 52, 54, 60, 61, 62], "try": [6, 10, 12, 15, 21, 23, 44, 46, 48, 49, 60, 61, 62], "might": [6, 7, 29, 30, 61, 62], "ideal": [6, 7], "mai": [6, 7, 9, 25, 28, 29, 30, 36, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62, 66], "With": [6, 25], "43": [6, 9, 20, 29, 30, 43], "great": 6, "made": [6, 28], "boost": [6, 7], "tabl": [6, 17, 23, 28, 29, 30], "67": [6, 20, 25], "59": [6, 15, 20, 25, 28, 41, 43], "86": [6, 20], "fact": 6, "arpa": [6, 11, 54], "performn": 6, "depend": [6, 14, 15, 17, 25, 38, 43, 63], "kenlm": 6, "kpu": 6, "archiv": [6, 56], "zip": 6, "execut": [6, 7, 13, 28, 35, 38, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "9": [6, 9, 20, 25, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 54, 60, 61, 62], "57": [6, 20, 25, 29, 43, 47], "slightli": 6, "63": [6, 20, 40], "04": [6, 28, 29, 30, 38, 40, 41, 43, 47, 51, 52], "52": [6, 20, 25, 38, 43], "73": [6, 20], "mention": [6, 58], "earlier": 6, "benchmark": [6, 40], "speed": [6, 28, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "132": [6, 20], "95": [6, 20, 39], "177": [6, 25, 26, 29, 30, 40, 41, 43], "96": [6, 20, 25, 35], "210": [6, 51, 52], "262": [6, 7, 15], "62": [6, 7, 20, 25, 43, 47], "65": [6, 7, 20, 25, 28], "352": [6, 7, 43], "58": [6, 7, 10, 20, 25, 43], "488": [6, 7, 28, 29, 30], "400": [6, 9, 39], "610": 6, "870": 6, "156": [6, 15, 20], "203": [6, 15, 26, 43], "255": [6, 29, 30], "160": [6, 15, 20], "263": [6, 9, 15, 25, 29], "singl": [6, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "32g": 6, "v100": [6, 38, 40, 41, 43], "vari": 6, "word": [7, 11, 12, 15, 18, 38, 40, 41, 43, 47, 51, 52, 54, 56], "error": [7, 9, 10, 12, 13, 15, 25, 28, 29, 30, 43], "rate": [7, 12, 20, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "These": [7, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "alreadi": [7, 11, 13, 25, 26, 37], "But": [7, 28, 46, 48, 49, 60, 61, 62], "long": [7, 28, 56, 64, 65], "true": [7, 9, 15, 25, 26, 28, 29, 30, 35, 36, 38, 40, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "either": [7, 15, 23, 38, 40, 41, 43, 61, 62], "choos": [7, 23, 25, 44, 46, 48, 49, 60, 61, 62], "three": [7, 15, 28, 29, 30, 33, 38, 40, 58], "associ": 7, "dimens": [7, 35, 46, 56, 61, 62], "obviou": 7, "rel": [7, 37], "reduct": [7, 15, 25, 28, 29, 48], "around": [7, 36], "A": [7, 14, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 60, 61, 62], "few": [7, 11, 28, 29, 30, 44], "paramet": [7, 14, 26, 28, 29, 30, 32, 35, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 56, 60, 61, 62, 64, 65], "tune": [7, 24, 28, 29, 30, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62, 66], "control": [7, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "too": 7, "small": [7, 35, 36, 37, 40, 51, 52, 54], "fulli": 7, "util": [7, 9, 10, 15, 20, 25, 43], "larg": [7, 13], "domin": 7, "bad": 7, "typic": [7, 35, 38, 40, 41, 43], "activ": [7, 13, 23, 25], "path": [7, 9, 15, 23, 25, 26, 28, 29, 30, 33, 36, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "trade": 7, "off": [7, 28], "accuraci": [7, 28, 29, 37, 39], "larger": [7, 29, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "slower": 7, "built": [8, 9, 25, 64], "imag": [8, 24], "cpu": [8, 12, 13, 14, 15, 16, 17, 20, 24, 25, 26, 28, 29, 30, 32, 38, 46, 48, 49, 54, 61, 62, 64], "still": [8, 28, 29, 30, 37], "introduct": [8, 24, 57, 66], "tag": [8, 24], "cuda": [8, 10, 15, 17, 20, 24, 26, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 60, 61, 62], "enabl": [8, 25, 44], "within": [8, 14, 21, 23, 24, 28, 29], "updat": [8, 28, 29, 30, 35], "host": [9, 26], "hub": [9, 20], "k2fsa": 9, "find": [9, 10, 16, 21, 22, 23, 26, 28, 29, 30, 33, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "dockerfil": 9, "tree": [9, 11, 32, 33, 38, 40, 41, 43, 47, 51, 52, 54, 60], "item": [9, 14, 20], "curl": 9, "registri": 9, "v2": [9, 30, 38, 43], "jq": 9, "give": [9, 11, 15, 20, 40], "someth": [9, 38, 40, 41, 43, 46, 48, 49, 54, 60, 61], "torch2": [9, 13, 15], "cuda12": 9, "cuda11": [9, 10, 25], "torch1": [9, 10, 25], "cuda10": 9, "13": [9, 10, 15, 20, 25, 26, 28, 29, 30, 36, 40, 41, 43, 47, 48, 51], "releas": [9, 15, 25, 26, 28, 29, 30, 38, 40, 43, 64], "torch": [9, 10, 13, 14, 20, 24, 26, 27, 34, 38, 40, 43], "select": [9, 12, 13, 14, 23, 25, 28, 29, 30, 46, 47, 51, 52, 54, 60, 61, 62], "appropri": [9, 25], "combin": [9, 12, 28, 29, 30], "visit": [9, 22, 23, 46, 48, 49, 60, 61, 62, 64, 65], "pkg": 9, "py3": [9, 10, 25], "v1": [9, 38, 41, 43, 47, 51, 52], "current": [9, 23, 28, 29, 40, 44, 58, 60, 61, 62, 64, 65, 66], "ghcr": 9, "alwai": [9, 25, 26], "sudo": [9, 38, 41], "rm": 9, "bin": [9, 13, 25, 28, 29, 30, 38, 43], "bash": 9, "start": [9, 11, 12, 14, 15, 16, 20, 23, 25, 26, 30, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "interfac": 9, "present": [9, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "root": [9, 20, 28, 29, 30, 56], "60c947eac59c": 9, "workspac": 9, "export": [9, 10, 11, 12, 13, 14, 16, 24, 25, 37, 38, 40, 41, 43, 44, 47, 51, 52, 54, 63], "pythonpath": [9, 11, 12, 13, 15, 16, 25, 28, 29, 30], "user": [9, 10, 13, 25], "copi": [9, 20, 25, 58], "switch": [9, 25, 28, 29, 30, 38, 43, 49], "opt": 9, "conda": [9, 10], "lib": [9, 10, 15, 25, 30], "site": [9, 10, 15, 25, 30], "packag": [9, 10, 15, 25, 30, 64, 65], "__init__": [9, 10, 15, 25, 26, 28, 29, 30, 38, 40, 43], "line": [9, 10, 11, 28, 29, 30, 46, 56, 61, 62], "modul": [9, 13, 24, 28, 30, 35, 48, 61], "_k2": [9, 10, 25], "determinizeweightpushingtyp": [9, 10], "importerror": [9, 24], "libcuda": 9, "cannot": [9, 24, 28, 29, 30], "share": [9, 24, 25], "object": [9, 24, 25, 38, 40, 41, 46, 54, 60, 61], "No": [9, 13, 17, 24, 28, 29, 30, 54], "stub": 9, "list": [9, 15, 20, 28, 29, 30, 38, 40, 41, 43, 47, 51, 52], "16": [9, 15, 20, 25, 26, 28, 29, 30, 33, 35, 38, 40, 41, 43, 46, 47, 51, 52, 54, 60, 61, 62], "second": [9, 14, 38, 40, 41, 43, 44, 46, 48, 49, 54, 60, 61, 62], "2023": [9, 15, 25, 28, 29, 30, 35, 36, 48, 56, 65], "01": [9, 11, 15, 25, 28, 40, 41, 43, 44, 48], "02": [9, 11, 25, 26, 28, 29, 30, 35, 40, 43, 46, 52, 60, 61, 64], "06": [9, 15, 25, 26, 28, 35, 36, 41, 43, 47, 54], "info": [9, 15, 25, 26, 28, 29, 30, 35, 38, 40, 41, 43, 47, 51, 52, 54], "264": [9, 25, 30], "posixpath": [9, 15, 25, 28, 29, 30, 40, 43], "lang_dir": [9, 15, 25, 40, 43], "lang_phon": [9, 11, 15, 25, 41, 47, 51, 52, 54], "feature_dim": [9, 15, 25, 26, 28, 29, 30, 38, 40, 43, 54], "search_beam": [9, 15, 25, 38, 43, 54], "20": [9, 14, 15, 20, 25, 26, 28, 30, 35, 36, 38, 40, 41, 43, 46, 47, 51, 52, 54, 56, 61], "output_beam": [9, 15, 25, 38, 43, 54], "min_active_st": [9, 15, 25, 38, 43, 54], "30": [9, 10, 15, 20, 25, 28, 29, 30, 38, 40, 41, 43, 44, 46, 48, 49, 54, 60, 61, 62], "max_active_st": [9, 15, 25, 38, 43, 54], "10000": [9, 15, 25, 38, 43, 54], "use_double_scor": [9, 15, 25, 38, 43, 54], "14": [9, 10, 15, 20, 25, 26, 28, 29, 32, 38, 43, 46, 47, 48, 51, 60, 61, 62], "feature_dir": [9, 15, 25, 43], "fbank": [9, 11, 15, 25, 26, 28, 29, 30, 38, 40, 41, 43, 47, 51, 52, 54], "max_dur": [9, 15, 25, 43], "bucketing_sampl": [9, 15, 25, 43], "num_bucket": [9, 15, 25, 43], "concatenate_cut": [9, 15, 25, 43], "duration_factor": [9, 15, 25, 43], "gap": [9, 15, 25, 43], "on_the_fly_feat": [9, 15, 25, 43], "shuffl": [9, 15, 25, 43], "return_cut": [9, 15, 25, 43], "num_work": [9, 15, 25, 43], "env_info": [9, 15, 25, 26, 28, 29, 30, 38, 40, 43], "sha1": [9, 15, 25, 26, 28, 29, 30, 38, 40, 43], "4c05309499a08454997adf500b56dcc629e35ae5": [9, 25], "date": [9, 15, 25, 26, 28, 29, 30, 38, 40, 43], "tue": [9, 25, 28, 43], "jul": [9, 15, 25], "25": [9, 15, 20, 25, 26, 28, 29, 38, 43, 46, 51, 52, 54, 61], "36": [9, 20, 25, 28, 40, 43, 44], "dev": [9, 10, 15, 25, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "7640d663": 9, "branch": [9, 15, 25, 26, 28, 29, 30, 38, 40, 43, 48], "375520d": 9, "fri": [9, 26], "28": [9, 20, 25, 28, 29, 40, 43, 47, 64], "07": [9, 25, 28, 29, 30, 38, 40, 41, 43], "hostnam": [9, 15, 25, 26, 28, 29, 30, 40], "ip": [9, 15, 25, 26, 28, 29, 30, 40], "172": 9, "17": [9, 20, 25, 26, 28, 29, 30, 38, 43, 51, 52, 60], "401": 9, "lexicon": [9, 11, 15, 18, 25, 38, 40, 41, 43, 44, 46, 48, 49, 54, 60, 61, 62], "168": [9, 15, 20, 25, 47], "compil": [9, 15, 25, 28, 29, 38, 40, 43], "linv": [9, 11, 15, 25, 40, 43, 54], "403": [9, 47], "273": [9, 15, 25, 26, 40], "devic": [9, 15, 20, 25, 26, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 61, 62], "406": [9, 43], "291": [9, 25], "424": 9, "218": [9, 15, 25, 29], "about": [9, 11, 12, 14, 15, 16, 20, 25, 28, 29, 30, 35, 40, 44, 46, 49, 60, 61, 62], "cut": [9, 15, 25, 43], "425": [9, 29, 43], "252": [9, 25], "504": 9, "204": [9, 25, 30, 43], "batch": [9, 15, 17, 25, 28, 29, 30, 38, 40, 41, 43, 46, 48, 49, 56, 60, 61, 62], "process": [9, 15, 17, 25, 26, 28, 29, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "until": [9, 15, 25, 43, 48], "w": [9, 20, 25, 43, 51, 52], "nnpack": 9, "cpp": [9, 28, 32], "53": [9, 15, 20, 25, 30, 38, 46, 47, 52, 60, 61], "could": [9, 28, 29, 30, 35, 36, 37, 38, 41, 56], "reason": [9, 14, 26, 28, 29, 30, 36, 61], "unsupport": 9, "hardwar": 9, "687": 9, "241": [9, 25, 38], "transcript": [9, 15, 18, 25, 38, 39, 40, 41, 43, 46, 47, 51, 52, 60, 61, 62], "store": [9, 11, 15, 25, 43, 56], "recog": [9, 15, 25, 40, 43], "test_set": [9, 15, 25, 54], "688": 9, "564": [9, 15, 25], "240": [9, 15, 25, 38, 54], "ins": [9, 15, 25, 43, 54], "del": [9, 15, 20, 25, 43, 54], "sub": [9, 15, 25, 43, 54], "690": 9, "249": [9, 25, 29], "wrote": [9, 15, 25, 43], "detail": [9, 11, 15, 20, 25, 27, 31, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 60, 61, 62, 64, 65], "stat": [9, 15, 25, 43], "err": [9, 15, 25, 40, 43], "316": [9, 25, 43], "congratul": [9, 13, 20, 25, 28, 29, 30, 38, 41, 43, 47, 51, 52, 54, 64], "finish": [9, 14, 38, 40, 41, 43, 44, 46, 47, 51, 52, 54, 61, 62], "successfulli": [9, 13, 25, 28, 29, 30, 64], "collect": [10, 13, 25, 56], "post": 10, "correspond": [10, 22, 23], "solut": 10, "One": 10, "torchaudio": [10, 13, 18, 20, 24, 58], "cu111": 10, "torchvis": 10, "f": [10, 13, 15, 20, 25, 51, 52, 64], "org": [10, 13, 20, 25, 39, 40, 46, 56, 60, 61, 62], "whl": [10, 13, 25], "torch_stabl": [10, 13, 25], "throw": [10, 28, 29, 30], "while": [10, 16, 25, 28, 29, 30, 35, 38, 40, 41, 43, 44, 46, 48, 49, 56, 60, 61, 62], "That": [10, 11, 14, 15, 16, 17, 28, 29, 44, 46, 60, 61, 62], "cu11": 10, "correct": 10, "traceback": 10, "most": [10, 61, 62], "recent": 10, "last": 10, "yesnoasrdatamodul": 10, "home": [10, 20, 28, 29, 38, 43], "xxx": [10, 20, 26, 28, 29, 30], "next": [10, 13, 14, 23, 25, 28, 29, 30, 43, 44, 46, 47, 48, 49, 56, 60, 61, 62], "gen": [10, 13, 14, 23, 25, 43, 44, 46, 47, 48, 49, 60, 61, 62], "kaldi": [10, 11, 13, 14, 17, 18, 23, 24, 25, 43, 44, 46, 47, 48, 49, 60, 61, 62], "34": [10, 20, 28, 29], "datamodul": 10, "add_eo": 10, "add_so": 10, "get_text": 10, "39": [10, 20, 25, 28, 30, 40, 43, 47, 51], "tensorboard": [10, 16, 25, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "summarywrit": 10, "miniconda3": 10, "env": 10, "yyi": 10, "loosevers": 10, "uninstal": 10, "setuptool": [10, 13, 25], "yangyifan": 10, "anaconda3": 10, "dev20230112": 10, "linux": [10, 13, 14, 23, 25, 27, 28, 29, 30, 31], "x86_64": [10, 25, 28], "egg": 10, "handl": [10, 38, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "except": [10, 26], "anoth": 10, "occur": 10, "pruned_transducer_stateless7_ctc_b": [10, 48], "104": [10, 15, 20, 25], "rais": 10, "anaconda": 10, "maco": [10, 13, 14, 23, 27, 28, 29, 30, 31], "probabl": [10, 40, 46, 48, 60, 61, 62], "variabl": [10, 12, 13, 16, 25, 28, 29, 30, 38, 41, 43, 44, 46, 48, 49, 60, 61, 62], "dyld_library_path": 10, "conda_prefix": 10, "locat": [10, 16, 28], "libpython": 10, "abl": 10, "insid": [10, 33], "codna_prefix": 10, "ld_library_path": 10, "setup": [11, 14, 20, 24, 25, 28, 35, 36, 38, 40, 41, 43, 44, 46, 47, 51, 52, 54, 61, 62, 64, 65], "everyth": [11, 20, 27], "tmp": [11, 12, 13, 15, 16, 25, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64], "each": [11, 15, 18, 26, 28, 29, 31, 35, 38, 40, 41, 43, 46, 48, 49, 56, 58, 60, 61, 62], "exist": 11, "anyth": [11, 21, 23], "els": [11, 20], "wonder": [11, 15], "url": [11, 38, 40, 41, 43, 46, 48, 49, 54, 60, 61], "varieti": 11, "folder": [11, 25, 26, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "wav": [11, 15, 20, 26, 28, 29, 30, 31, 33, 38, 40, 41, 43, 46, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "scp": 11, "feat": 11, "put": [11, 13, 25, 28, 29, 48, 61], "l": [11, 20, 25, 28, 29, 30, 40, 51, 52, 54], "waves_yesno": [11, 15, 25], "tar": [11, 25, 64], "gz": [11, 25, 56], "l41": 11, "extract": [11, 25, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "yesno_cuts_test": 11, "jsonl": [11, 26], "yesno_cuts_train": 11, "yesno_feats_test": 11, "lca": 11, "yesno_feats_train": 11, "hlg": [11, 15, 25, 47, 51, 52, 54], "l_disambig": [11, 54], "lexicon_disambig": [11, 20, 54], "manifest": [11, 25, 35, 36, 44], "yesno_recordings_test": 11, "yesno_recordings_train": 11, "yesno_supervisions_test": 11, "yesno_supervisions_train": 11, "18": [11, 20, 25, 28, 29, 30, 38, 40, 41, 43, 46, 47, 51, 52, 60, 61, 62], "thei": [11, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "idea": [11, 15, 20, 58], "examin": 11, "relat": [11, 18, 26, 35, 36, 38, 40, 43, 47, 51, 52, 54, 64, 65], "gunzip": 11, "c": [11, 17, 20, 25, 40, 41, 46, 48, 49, 54, 60, 61, 62, 64], "head": [11, 20, 25, 35, 40, 58], "output": [11, 12, 13, 15, 20, 26, 28, 29, 30, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64], "id": [11, 38, 41, 43, 47, 51, 52], "0_0_0_0_1_1_1_1": 11, "channel": [11, 23, 25, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "sampling_r": 11, "num_sampl": 11, "50800": 11, "35": [11, 20, 25, 26, 28, 29, 30, 40, 43, 60], "channel_id": 11, "0_0_0_1_0_1_1_0": 11, "48880": 11, "0_0_1_0_0_1_1_0": 11, "48160": 11, "audio": [11, 20, 25, 51, 52, 64], "l300": 11, "mean": [11, 14, 15, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62], "field": [11, 39], "per": [11, 40, 46, 61, 62], "recording_id": 11, "NO": [11, 15, 54], "ye": [11, 15, 17, 54], "hebrew": [11, 54], "supervis": [11, 24, 37, 66], "l510": 11, "furthermor": [11, 40], "featur": [11, 17, 25, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62], "compress": [11, 25], "lilcom": [11, 25], "cutset": [11, 36], "recordingset": 11, "supervisionset": 11, "featureset": 11, "num_fram": [11, 20], "635": 11, "num_featur": 11, "frame_shift": 11, "storage_typ": 11, "lilcom_chunki": 11, "storage_path": 11, "storage_kei": 11, "13000": 11, "3570": 11, "record": [11, 23, 29, 30, 38, 39, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "monocut": 11, "611": 11, "16570": 11, "12964": 11, "2929": 11, "602": 11, "32463": 11, "12936": 11, "2696": 11, "actual": [11, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "separ": [11, 31, 56], "lang": [11, 20, 25, 26, 40, 43, 49], "quit": [12, 14, 16, 37, 38, 40, 41, 43, 46, 48, 49, 56, 60, 61, 62], "cuda_visible_devic": [12, 16, 25, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "usag": [12, 15, 16, 26, 28, 29, 30, 32, 33, 47, 51, 52, 54, 63], "one": [12, 23, 26, 28, 29, 30, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64], "tini": [13, 14], "well": [13, 26, 35, 54, 66], "hundr": 13, "thousand": 13, "virtualenv": [13, 25], "icefall_env": [13, 15], "interpret": 13, "usr": 13, "prefix": [13, 26], "pkg_resourc": 13, "wheel": [13, 25, 28], "remeb": 13, "continu": [13, 15, 20, 28, 29, 30, 31, 38, 40, 41, 43, 46, 48, 49, 54, 60, 61], "caution": [13, 38, 43], "matter": [13, 25, 28], "torchaduio": 13, "from_wheel": [13, 15, 25], "dev20231220": 13, "china": [13, 25, 39], "\u4e2d\u56fd\u56fd\u5185\u7528\u6237": [13, 25], "\u5982\u679c\u8bbf\u95ee\u4e0d\u4e86": [13, 25], "\u8bf7\u4f7f\u7528": [13, 25], "cn": [13, 25], "anytim": 13, "modulenotfounderror": 13, "don": [13, 14, 15, 17, 20, 25, 28, 29, 30, 32, 36, 38, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "walk": [14, 20], "recognit": [14, 23, 24, 27, 28, 29, 37, 39, 40, 54, 66], "system": [14, 56], "out": [14, 44, 56], "minut": [14, 56], "sequenti": 14, "part": [14, 15, 23, 25, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64, 65], "window": [14, 23, 27, 28, 29, 30, 31], "commun": 14, "appreci": 14, "virtual": 14, "curiou": 14, "quick": 14, "state_dict": [14, 24, 34, 38, 40, 41, 43, 47, 51, 52, 54], "jit": [14, 24, 27, 34, 43], "onnx": [14, 24, 26, 34, 35, 63, 65], "torchscript": [15, 27, 32, 33, 34], "trace": [15, 24, 27, 32, 34], "explain": 15, "kind": [15, 43, 46, 48, 49, 60, 61, 62], "produc": [15, 27, 46, 48, 49, 60, 61, 62], "03": [15, 25, 26, 29, 35, 40, 43, 51, 52, 60, 64], "912": [15, 26], "76": [15, 20, 25, 54], "lr": [15, 25, 35, 36, 40, 60], "weight_decai": [15, 25], "1e": [15, 25], "start_epoch": [15, 25], "best_train_loss": [15, 25, 26, 28, 29, 30], "inf": [15, 25, 26, 28, 29, 30], "best_valid_loss": [15, 25, 26, 28, 29, 30], "best_train_epoch": [15, 25, 26, 28, 29, 30], "best_valid_epoch": [15, 25, 26, 29, 30], "batch_idx_train": [15, 25, 26, 28, 29, 30], "log_interv": [15, 25, 26, 28, 29, 30], "reset_interv": [15, 25, 26, 28, 29, 30], "valid_interv": [15, 25, 26, 28, 29, 30], "beam_siz": [15, 25, 26, 40], "sum": [15, 20, 25], "913": 15, "950": 15, "971": [15, 52], "106": [15, 20, 25, 29, 43], "Not": 15, "974": 15, "111": [15, 20, 25, 43], "kei": [15, 28, 29, 30, 43], "bia": 15, "running_mean": 15, "running_var": 15, "num_batches_track": 15, "output_linear": 15, "48": [15, 20, 25, 28, 29, 35, 38, 40], "089": 15, "090": 15, "ad79f1c699c684de9785ed6ca5edb805a41f78c3": 15, "wed": [15, 25, 28, 38, 40, 43], "26": [15, 20, 25, 28, 29, 30, 40, 43, 52], "09": [15, 26, 29, 38, 40, 41, 43, 60], "aa073f6": 15, "none": [15, 20, 25, 38, 43], "9a47c08": 15, "mon": [15, 29, 30], "aug": [15, 44], "50": [15, 20, 25, 26, 28, 29, 30, 43, 46, 51, 60, 61, 62], "privat": 15, "fangjun": [15, 19, 25, 26, 28, 29, 30, 40, 43], "macbook": 15, "pro": [15, 38, 43], "127": [15, 20, 25, 28, 29, 54], "092": 15, "103": [15, 20], "272": 15, "109": [15, 20, 25, 38, 43], "112": [15, 20, 28, 29, 30], "115": [15, 20, 28, 29, 38, 43], "253": 15, "386": 15, "556": 15, "557": 15, "558": 15, "248": [15, 40], "559": 15, "315": [15, 28, 38, 40, 41, 43, 47], "ident": [15, 20], "kaldifeat": 15, "csukuangfj": [15, 25, 26, 28, 29, 31, 38, 40, 41, 43, 47, 51, 52, 54, 60, 64], "dev20231221": 15, "0_0_0_1_0_0_0_1": [15, 54], "0_0_1_0_0_0_1_0": [15, 54], "19": [15, 20, 26, 28, 29, 30, 35, 36, 38, 43, 47, 51, 52], "208": [15, 43], "136": [15, 20, 43], "num_class": [15, 38, 43, 54], "sample_r": [15, 20, 26, 38, 40, 43, 54], "words_fil": [15, 38, 43, 54], "sound_fil": [15, 26, 38, 40, 43, 54], "142": [15, 20, 28, 38, 41, 43], "144": [15, 20, 43], "212": 15, "213": [15, 54], "construct": [15, 20, 26, 28, 29, 30, 38, 40, 41, 43, 47, 51, 52, 54], "170": [15, 47], "sound": [15, 26, 28, 29, 30, 33, 34, 38, 40, 41, 43, 47, 51, 52, 54], "224": 15, "176": [15, 28, 40, 43], "304": [15, 29], "214": [15, 40, 43], "47": [15, 20, 25, 28, 29, 30, 36, 38, 43], "44": [15, 20, 25, 28, 29, 35, 43, 51, 52], "666": 15, "667": 15, "670": 15, "677": [15, 28], "100": [15, 20, 25, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "843": 15, "cpu_jit": [15, 32, 38, 43, 46, 48, 49, 61, 62], "confus": [15, 32], "move": [15, 32, 46, 48, 49, 61, 62], "map_loc": 15, "resid": 15, "default": [15, 28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "jit_pretrain": [15, 33, 48, 49, 60], "nn": [15, 40, 46, 48, 49, 60, 61, 62], "56": [15, 20, 25, 28, 29, 43, 51], "00": [15, 25, 28, 38, 40, 41, 43, 47, 51, 52, 54], "603": 15, "121": [15, 20, 47], "nn_model": [15, 38, 43], "129": [15, 20, 41], "640": [15, 25, 30], "134": [15, 20, 38], "641": 15, "138": [15, 20, 38, 40], "148": [15, 20, 35], "642": 15, "154": [15, 20, 41], "727": 15, "190": [15, 47], "192": [15, 30, 35, 43], "export_onnx": 15, "onnxruntim": [15, 31], "888": [15, 38], "83": [15, 20, 43, 47], "892": 15, "diagnost": 15, "verbos": 15, "warn": 15, "21": [15, 20, 25, 26, 28, 35, 38, 40, 43, 51, 52], "047": [15, 40], "meta_data": 15, "model_typ": 15, "model_author": 15, "comment": 15, "non": [15, 24, 43, 58, 61, 66], "vocab_s": [15, 26, 28, 29, 30, 40], "049": 15, "140": [15, 20, 25, 41], "int8": [15, 27, 34, 65], "quantiz": [15, 27, 34, 44], "075": 15, "onnx_quant": 15, "538": [15, 43], "tensor": [15, 25, 29, 30, 38, 40, 41, 43, 46, 54, 60, 61], "transpose_1_output_0": 15, "081": 15, "151": [15, 20, 28], "float32": [15, 28, 29, 30], "onnx_pretrain": [15, 31], "260": [15, 30, 43], "166": [15, 20], "171": [15, 25, 41, 43, 51, 52], "173": 15, "267": [15, 29, 40, 51, 52], "270": 15, "180": [15, 29, 38, 43], "279": [15, 43], "196": 15, "318": [15, 28, 29], "232": 15, "234": [15, 43], "deploi": [15, 31, 38, 43], "sherpa": [15, 23, 27, 32, 33, 34, 60, 63], "framework": [15, 23, 46, 61], "_": [15, 20, 44], "ncnn": [15, 24, 34], "forc": [17, 24], "align": [17, 24, 63], "instead": [17, 30, 40, 61], "support": [17, 20, 25, 27, 28, 29, 30, 38, 40, 43, 46, 48, 49, 58, 60, 61, 62, 64, 65], "api": [17, 18, 20], "ctc": [18, 20, 39, 42, 45, 49, 50, 53], "loss": [18, 20, 25, 28, 29, 38, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "log_prob": [18, 46, 61, 62], "token2id": 18, "id2token": 18, "word2id": 18, "id2word": 18, "convert": [18, 25, 28, 29, 30, 43], "graph": [18, 38, 41, 43, 46, 47, 51, 52, 61, 62], "segment": [18, 25], "summari": 18, "todo": 19, "through": [20, 39], "sure": [20, 28, 29, 30], "NOT": [20, 38, 40, 43, 54], "wave": [20, 26, 28, 29, 30, 38, 43], "speech_fil": 20, "download_asset": 20, "asset": 20, "lab41": 20, "sri": 20, "voic": 20, "src": [20, 28, 30], "sp0307": 20, "ch127535": 20, "sg0042": 20, "waveform": 20, "sr": 20, "had": [20, 26, 43, 47], "curios": 20, "besid": 20, "me": 20, "moment": [20, 23], "split": [20, 44], "shape": [20, 25, 30], "assert": [20, 30], "ndim": 20, "16000": [20, 26, 38, 40, 41, 43, 47, 48, 51, 52], "cach": [20, 25, 30], "filenam": [20, 25, 28, 29, 30, 31, 32, 33, 48, 49, 60, 62, 64, 65], "content": [20, 28, 29, 30], "element": [20, 30], "bundl": [20, 25], "pipelin": 20, "mms_fa": 20, "is_avail": 20, "get_model": 20, "with_star": 20, "inference_mod": 20, "emiss": 20, "size": [20, 25, 26, 28, 29, 30, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "169": [20, 43, 51, 52], "get_dict": 20, "star": [20, 25, 28, 29, 30], "ep": 20, "dict": [20, 26, 30], "enumer": [20, 25], "prepare_lang": 20, "add_disambig_symbol": 20, "max_disambig_id": 20, "encod": [20, 27, 31, 33, 34, 35, 38, 40, 41, 43, 46, 47, 48, 54, 58, 60, 61, 62], "utf": 20, "join": 20, "k": [20, 30, 46, 51, 52, 60, 61, 62], "rang": 20, "o": [20, 25], "b": [20, 40, 43, 51, 52], "d": [20, 51, 52, 56], "h": [20, 25], "15": [20, 25, 26, 28, 29, 30, 35, 36, 40, 41, 43, 51, 54, 56], "v": [20, 28, 29, 30, 43, 51, 52], "j": [20, 28, 29, 38, 43], "z": [20, 51, 52], "q": 20, "27": [20, 25, 28, 29, 30, 35, 36, 38, 40, 47, 52], "charact": [20, 40], "unit": [20, 40], "prepare_lang_fst": 20, "hl": 20, "rw": [20, 28, 29, 30], "13k": 20, "jun": 20, "7k": 20, "kaldi_decod": 20, "decodablectc": 20, "fasterdecod": 20, "fasterdecoderopt": 20, "kaldifst": 20, "def": 20, "force_align": 20, "stdvectorfst": 20, "contigu": 20, "numpi": [20, 25], "decoder_opt": 20, "max_act": 20, "3000": [20, 26, 28, 29, 30], "reached_fin": 20, "return": 20, "ok": 20, "best_path": 20, "get_best_path": 20, "isymbols_out": 20, "osymbols_out": 20, "total_weight": 20, "get_linear_symbol_sequ": 20, "linear": [20, 28, 29, 40], "sequenc": [20, 61, 62], "increment": [20, 28, 29, 30], "main": [20, 25, 38, 43, 58], "ctc_forced_alignment_api_tutori": 20, "frame": [20, 25, 35, 40, 46, 48, 61, 62], "eas": [20, 28, 29, 30], "31": [20, 28, 29, 30, 35, 43], "33": [20, 25, 28, 29, 38, 39, 40, 43, 51], "37": [20, 29, 38, 40, 43, 51], "40": [20, 25, 28, 29, 30, 41, 43, 47, 51, 52], "41": [20, 25, 28, 30, 38, 40, 51, 54], "46": [20, 25, 29, 38, 43], "49": [20, 25, 28, 29, 43, 52, 54], "51": [20, 25, 28, 38, 43, 54], "54": [20, 25, 29, 30, 43, 47, 51, 52], "55": [20, 25, 28, 41, 43, 51], "60": 20, "64": [20, 25, 26, 28, 35, 40, 61], "66": [20, 25, 29, 36], "68": [20, 25, 43], "69": [20, 30], "70": [20, 25], "71": [20, 25, 43, 47], "72": [20, 40, 43], "75": [20, 25, 28], "78": 20, "79": [20, 25], "80": [20, 26, 28, 29, 30, 38, 40, 43], "81": 20, "82": 20, "84": [20, 29, 38], "85": 20, "87": [20, 25, 28], "88": [20, 28, 40], "89": [20, 25, 38], "90": [20, 25, 28], "91": [20, 25], "92": [20, 25, 43], "94": 20, "97": [20, 25, 28, 38], "98": [20, 38], "101": [20, 29], "102": [20, 30, 38], "105": [20, 43], "107": [20, 29, 47], "108": 20, "110": [20, 43], "113": [20, 40, 43], "114": 20, "116": 20, "117": [20, 43], "118": [20, 25, 43], "119": [20, 54], "120": 20, "122": [20, 43], "123": 20, "124": [20, 25, 38, 43], "125": [20, 43, 54], "126": [20, 43], "128": [20, 35, 43], "130": 20, "131": [20, 38, 43], "133": [20, 30], "135": [20, 43, 54], "137": 20, "139": [20, 54], "141": [20, 28], "143": [20, 54], "145": 20, "146": [20, 25], "147": [20, 29, 30], "149": [20, 25, 28, 43], "150": [20, 38, 43], "152": 20, "153": [20, 43, 54], "155": 20, "157": [20, 25], "158": [20, 29], "159": [20, 29, 43, 54], "161": [20, 41, 43], "162": [20, 43], "163": [20, 40, 43], "164": 20, "165": [20, 38, 43], "167": [20, 25], "merg": 20, "merge_token": 20, "token_span": 20, "span": 20, "end": [20, 40, 46, 48, 49, 54, 60, 61, 62, 64, 65], "unflatten": 20, "list_": 20, "length": [20, 28, 30, 40, 56, 61, 62], "ret": 20, "append": 20, "word_span": 20, "tokenspan": 20, "preview_word": 20, "x0": 20, "int": [20, 38, 43], "x1": 20, "3f": 20, "sec": 20, "ipython": 20, "displai": [20, 38, 40, 41, 43], "along": 20, "stamp": [20, 40], "644": 20, "664": 20, "704": [20, 25, 38, 51], "845": 20, "885": 20, "026": [20, 30], "086": 20, "790": 20, "871": 20, "314": [20, 25], "334": 20, "414": 20, "495": [20, 25], "575": 20, "595": [20, 29], "756": 20, "837": 20, "repost": 20, "whole": [20, 35, 36, 43, 47, 51, 52, 61, 62], "youtub": [21, 24, 43, 44, 46, 47, 48, 49, 60, 61, 62], "video": [21, 24, 43, 44, 46, 47, 48, 49, 60, 61, 62], "upload": [22, 23, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "specif": [22, 31, 40], "aishel": [22, 24, 38, 40, 41, 42, 66], "wenetspeech": [22, 32], "ipad": 23, "phone": 23, "screenshot": [23, 38, 40, 41, 43, 44, 46, 54, 60, 61], "chines": [23, 39, 40], "english": [23, 36, 54, 60], "greedi": 23, "click": [23, 25, 38, 40, 41, 43, 46, 48, 49, 54, 60, 61], "button": 23, "submit": 23, "wait": 23, "bottom": [23, 46, 48, 49, 60, 61, 62], "subscrib": [23, 25, 43, 44, 46, 47, 48, 49, 60, 61, 62], "nadira": [23, 25, 43, 44, 46, 47, 48, 49, 60, 61, 62], "povei": [23, 25, 43, 44, 46, 47, 48, 49, 60, 61, 62], "www": [23, 25, 39, 43, 44, 46, 47, 48, 49, 56, 60, 61, 62], "uc_vaumpkminz1pnkfxan9mw": [23, 25, 43, 44, 46, 47, 48, 49, 60, 61, 62], "dummi": [24, 43], "toolkit": 24, "cudnn": 24, "docker": [24, 25], "frequent": 24, "ask": [24, 64], "question": 24, "faq": 24, "oserror": 24, "libtorch_hip": 24, "attributeerror": 24, "distutil": 24, "attribut": [24, 30, 43], "libpython3": 24, "timit": [24, 42, 51, 52, 66], "tt": [24, 64, 65, 66], "vit": [24, 63, 66], "ljspeech": [24, 63, 66], "vctk": [24, 63, 66], "fine": [24, 44, 66], "finetun": [24, 37, 66], "zipform": [24, 27, 31, 34, 37, 42, 45, 56, 57, 59, 66], "adapt": [24, 37, 66], "contribut": 24, "guid": 25, "suggest": [25, 36, 46, 48, 49, 60, 61, 62], "strongli": 25, "point": [25, 26, 38, 41, 43, 44, 46, 48, 49, 60, 61, 62], "sever": [25, 26, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 58, 60, 61, 62], "just": [25, 28, 29, 30, 56, 58], "kuangfangjun": [25, 28, 29, 30], "cpython3": 25, "final": [25, 26, 28, 29, 43, 47], "9422m": 25, "creator": 25, "cpython3posix": 25, "dest": 25, "fj": [25, 26, 28, 29, 30, 40, 43], "clear": 25, "no_vcs_ignor": 25, "global": 25, "seeder": 25, "fromappdata": 25, "app_data_dir": 25, "ad": [25, 28, 29, 30, 38, 40, 41, 43, 46, 48, 49, 54, 58, 60, 61, 62], "seed": 25, "bashactiv": 25, "cshellactiv": 25, "fishactiv": 25, "nushellactiv": 25, "powershellactiv": 25, "pythonactiv": 25, "determin": 25, "nvidia": [25, 38, 40, 41, 43], "smi": 25, "510": 25, "driver": 25, "greater": 25, "our": [25, 28, 29, 30, 32, 33, 43, 44, 46, 58, 61, 62], "case": [25, 26, 28, 29, 30, 37, 46, 48, 49, 60, 61, 62], "verifi": 25, "nvcc": 25, "copyright": 25, "2005": 25, "2019": 25, "corpor": 25, "wed_oct_23_19": 25, "38_pdt_2019": 25, "v10": 25, "cu116": 25, "compat": 25, "stabl": 25, "matrix": 25, "2bcu116": 25, "cp38": 25, "linux_x86_64": 25, "1983": 25, "mb": [25, 28, 29, 30], "________________________________________": 25, "gb": [25, 40], "764": 25, "kb": [25, 28, 29, 30, 51, 52], "eta": 25, "satisfi": 25, "extens": 25, "__version__": 25, "dev20230725": 25, "pypi": 25, "tuna": 25, "tsinghua": 25, "edu": 25, "resolv": 25, "ubuntu": [25, 28, 29, 30], "2bcuda11": 25, "manylinux_2_17_x86_64": 25, "manylinux2014_x86_64": 25, "graphviz": 25, "de": [25, 26, 28, 29, 30, 40], "5e": 25, "fcbb22c68208d39edff467809d06c9d81d7d27426460ebc598e55130c1aa": 25, "cento": 25, "2009": 25, "core": 25, "cmake": [25, 28, 29, 38, 43], "gcc": 25, "cmake_cuda_flag": 25, "wno": 25, "deprec": [25, 40], "lineinfo": 25, "expt": 25, "extend": 25, "lambda": 25, "use_fast_math": 25, "xptxa": 25, "gencod": 25, "arch": 25, "compute_35": 25, "sm_35": 25, "compute_50": 25, "sm_50": 25, "compute_60": 25, "sm_60": 25, "compute_61": 25, "sm_61": 25, "compute_70": 25, "sm_70": 25, "compute_75": 25, "sm_75": 25, "compute_80": 25, "sm_80": 25, "compute_86": 25, "sm_86": 25, "donnx_namespac": 25, "onnx_c2": 25, "compute_52": 25, "sm_52": 25, "xcudaf": 25, "diag_suppress": 25, "cc_clobber_ignor": 25, "integer_sign_chang": 25, "useless_using_declar": 25, "set_but_not_us": 25, "field_without_dll_interfac": 25, "base_class_has_different_dll_interfac": 25, "dll_interface_conflict_none_assum": 25, "dll_interface_conflict_dllexport_assum": 25, "implicit_return_from_non_void_funct": 25, "unsigned_compare_with_zero": 25, "declared_but_not_referenc": 25, "bad_friend_decl": 25, "relax": 25, "constexpr": 25, "d_glibcxx_use_cxx11_abi": 25, "option": [25, 27, 31, 34, 40, 44, 47, 51, 52, 54], "wall": 25, "strict": [25, 30, 39], "overflow": 25, "unknown": 25, "pragma": 25, "cmake_cxx_flag": 25, "unus": 25, "nvtx": 25, "disabl": [25, 26, 28, 29], "debug": 25, "sync": 25, "kernel": [25, 28, 30, 35, 40], "memori": [25, 28, 35, 38, 40, 43, 58], "alloc": 25, "214748364800": 25, "byte": [25, 28, 29, 30], "200": [25, 26, 28, 29, 30, 38, 43, 44, 51, 52, 54], "abort": 25, "__file__": 25, "cpython": [25, 28], "gnu": [25, 28], "req": 25, "vq12fd5i": 25, "filter": 25, "quiet": [25, 39], "7640d663469b22cd0b36f3246ee9b849cd25e3b7": 25, "metadata": [25, 51, 52], "pyproject": 25, "toml": 25, "cytoolz": 25, "3b": 25, "a7828d575aa17fb7acaf1ced49a3655aa36dad7e16eb7e6a2e4df0dda76f": 25, "pyyaml": 25, "c8": 25, "6b": 25, "6600ac24725c7388255b2f5add93f91e58a5d7efaf4af244fdbcc11a541b": 25, "ma": 25, "nylinux_2_17_x86_64": 25, "736": 25, "dataclass": 25, "2f": 25, "1095cdc2868052dd1e64520f7c0d5c8c550ad297e944e641dbf1ffbb9a5d": 25, "dev0": 25, "7640d66": 25, "a8": 25, "df0a69c52bd085ca1ad4e5c4c1a5c680e25f9477d8e49316c4ff1e5084a4": 25, "linux_2_17_x86_64": 25, "tqdm": 25, "e6": 25, "a2cff6306177ae6bc73bc0665065de51dfb3b9db7373e122e2735faf0d97": 25, "audioread": 25, "5d": 25, "cb": 25, "82a002441902dccbe427406785db07af10182245ee639ea9f4d92907c923": 25, "377": 25, "tabul": 25, "4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854": 25, "1a": 25, "e63223f8116931d365993d4a6b7ef653a4d920b41d03de7c59499962821f": 25, "ab": [25, 46, 60, 61, 62], "c3": 25, "57f0601a2d4fe15de7a553c00adbc901425661bf048f2a22dfc500caf121": 25, "intervaltre": 25, "fb": 25, "396d568039d21344639db96d940d40eb62befe704ef849b27949ded5c3bb": 25, "soundfil": 25, "bd": 25, "0602167a213d9184fc688b1086dc6d374b7ae8c33eccf169f9b50ce6568c": 25, "py2": 25, "toolz": 25, "7f": 25, "5c": 25, "922a3508f5bda2892be3df86c74f9cf1e01217c2b1f8a0ac4841d903e3e9": 25, "sortedcontain": 25, "9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621c": 25, "cffi": 25, "b7": 25, "8b": 25, "06f30caa03b5b3ac006de4f93478dbd0239e2a16566d81a106c322dc4f79": 25, "442": 25, "pycpars": 25, "d5": 25, "5f610ebe421e85889f2e55e33b7f9a6795bd982198517d912eb1c76e1a53": 25, "687627": 25, "sha256": 25, "cbf0a4d2d0b639b33b91637a4175bc251d6a021a069644ecb1a9f2b3a83d072a": 25, "ephem": 25, "wwtk90_m": 25, "7a": 25, "8e": 25, "a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f": 25, "23704": 25, "5e2d3537c96ce9cf0f645a654c671163707bf8cb8d9e358d0e2b0939a85ff4c2": 25, "9c": 25, "f19ae5a03f8862d9f0776b0c0570f1fdd60a119d90954e3f39": 25, "26098": 25, "2604170976cfffe0d2f678cb1a6e5b525f561cd50babe53d631a186734fec9f9": 25, "f3": 25, "ed": 25, "2b": 25, "c179ebfad4e15452d6baef59737f27beb9bfb442e0620f7271": 25, "remot": 25, "12942": 25, "count": 25, "total": [25, 29, 30, 35, 38, 40, 41, 43, 44, 46, 47, 54, 60, 61], "delta": 25, "reus": 25, "pack": [25, 56, 61, 62], "12875": 25, "receiv": 25, "mib": 25, "8835": 25, "dl_dir": [25, 38, 41, 43, 44, 46, 48, 49, 60, 61, 62], "___________________________________________________": 25, "70m": 25, "1mb": 25, "718": 25, "compute_fbank_yesno": 25, "_______________________________________________________________________________": 25, "82it": 25, "778": 25, "______________________________________________________________________________": 25, "256": [25, 30, 35, 51, 52], "92it": 25, "project": 25, "kaldilm": 25, "csrc": [25, 43], "arpa_file_pars": 25, "cc": 25, "void": 25, "arpafilepars": 25, "std": 25, "istream": 25, "275": [25, 38], "compile_hlg": 25, "276": 25, "309": 25, "ctc_topo": 25, "max_token_id": 25, "310": 25, "intersect": [25, 46, 61, 62], "323": 25, "lg": [25, 46, 49, 61, 62], "connect": [25, 26, 35, 43, 46, 47, 60, 61, 62], "class": [25, 43], "341": 25, "rag": 25, "raggedtensor": 25, "remov": [25, 38, 40, 41, 43, 47, 51, 52], "disambigu": 25, "354": 25, "remove_epsilon": 25, "445": 25, "arc": 25, "compos": 25, "446": 25, "447": 25, "fault": 25, "dump": 25, "protocol_buffers_python_implement": 25, "674": 25, "interest": [25, 44, 46, 48, 49, 60, 61, 62], "936": 25, "481": 25, "482": 25, "world_siz": [25, 44], "master_port": 25, "12354": 25, "num_epoch": 25, "3fb0a43": 25, "thu": [25, 26, 28, 29, 30, 40, 43, 47], "05": [25, 26, 28, 29, 35, 36, 38, 40, 41, 43, 52, 56, 65], "74279": [25, 26, 28, 29, 30, 40], "1220091118": 25, "57c4d55446": 25, "sph26": 25, "941": 25, "949": 25, "965": [25, 38], "244": 25, "967": 25, "199": [25, 43, 47], "singlecutsampl": 25, "205": [25, 43], "968": 25, "565": [25, 43], "422": 25, "065": 25, "over": [25, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "2436": 25, "tot_loss": 25, "681": [25, 28], "4561": 25, "2828": 25, "7076": 25, "22192": 25, "444": 25, "9002": 25, "18067": 25, "011": 25, "2555": 25, "2695": 25, "484": 25, "34971": 25, "331": [25, 28, 29, 43, 47], "4688": 25, "368": 25, "633": 25, "2532": 25, "242": [25, 38, 43], "1139": 25, "1592": 25, "522": [25, 43], "1627": 25, "209": [25, 47], "07055": 25, "1175": 25, "07091": 25, "847": 25, "07731": 25, "427": [25, 29, 43], "04391": 25, "05341": 25, "884": 25, "04384": 25, "387": [25, 52], "03458": 25, "04616": 25, "707": [25, 38, 43], "03379": 25, "758": [25, 43], "433": [25, 43], "01054": 25, "980": [25, 43], "009014": 25, "009974": 25, "489": [25, 38], "01085": 25, "258": [25, 51, 52], "01172": 25, "01055": 25, "621": [25, 54], "01074": 25, "699": 25, "866": 25, "01044": 25, "844": 25, "008942": 25, "221": [25, 43], "01082": 25, "970": [25, 43], "01169": 25, "247": 25, "01073": 25, "326": [25, 29], "555": 25, "840": 25, "841": 25, "855": 25, "868": 25, "882": 25, "883": 25, "701": 25, "702": [25, 43], "fun": [25, 28, 29], "variou": [25, 31, 34, 66], "period": [26, 28], "disk": 26, "optim": [26, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "resum": [26, 35, 36, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "strip": 26, "reduc": [26, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "pruned_transducer_stateless3": [26, 32, 58], "almost": [26, 46, 58, 61, 62], "stateless3": [26, 28], "repo": [26, 31], "those": 26, "iter": [26, 28, 29, 30, 33, 46, 48, 49, 60, 61, 62], "1224000": 26, "greedy_search": [26, 35, 36, 40, 46, 48, 60, 61, 62], "test_wav": [26, 28, 29, 30, 31, 38, 40, 41, 43, 47, 51, 52, 54], "1089": [26, 28, 29, 30, 31, 43, 47], "134686": [26, 28, 29, 30, 31, 43, 47], "0001": [26, 28, 29, 30, 31, 43, 47], "1221": [26, 28, 29, 43, 47], "135766": [26, 28, 29, 43, 47], "0002": [26, 28, 29, 43, 47], "multipl": [26, 38, 40, 41, 43, 47, 51, 52, 54], "Its": [26, 28, 29, 30, 43], "233": [26, 28, 29], "265": 26, "subsampling_factor": [26, 29, 30, 38, 40, 43], "encoder_dim": [26, 28, 29, 30], "512": [26, 28, 29, 30, 35, 38, 40, 43], "nhead": [26, 28, 30, 38, 40, 43, 46, 61], "dim_feedforward": [26, 28, 29, 40], "num_encoder_lay": [26, 28, 29, 30, 40], "decoder_dim": [26, 28, 29, 30], "joiner_dim": [26, 28, 29, 30], "model_warm_step": [26, 28, 29], "4810e00d8738f1a21278b0156a42ff396a2d40ac": 26, "oct": [26, 43], "miss": [26, 28, 29, 30, 40, 43], "cu102": [26, 28, 29, 30], "1013": 26, "c39cba5": 26, "dirti": [26, 28, 29, 38, 43], "ceph": [26, 38, 40, 43], "0324160024": 26, "65bfd8b584": 26, "jjlbn": 26, "bpe_model": [26, 28, 29, 30, 43], "max_context": 26, "max_stat": 26, "context_s": [26, 28, 29, 30, 40], "max_sym_per_fram": [26, 40], "simulate_stream": 26, "decode_chunk_s": 26, "left_context": 26, "dynamic_chunk_train": 26, "causal_convolut": 26, "short_chunk_s": [26, 30, 61, 62], "num_left_chunk": [26, 30], "blank_id": [26, 28, 29, 30, 40], "unk_id": 26, "271": [26, 29], "612": 26, "458": 26, "giga": [26, 29, 60], "623": 26, "277": 26, "78648040": 26, "951": [26, 43], "285": [26, 40, 43], "952": 26, "295": [26, 38, 40, 41, 43], "957": 26, "301": [26, 43], "700": 26, "329": [26, 29, 43], "388": 26, "earli": [26, 28, 29, 30, 43, 47], "nightfal": [26, 28, 29, 30, 43, 47], "THE": [26, 28, 29, 30, 43, 47], "yellow": [26, 28, 29, 30, 43, 47], "lamp": [26, 28, 29, 30, 43, 47], "light": [26, 28, 29, 30, 43, 47], "AND": [26, 28, 29, 30, 43, 47], "THERE": [26, 28, 29, 30, 43, 47], "squalid": [26, 28, 29, 30, 43, 47], "quarter": [26, 28, 29, 30, 43, 47], "OF": [26, 28, 29, 30, 43, 47], "brothel": [26, 28, 29, 30, 43, 47], "god": [26, 43, 47], "AS": [26, 43, 47], "direct": [26, 43, 47], "consequ": [26, 43, 47], "sin": [26, 43, 47], "man": [26, 43, 47], "punish": [26, 43, 47], "her": [26, 43, 47], "love": [26, 43, 47], "child": [26, 43, 47], "whose": [26, 40, 43, 47], "ON": [26, 28, 43, 47], "THAT": [26, 43, 47], "dishonor": [26, 43, 47], "bosom": [26, 43, 47], "TO": [26, 43, 47], "parent": [26, 43, 47], "forev": [26, 43, 47], "WITH": [26, 43, 47], "race": [26, 43, 47], "descent": [26, 43, 47], "mortal": [26, 43, 47], "BE": [26, 43, 47], "bless": [26, 43, 47], "soul": [26, 43, 47], "IN": [26, 43, 47], "heaven": [26, 43, 47], "yet": [26, 28, 29, 43, 47], "THESE": [26, 43, 47], "thought": [26, 43, 47], "affect": [26, 43, 47], "hester": [26, 43, 47], "prynn": [26, 43, 47], "hope": [26, 39, 43, 47], "apprehens": [26, 43, 47], "390": 26, "down": [26, 38, 43, 46, 48, 49, 60, 61, 62], "reproduc": [26, 43], "9999": [26, 48, 49, 60], "symlink": 26, "pass": [26, 30, 38, 40, 41, 43, 46, 48, 49, 58, 60, 61, 62], "convemform": [27, 34, 58], "platform": [27, 31], "android": [27, 28, 29, 30, 31, 64], "raspberri": [27, 31], "pi": [27, 31], "\u7231\u82af\u6d3e": 27, "maix": 27, "iii": 27, "axera": 27, "rv1126": 27, "static": 27, "binari": [27, 28, 29, 30, 38, 40, 41, 43, 46, 54, 60, 61, 64], "pnnx": [27, 34], "conv": [28, 29], "emform": [28, 29, 32], "stateless2": [28, 29, 60], "pretrained_model": [28, 29, 30], "online_transduc": 28, "jit_xxx": [28, 29, 30], "anywher": [28, 29], "submodul": 28, "recurs": 28, "init": 28, "dcmake_build_typ": [28, 38, 43], "dncnn_python": 28, "dncnn_build_benchmark": 28, "dncnn_build_exampl": 28, "dncnn_build_tool": 28, "j4": 28, "pwd": 28, "compon": [28, 58], "ncnn2int8": [28, 29], "am": 28, "sai": [28, 29, 30, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62], "later": [28, 29, 30, 38, 41, 43, 46, 47, 48, 49, 51, 52, 60, 61, 62], "termin": 28, "tencent": [28, 29], "modif": [28, 40], "offici": 28, "synchron": 28, "renam": [28, 29, 30], "conv_emformer_transducer_stateless2": [28, 58], "cnn": [28, 30, 35], "context": [28, 35, 40, 46, 58, 60, 61, 62], "configur": [28, 30, 40, 44, 47, 51, 52, 54, 64, 65], "accordingli": [28, 29, 30], "yourself": [28, 29, 30, 44, 61, 62], "220": [28, 40, 41, 43], "229": [28, 38], "best_v": 28, "alid_epoch": 28, "subsampl": [28, 61, 62], "ing_factor": 28, "a34171ed85605b0926eebbd0463d059431f4f74a": 28, "dec": 28, "ver": 28, "ion": 28, "530e8a1": 28, "op": 28, "1220120619": [28, 29, 30], "7695ff496b": [28, 29, 30], "s9n4w": [28, 29, 30], "icefa": 28, "ll": 28, "transdu": 28, "cer": 28, "use_averaged_model": [28, 29, 30], "cnn_module_kernel": [28, 30], "left_context_length": 28, "chunk_length": 28, "right_context_length": 28, "memory_s": 28, "231": [28, 29, 30], "053": 28, "022": 28, "708": [28, 38, 40, 43, 54], "75490012": 28, "320": [28, 40], "682": 28, "lh": [28, 29, 30], "289m": 28, "jan": [28, 29, 30], "289": 28, "roughli": [28, 29, 30], "equal": [28, 29, 30, 61, 62], "1024": [28, 29, 30, 35, 60], "287": [28, 54], "1010k": [28, 29], "decoder_jit_trac": [28, 29, 30, 33, 60, 62], "283m": 28, "encoder_jit_trac": [28, 29, 30, 33, 60, 62], "0m": [28, 29], "joiner_jit_trac": [28, 29, 30, 33, 60, 62], "found": [28, 29, 30, 38, 40, 41, 43, 46, 48, 49, 54, 60, 61], "param": [28, 29, 30], "503k": [28, 29], "437": [28, 29, 30], "142m": 28, "79k": 28, "5m": [28, 29], "architectur": [28, 29, 30, 60], "editor": [28, 29, 30], "283": [28, 30], "1010": [28, 29], "503": [28, 29], "convers": [28, 29, 30], "half": [28, 29, 30, 46, 61, 62], "float16": [28, 29, 30], "occupi": [28, 29, 30], "twice": [28, 29, 30], "smaller": [28, 29, 30, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "fp16": [28, 29, 30, 35, 36, 46, 48, 49, 56, 60, 61, 62, 64, 65], "won": [28, 29, 30, 31, 38, 41, 43, 44, 46, 48, 49, 60, 61, 62], "accept": [28, 29, 30], "216": [28, 38, 43, 51, 52], "encoder_param_filenam": [28, 29, 30], "encoder_bin_filenam": [28, 29, 30], "decoder_param_filenam": [28, 29, 30], "decoder_bin_filenam": [28, 29, 30], "joiner_param_filenam": [28, 29, 30], "joiner_bin_filenam": [28, 29, 30], "sound_filenam": [28, 29, 30], "328": 28, "336": 28, "106000": [28, 29, 30, 43, 47], "581": [28, 47], "381": 28, "7767517": [28, 29, 30], "1060": 28, "1342": 28, "in0": [28, 29, 30], "explan": [28, 29, 30], "magic": [28, 29, 30], "intermedi": [28, 29, 30], "1061": 28, "sherpametadata": [28, 29, 30], "sherpa_meta_data1": [28, 29, 30], "newli": [28, 29, 30], "must": [28, 29, 30, 61], "pair": [28, 29, 30], "sad": [28, 29, 30], "rememb": [28, 29, 30], "anymor": [28, 29, 30], "flexibl": [28, 29, 30, 35], "edit": [28, 29, 30], "arm": [28, 29, 30], "aarch64": [28, 29, 30], "onc": [28, 29], "mayb": [28, 29], "year": [28, 29], "_jit_trac": [28, 29], "fp32": [28, 29], "doubl": [28, 29], "py38": [28, 29, 30], "arg": [28, 29], "wave_filenam": [28, 29], "16k": [28, 29], "hz": [28, 29, 51, 52], "mono": [28, 29], "calibr": [28, 29], "cat": [28, 29], "eof": [28, 29], "calcul": [28, 29, 48, 61, 62], "has_gpu": [28, 29], "config": [28, 29], "use_vulkan_comput": [28, 29], "conv_87": 28, "942385": [28, 29], "threshold": [28, 29, 48], "938493": 28, "968131": 28, "conv_88": 28, "442448": 28, "549335": 28, "167552": 28, "conv_89": 28, "228289": 28, "001738": 28, "871552": 28, "linear_90": 28, "976146": 28, "101789": 28, "267128": 28, "linear_91": 28, "962030": 28, "162033": 28, "602713": 28, "linear_92": 28, "323041": 28, "853959": 28, "953129": 28, "linear_94": 28, "905416": 28, "648006": 28, "323545": 28, "linear_93": 28, "474093": 28, "200188": 28, "linear_95": 28, "888012": 28, "403563": 28, "483986": 28, "linear_96": 28, "856741": 28, "398679": 28, "524273": 28, "linear_97": 28, "635942": 28, "613655": 28, "590950": 28, "linear_98": 28, "460340": 28, "670146": 28, "398010": 28, "linear_99": 28, "532276": 28, "585537": 28, "119396": 28, "linear_101": 28, "585871": 28, "719224": 28, "205809": 28, "linear_100": 28, "751382": 28, "081648": 28, "linear_102": 28, "593344": 28, "450581": 28, "551147": 28, "linear_103": 28, "592681": 28, "705824": 28, "257959": 28, "linear_104": 28, "752957": 28, "980955": 28, "110489": 28, "linear_105": 28, "696240": 28, "877193": 28, "608953": 28, "linear_106": 28, "059659": 28, "643138": 28, "048950": 28, "linear_108": 28, "975461": 28, "589567": 28, "671457": 28, "linear_107": 28, "190381": 28, "515701": 28, "linear_109": 28, "710759": 28, "305635": 28, "082436": 28, "linear_110": 28, "531228": 28, "731162": 28, "159557": 28, "linear_111": 28, "528083": 28, "259322": 28, "211544": 28, "linear_112": 28, "148807": 28, "500842": 28, "087374": 28, "linear_113": 28, "592566": 28, "948851": 28, "166611": 28, "linear_115": 28, "437109": 28, "608947": 28, "642395": 28, "linear_114": 28, "193942": 28, "503904": 28, "linear_116": 28, "966980": 28, "200896": 28, "676392": 28, "linear_117": 28, "451303": 28, "061664": 28, "951344": 28, "linear_118": 28, "077262": 28, "965800": 28, "023804": 28, "linear_119": 28, "671615": 28, "847613": 28, "198460": 28, "linear_120": 28, "625638": 28, "131427": 28, "556595": 28, "linear_122": 28, "274080": 28, "888716": 28, "978189": 28, "linear_121": 28, "420480": 28, "429659": 28, "linear_123": 28, "826197": 28, "599617": 28, "281532": 28, "linear_124": 28, "396383": 28, "325849": 28, "335875": 28, "linear_125": 28, "337198": 28, "941410": 28, "221970": 28, "linear_126": 28, "699965": 28, "842878": 28, "224073": 28, "linear_127": 28, "775370": 28, "884215": 28, "696438": 28, "linear_129": 28, "872276": 28, "837319": 28, "254213": 28, "linear_128": 28, "180057": 28, "687883": 28, "linear_130": 28, "150427": 28, "454298": 28, "765789": 28, "linear_131": 28, "112692": 28, "924847": 28, "025545": 28, "linear_132": 28, "852893": 28, "116593": 28, "749626": 28, "linear_133": 28, "517084": 28, "024665": 28, "275314": 28, "linear_134": 28, "683807": 28, "878618": 28, "743618": 28, "linear_136": 28, "421055": 28, "322729": 28, "086264": 28, "linear_135": 28, "309880": 28, "917679": 28, "linear_137": 28, "827781": 28, "744595": 28, "915554": 28, "linear_138": 28, "422395": 28, "742882": 28, "402161": 28, "linear_139": 28, "527538": 28, "866123": 28, "849449": 28, "linear_140": 28, "128619": 28, "657793": 28, "266134": 28, "linear_141": 28, "839593": 28, "845993": 28, "021378": 28, "linear_143": 28, "442304": 28, "099039": 28, "889746": 28, "linear_142": 28, "325038": 28, "849592": 28, "linear_144": 28, "929444": 28, "618206": 28, "605080": 28, "linear_145": 28, "382126": 28, "321095": 28, "625010": 28, "linear_146": 28, "894987": 28, "867645": 28, "836517": 28, "linear_147": 28, "915313": 28, "906028": 28, "886522": 28, "linear_148": 28, "614287": 28, "908151": 28, "496181": 28, "linear_150": 28, "724932": 28, "485588": 28, "312899": 28, "linear_149": 28, "161146": 28, "606939": 28, "linear_151": 28, "164453": 28, "847355": 28, "719223": 28, "linear_152": 28, "086471": 28, "984121": 28, "222834": 28, "linear_153": 28, "099524": 28, "991601": 28, "816805": 28, "linear_154": 28, "054585": 28, "489706": 28, "286930": 28, "linear_155": 28, "389185": 28, "100321": 28, "963501": 28, "linear_157": 28, "982999": 28, "154796": 28, "637253": 28, "linear_156": 28, "537706": 28, "875190": 28, "linear_158": 28, "420287": 28, "502287": 28, "531588": 28, "linear_159": 28, "014746": 28, "423280": 28, "477261": 28, "linear_160": 28, "633553": 28, "715335": 28, "220921": 28, "linear_161": 28, "371849": 28, "117830": 28, "815203": 28, "linear_162": 28, "492933": 28, "126283": 28, "623318": 28, "linear_164": 28, "697504": 28, "825712": 28, "317358": 28, "linear_163": 28, "078367": 28, "008038": 28, "linear_165": 28, "023975": 28, "836278": 28, "577358": 28, "linear_166": 28, "860619": 28, "259792": 28, "493614": 28, "linear_167": 28, "380934": 28, "496160": 28, "107042": 28, "linear_168": 28, "691216": 28, "733317": 28, "831076": 28, "linear_169": 28, "723948": 28, "952728": 28, "129707": 28, "linear_171": 28, "034811": 28, "366547": 28, "665123": 28, "linear_170": 28, "356277": 28, "710501": 28, "linear_172": 28, "556884": 28, "729481": 28, "166058": 28, "linear_173": 28, "033039": 28, "207264": 28, "442120": 28, "linear_174": 28, "597379": 28, "658676": 28, "768131": 28, "linear_2": [28, 29], "293503": 28, "305265": 28, "877850": 28, "linear_1": [28, 29], "812222": 28, "766452": 28, "487047": 28, "linear_3": [28, 29], "999999": 28, "999755": 28, "031174": 28, "wish": [28, 29], "955k": 28, "18k": 28, "inparam": [28, 29], "inbin": [28, 29], "outparam": [28, 29], "outbin": [28, 29], "99m": 28, "78k": 28, "774k": [28, 29], "496": [28, 29, 43, 47], "replac": [28, 29], "774": [28, 29], "convolut": [28, 29, 48, 58, 61], "exact": [28, 29], "4x": [28, 29], "comparison": 28, "468000": [29, 33, 60], "lstm_transducer_stateless2": [29, 33, 60], "862": 29, "222": [29, 41, 43], "865": 29, "is_pnnx": 29, "62e404dd3f3a811d73e424199b3408e309c06e1a": [29, 30], "6d7a559": [29, 30], "feb": [29, 30, 40], "rnn_hidden_s": 29, "aux_layer_period": 29, "235": 29, "239": [29, 40], "472": 29, "324": 29, "83137520": 29, "596": 29, "325": 29, "257024": 29, "781812": 29, "327": 29, "84176356": 29, "182": [29, 30, 38, 47], "183": [29, 51, 52], "335": 29, "tracerwarn": [29, 30], "boolean": [29, 30], "caus": [29, 30, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "incorrect": [29, 30, 40], "flow": [29, 30], "constant": [29, 30], "futur": [29, 30, 40, 66], "need_pad": 29, "bool": 29, "259": [29, 38], "339": 29, "207": [29, 41, 43], "324m": 29, "321": [29, 38], "318m": 29, "159m": 29, "21k": 29, "861": 29, "266": [29, 30, 43, 47], "431": 29, "342": 29, "343": 29, "379": 29, "268": [29, 43, 47], "317m": 29, "317": 29, "conv_15": 29, "930708": 29, "972025": 29, "conv_16": 29, "978855": 29, "031788": 29, "456645": 29, "conv_17": 29, "868437": 29, "830528": 29, "218575": 29, "linear_18": 29, "107259": 29, "194808": 29, "293236": 29, "linear_19": 29, "193777": 29, "634748": 29, "401705": 29, "linear_20": 29, "259933": 29, "606617": 29, "722160": 29, "linear_21": 29, "186600": 29, "790260": 29, "512129": 29, "linear_22": 29, "759041": 29, "265832": 29, "050053": 29, "linear_23": 29, "931209": 29, "099090": 29, "979767": 29, "linear_24": 29, "324160": 29, "215561": 29, "321835": 29, "linear_25": 29, "800708": 29, "599352": 29, "284134": 29, "linear_26": 29, "492444": 29, "153369": 29, "274391": 29, "linear_27": 29, "660161": 29, "720994": 29, "674126": 29, "linear_28": 29, "415265": 29, "174434": 29, "007133": 29, "linear_29": 29, "038418": 29, "118534": 29, "724262": 29, "linear_30": 29, "072084": 29, "936867": 29, "259155": 29, "linear_31": 29, "342712": 29, "599489": 29, "282787": 29, "linear_32": 29, "340535": 29, "120308": 29, "701103": 29, "linear_33": 29, "846987": 29, "630030": 29, "985939": 29, "linear_34": 29, "686298": 29, "204571": 29, "607586": 29, "linear_35": 29, "904821": 29, "575518": 29, "756420": 29, "linear_36": 29, "806659": 29, "585589": 29, "118401": 29, "linear_37": 29, "402340": 29, "047157": 29, "162680": 29, "linear_38": 29, "174589": 29, "923361": 29, "030258": 29, "linear_39": 29, "178576": 29, "556058": 29, "807705": 29, "linear_40": 29, "901954": 29, "301267": 29, "956539": 29, "linear_41": 29, "839805": 29, "597429": 29, "716181": 29, "linear_42": 29, "178945": 29, "651595": 29, "895699": 29, "829245": 29, "627592": 29, "637907": 29, "746186": 29, "255032": 29, "167313": 29, "000000": 29, "999756": 29, "031013": 29, "345k": 29, "17k": 29, "218m": 29, "counterpart": 29, "bit": [29, 38, 40, 41, 43, 47, 54], "4532": 29, "feedforward": [30, 35, 40, 46, 61], "384": [30, 35, 43], "unmask": [30, 35], "downsampl": [30, 35, 39], "factor": [30, 35, 38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "473": [30, 43], "246": [30, 40, 43, 51, 52], "477": 30, "warm_step": 30, "2000": [30, 41], "feedforward_dim": 30, "attention_dim": [30, 38, 40, 43], "encoder_unmasked_dim": 30, "zipformer_downsampling_factor": 30, "decode_chunk_len": 30, "257": [30, 40, 51, 52], "023": 30, "zipformer2": 30, "419": 30, "At": [30, 38, 43], "stack": 30, "downsampling_factor": 30, "037": 30, "655": 30, "346": 30, "68944004": 30, "347": 30, "260096": 30, "348": [30, 51], "716276": 30, "656": [30, 43], "349": 30, "69920376": 30, "351": 30, "353": 30, "174": [30, 43], "175": 30, "1344": 30, "cached_len": 30, "num_lay": 30, "1348": 30, "cached_avg": 30, "1352": 30, "cached_kei": 30, "1356": 30, "cached_v": 30, "1360": 30, "cached_val2": 30, "1364": 30, "cached_conv1": 30, "1368": 30, "cached_conv2": 30, "1373": 30, "left_context_len": 30, "1884": 30, "x_size": 30, "2442": 30, "2449": 30, "2469": 30, "2473": 30, "2483": 30, "kv_len": 30, "2570": 30, "attn_output": 30, "bsz": 30, "num_head": 30, "seq_len": 30, "head_dim": 30, "2926": 30, "lorder": 30, "2652": 30, "2653": 30, "embed_dim": 30, "2666": 30, "1543": 30, "in_x_siz": 30, "1637": 30, "1643": 30, "in_channel": 30, "1571": 30, "1763": 30, "src1": 30, "src2": 30, "1779": 30, "dim1": 30, "1780": 30, "dim2": 30, "_trace": 30, "958": 30, "tracer": 30, "tupl": 30, "namedtupl": 30, "absolut": 30, "know": [30, 44], "side": 30, "allow": [30, 46, 61], "behavior": [30, 40], "_c": 30, "_create_method_from_trac": 30, "646": 30, "357": 30, "embedding_out": 30, "686": 30, "361": [30, 43, 47], "735": 30, "269m": 30, "269": [30, 38, 51, 52], "725": [30, 47], "1022k": 30, "266m": 30, "8m": 30, "509k": 30, "133m": 30, "152k": 30, "4m": 30, "1022": 30, "509": 30, "360": 30, "365": 30, "280": [30, 43], "372": [30, 38], "state": [30, 38, 40, 41, 43, 46, 48, 49, 56, 60, 61, 62], "410": 30, "411": [30, 43], "2028": 30, "2547": 30, "2029": 30, "23316": 30, "23317": 30, "23318": 30, "23319": 30, "23320": 30, "amount": [30, 37, 39], "pad": [30, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "conv2dsubsampl": 30, "arrai": 30, "23300": 30, "repo_url": 31, "basenam": 31, "why": 32, "streaming_asr": [32, 33, 60, 61, 62], "conv_emform": 32, "offline_asr": [32, 46], "baz": 33, "compact": 35, "inject": 35, "competit": 35, "full": [35, 36, 43, 44, 46, 48, 49, 60, 61, 62], "subset": [35, 36, 43, 46, 48, 49, 60, 61, 62], "instruct": [35, 36], "intial": [35, 36], "decode_gigaspeech": [35, 36], "1000": [35, 36, 43, 64, 65], "insert": 35, "residu": 35, "zipformer2encoderlay": 35, "remain": 35, "untouch": 35, "experi": [35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 54, 60, 61, 62], "do_finetun": [35, 36], "use_adapt": 35, "adapter_dim": 35, "zipformer_adapt": 35, "world": [35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 56, 60, 61, 62, 64, 65], "exp_giga_finetune_adapt": 35, "_adapter_dim": 35, "045": 35, "13022": 35, "ckpt": [35, 36], "certain": [35, 36, 37], "bottleneck": 35, "notic": 35, "trainal": 35, "2024": [35, 64], "808": [35, 43, 51], "1277": 35, "761344": 35, "trainabl": 35, "entir": 35, "deactiv": 35, "keep": [35, 40, 46, 61, 62], "768": 35, "1536": 35, "queri": 35, "po": 35, "causal": [35, 61], "previou": [36, 56], "stateless": [36, 39, 42, 46, 60, 61, 62], "due": [36, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "vocabulari": [36, 40], "use_mux": 36, "exp_giga_finetun": 36, "_mux": 36, "0045": 36, "mux": 36, "13024": 36, "forget": 36, "quickli": 36, "mix": 36, "maintain": 36, "ones": 36, "lower": [36, 60], "public": 37, "capabl": 37, "high": [37, 39, 64], "label": 37, "1best": [38, 41, 43, 47, 48, 49, 51, 52], "automag": [38, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "stop": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "By": [38, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "musan": [38, 41, 43, 44, 46, 48, 49, 60, 61, 62], "apt": [38, 41], "permiss": [38, 41], "commandlin": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "multi": [38, 40, 41, 43, 44, 46, 48, 49, 58, 60, 61, 62], "machin": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "ddp": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "implement": [38, 40, 41, 43, 44, 46, 48, 49, 58, 60, 61, 62], "utter": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "oom": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "decai": [38, 41, 43, 48, 49, 60], "warmup": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "function": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "get_param": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "directli": [38, 40, 41, 43, 44, 46, 48, 49, 60, 61, 62], "perturb": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "3x150": [38, 40, 41], "450": [38, 40, 41], "visual": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "logdir": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "labelsmooth": 38, "tensorflow": [38, 40, 41, 43, 46, 48, 49, 54, 60, 61], "press": [38, 40, 41, 43, 46, 48, 49, 54, 60, 61, 62], "ctrl": [38, 40, 41, 43, 46, 48, 49, 54, 60, 61, 62], "engw8ksktzqs24zbv5dgcg": 38, "2021": [38, 41, 43, 47, 51, 52, 54], "22t11": 38, "scan": [38, 40, 41, 43, 46, 54, 60, 61], "116068": 38, "scalar": [38, 40, 41, 43, 46, 54, 60, 61], "listen": [38, 40, 41, 46, 54, 60, 61], "xxxx": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "saw": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "consol": [38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "avoid": [38, 40, 43], "nbest": [38, 43, 49], "lattic": [38, 41, 43, 46, 47, 51, 52, 61, 62], "uniqu": [38, 43, 46, 61, 62], "pkufool": [38, 41, 47], "icefall_asr_aishell_conformer_ctc": 38, "transcrib": [38, 40, 41, 43], "lang_char": [38, 40], "bac009s0764w0121": [38, 40, 41], "bac009s0764w0122": [38, 40, 41], "bac009s0764w0123": [38, 40, 41], "tran": [38, 41, 43, 47, 51, 52], "conveni": [38, 41, 43, 44], "eo": [38, 41, 43], "soxi": [38, 40, 41, 43, 47, 54], "sampl": [38, 40, 41, 43, 47, 48, 54, 61, 62], "precis": [38, 40, 41, 43, 46, 47, 54, 61, 62], "67263": [38, 40, 41], "cdda": [38, 40, 41, 43, 47, 54], "sector": [38, 40, 41, 43, 47, 54], "135k": [38, 40, 41], "256k": [38, 40, 41, 43], "sign": [38, 40, 41, 43, 54], "integ": [38, 40, 41, 43, 54], "pcm": [38, 40, 41, 43, 54], "65840": [38, 40, 41], "308": [38, 40, 41], "625": [38, 40, 41], "132k": [38, 40, 41], "64000": [38, 40, 41], "300": [38, 40, 41, 43, 44, 46, 56, 61], "128k": [38, 40, 41, 54], "topologi": [38, 43], "num_decoder_lay": [38, 43], "vgg_frontend": [38, 40, 43], "use_feat_batchnorm": [38, 43], "f2fd997f752ed11bbef4c306652c433e83f9cf12": 38, "sun": 38, "sep": 38, "33cfe45": 38, "d57a873": 38, "nov": [38, 43], "hw": 38, "kangwei": 38, "icefall_aishell3": 38, "k2_releas": 38, "tokens_fil": 38, "num_path": [38, 43, 46, 61, 62], "ngram_lm_scal": [38, 43], "attention_decoder_scal": [38, 43], "nbest_scal": [38, 43], "sos_id": [38, 43], "eos_id": [38, 43], "4336": [38, 40], "293": [38, 43], "369": [38, 43], "\u751a": [38, 40], "\u81f3": [38, 40], "\u51fa": [38, 40], "\u73b0": [38, 40], "\u4ea4": [38, 40], "\u6613": [38, 40], "\u51e0": [38, 40], "\u4e4e": [38, 40], "\u505c": [38, 40], "\u6b62": 38, "\u7684": [38, 40, 41], "\u60c5": [38, 40], "\u51b5": [38, 40], "\u4e00": [38, 40], "\u4e8c": [38, 40], "\u7ebf": [38, 40, 41], "\u57ce": [38, 40], "\u5e02": [38, 40], "\u867d": [38, 40], "\u7136": [38, 40], "\u4e5f": [38, 40, 41], "\u5904": [38, 40], "\u4e8e": [38, 40], "\u8c03": [38, 40], "\u6574": [38, 40], "\u4e2d": [38, 40, 41], "\u4f46": [38, 40, 41], "\u56e0": [38, 40], "\u4e3a": [38, 40], "\u805a": [38, 40], "\u96c6": [38, 40], "\u4e86": [38, 40, 41], "\u8fc7": [38, 40], "\u591a": [38, 40], "\u516c": [38, 40], "\u5171": [38, 40], "\u8d44": [38, 40], "\u6e90": [38, 40], "371": 38, "683": 38, "684": [38, 54], "651": [38, 54], "654": 38, "659": 38, "752": 38, "887": 38, "340": 38, "370": 38, "\u751a\u81f3": [38, 41], "\u51fa\u73b0": [38, 41], "\u4ea4\u6613": [38, 41], "\u51e0\u4e4e": [38, 41], "\u505c\u6b62": 38, "\u60c5\u51b5": [38, 41], "\u4e00\u4e8c": [38, 41], "\u57ce\u5e02": [38, 41], "\u867d\u7136": [38, 41], "\u5904\u4e8e": [38, 41], "\u8c03\u6574": [38, 41], "\u56e0\u4e3a": [38, 41], "\u805a\u96c6": [38, 41], "\u8fc7\u591a": [38, 41], "\u516c\u5171": [38, 41], "\u8d44\u6e90": [38, 41], "recor": [38, 43], "highest": [38, 43], "966": 38, "821": 38, "822": 38, "826": 38, "916": 38, "345": 38, "889": 38, "limit": [38, 40, 43, 58, 61], "upgrad": [38, 43], "checkout": [38, 43], "hlg_decod": [38, 43], "four": [38, 43], "messag": [38, 43, 46, 48, 49, 60, 61, 62], "use_gpu": [38, 43], "word_tabl": [38, 43], "forward": [38, 43, 48], "cu": [38, 43], "char": [38, 43], "693": [38, 51], "nnet_output": [38, 43], "185": [38, 43, 54], "217": [38, 43], "mandarin": 39, "beij": 39, "shell": 39, "technologi": 39, "ltd": 39, "peopl": 39, "accent": 39, "area": 39, "invit": 39, "particip": 39, "conduct": 39, "indoor": 39, "fidel": 39, "microphon": 39, "16khz": 39, "manual": 39, "profession": 39, "annot": 39, "inspect": 39, "free": [39, 44, 56, 60], "academ": 39, "moder": 39, "research": 39, "openslr": [39, 56], "conv1d": [40, 46, 60, 61, 62], "tanh": 40, "borrow": 40, "ieeexplor": 40, "ieee": 40, "jsp": 40, "arnumb": 40, "9054419": 40, "predict": [40, 44, 46, 60, 61, 62], "87939824": 40, "optimized_transduc": 40, "technqiu": 40, "maximum": 40, "emit": 40, "simplifi": [40, 58], "significantli": 40, "degrad": 40, "exactli": 40, "unprun": 40, "advantag": 40, "minim": 40, "pruned_transducer_stateless": [40, 46, 58, 61], "altern": 40, "though": 40, "transducer_stateless_modifi": 40, "pr": 40, "ram": 40, "tri": 40, "prob": [40, 60], "219": [40, 43], "lagz6hrcqxoigbfd5e0y3q": 40, "03t14": 40, "8477": 40, "250": [40, 47], "sym": [40, 46, 61, 62], "beam_search": [40, 46, 61, 62], "decoding_method": 40, "beam_4": 40, "ensur": 40, "poor": 40, "531": [40, 41], "994": [40, 43], "027": 40, "encoder_out_dim": 40, "f4fefe4882bc0ae59af951da3f47335d5495ef71": 40, "50d2281": 40, "mar": 40, "0815224919": 40, "75d558775b": 40, "mmnv8": 40, "878": [40, 52], "880": 40, "891": 40, "userwarn": 40, "__floordiv__": 40, "round": 40, "toward": 40, "trunc": 40, "floor": 40, "div": 40, "rounding_mod": 40, "divis": 40, "x_len": 40, "\u6ede": 40, "322": 40, "759": 40, "760": 40, "919": 40, "922": 40, "929": 40, "046": 40, "319": [40, 43], "798": 40, "831": [40, 52], "215": [40, 43, 47], "402": 40, "topk_hyp_index": 40, "topk_index": 40, "logit": 40, "583": [40, 52], "lji9mwuorlow3jkdhxwk8a": 41, "13t11": 41, "4454": 41, "icefall_asr_aishell_tdnn_lstm_ctc": 41, "858": [41, 43], "389": [41, 43], "536": 41, "539": 41, "917": 41, "\u505c\u6ede": 41, "mmi": [42, 45], "blank": [42, 45], "skip": [42, 44, 45, 46, 60, 61, 62], "distil": [42, 45], "hubert": [42, 45], "ligru": [42, 50], "libri": [43, 44, 46, 48, 49, 60, 61, 62], "3x960": [43, 46, 48, 49, 60, 61, 62], "2880": [43, 46, 48, 49, 60, 61, 62], "lzgnetjwrxc3yghnmd4kpw": 43, "24t16": 43, "4540": 43, "sentenc": [43, 56], "piec": 43, "And": [43, 46, 48, 49, 60, 61, 62], "neither": 43, "nor": 43, "5000": 43, "033": 43, "537": 43, "full_libri": [43, 44], "464": 43, "548": 43, "776": 43, "652": [43, 54], "109226120": 43, "714": [43, 51], "206": 43, "944": 43, "1328": 43, "443": [43, 47], "2563": 43, "494": 43, "592": 43, "1715": 43, "52576": 43, "1424": 43, "807": 43, "506": 43, "362": 43, "1477": 43, "2922": 43, "4295": 43, "52343": 43, "396": 43, "3584": 43, "432": 43, "680": [43, 51], "_pickl": 43, "unpicklingerror": 43, "invalid": 43, "hlg_modifi": 43, "g_4_gram": [43, 47, 51, 52], "sentencepiec": 43, "875": [43, 47], "212k": 43, "267440": [43, 47], "1253": [43, 47], "535k": 43, "77200": [43, 47], "154k": 43, "554": 43, "7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4": 43, "8d93169": 43, "601": 43, "025": 43, "broffel": 43, "osom": 43, "723": 43, "775": 43, "881": 43, "571": 43, "857": 43, "979": 43, "055": 43, "051": 43, "363": 43, "959": [43, 52], "546": 43, "598": 43, "599": [43, 47], "833": 43, "834": 43, "915": 43, "076": 43, "397": 43, "999": [43, 46, 61, 62], "concaten": 43, "bucket": 43, "sampler": 43, "ctc_decod": 43, "ngram_lm_rescor": 43, "attention_rescor": 43, "228": 43, "543": 43, "topo": 43, "547": 43, "729": 43, "703": 43, "545": 43, "945": 43, "475": 43, "191": [43, 51, 52], "398": 43, "515": 43, "deseri": 43, "441": 43, "fsaclass": 43, "loadfsa": 43, "const": 43, "string": 43, "c10": 43, "ignor": 43, "589": 43, "attention_scal": 43, "188": 43, "984": 43, "624": 43, "519": [43, 52], "632": 43, "645": [43, 54], "243": 43, "303": 43, "179": 43, "knowledg": 44, "vector": 44, "mvq": 44, "kd": 44, "pruned_transducer_stateless4": [44, 46, 58, 61], "theoret": 44, "applic": 44, "minor": 44, "stop_stag": [44, 64, 65], "thing": 44, "distillation_with_hubert": 44, "Of": 44, "cours": 44, "xl": 44, "proce": 44, "960h": [44, 48], "use_extracted_codebook": 44, "augment": 44, "th": [44, 51, 52], "embedding_lay": 44, "num_codebook": 44, "under": [44, 56], "vq_fbank_layer36_cb8": 44, "whola": 44, "snippet": 44, "echo": 44, "awk": 44, "pruned_transducer_stateless6": 44, "12359": 44, "spec": 44, "warp": 44, "paid": 44, "suitabl": [46, 60, 61, 62], "pruned_transducer_stateless2": [46, 58, 61], "pruned_transducer_stateless5": [46, 58, 61], "scroll": [46, 48, 49, 60, 61, 62], "arxiv": [46, 60, 61, 62], "2206": [46, 60, 61, 62], "13236": [46, 60, 61, 62], "rework": [46, 58, 61], "daniel": [46, 61, 62], "joint": [46, 60, 61, 62], "contrari": [46, 60, 61, 62], "convent": [46, 60, 61, 62], "recurr": [46, 60, 61, 62], "2x": [46, 61, 62], "littl": [46, 61], "436000": [46, 48, 49, 60, 61, 62], "438000": [46, 48, 49, 60, 61, 62], "qogspbgsr8kzcrmmie9jgw": 46, "20t15": [46, 60, 61], "4468": [46, 60, 61], "210171": [46, 60, 61], "access": [46, 48, 49, 60, 61, 62], "googl": [46, 48, 49, 60, 61, 62], "6008": [46, 48, 49, 60, 61, 62], "localhost": [46, 48, 49, 60, 61, 62], "expos": [46, 48, 49, 60, 61, 62], "proxi": [46, 48, 49, 60, 61, 62], "bind_al": [46, 48, 49, 60, 61, 62], "fast_beam_search": [46, 48, 60, 61, 62], "474000": [46, 60, 61, 62], "largest": [46, 61, 62], "posterior": [46, 48, 61, 62], "algorithm": [46, 61, 62], "pdf": [46, 49, 61, 62], "1211": [46, 61, 62], "3711": [46, 61, 62], "espnet": [46, 61, 62], "net": [46, 61, 62], "beam_search_transduc": [46, 61, 62], "basic": [46, 61], "topk": [46, 61, 62], "expand": [46, 61, 62], "mode": [46, 61, 62], "being": [46, 61, 62], "hardcod": [46, 61, 62], "composit": [46, 61, 62], "hard": [46, 58, 61, 62], "2211": [46, 61, 62], "00484": [46, 61, 62], "fast_beam_search_lg": [46, 61, 62], "trivial": [46, 61, 62], "fast_beam_search_nbest": [46, 61, 62], "random_path": [46, 61, 62], "shortest": [46, 61, 62], "fast_beam_search_nbest_lg": [46, 61, 62], "logic": [46, 61, 62], "smallest": [46, 60, 61, 62], "normal": [47, 51, 52, 54, 61], "icefall_asr_librispeech_tdnn": 47, "lstm_ctc": 47, "flac": 47, "116k": 47, "140k": 47, "343k": 47, "164k": 47, "105k": 47, "174k": 47, "pretraind": 47, "584": [47, 52], "791": 47, "245": 47, "098": 47, "099": 47, "methond": [47, 51, 52], "631": 47, "010": 47, "guidanc": 48, "bigger": 48, "simpli": 48, "discard": 48, "prevent": 48, "lconv": 48, "encourag": [48, 49, 60], "stabil": [48, 49], "doesn": 48, "warm": [48, 49], "xyozukpeqm62hbilud4upa": [48, 49], "ctc_guide_decode_b": 48, "pretrained_ctc": 48, "jit_pretrained_ctc": 48, "100h": 48, "yfyeung": 48, "wechat": 49, "zipformer_mmi": 49, "worker": [49, 60], "hp": 49, "tdnn_ligru_ctc": 51, "enough": [51, 52, 54, 56], "luomingshuang": [51, 52], "icefall_asr_timit_tdnn_ligru_ctc": 51, "pretrained_average_9_25": 51, "fdhc0_si1559": [51, 52], "felc0_si756": [51, 52], "fmgd0_si1564": [51, 52], "ffprobe": [51, 52], "show_format": [51, 52], "nistspher": [51, 52], "database_id": [51, 52], "database_vers": [51, 52], "utterance_id": [51, 52], "dhc0_si1559": [51, 52], "sample_min": [51, 52], "4176": [51, 52], "sample_max": [51, 52], "5984": [51, 52], "bitrat": [51, 52], "pcm_s16le": [51, 52], "s16": [51, 52], "elc0_si756": [51, 52], "1546": [51, 52], "1989": [51, 52], "mgd0_si1564": [51, 52], "7626": [51, 52], "10573": [51, 52], "660": 51, "695": 51, "697": 51, "819": 51, "829": 51, "sil": [51, 52], "dh": [51, 52], "ih": [51, 52], "uw": [51, 52], "ah": [51, 52], "ii": [51, 52], "aa": [51, 52], "ei": [51, 52], "dx": [51, 52], "uh": [51, 52], "ng": [51, 52, 64], "eh": [51, 52], "jh": [51, 52], "er": [51, 52], "ai": [51, 52], "hh": [51, 52], "aw": 51, "ae": [51, 52], "705": 51, "715": 51, "720": 51, "251": [51, 52], "ch": 51, "icefall_asr_timit_tdnn_lstm_ctc": 52, "pretrained_average_16_25": 52, "816": 52, "827": 52, "unk": 52, "739": 52, "977": 52, "978": 52, "981": 52, "ow": 52, "ykubhb5wrmosxykid1z9eg": 54, "23t23": 54, "icefall_asr_yesno_tdnn": 54, "0_0_1_0_0_1_1_1": 54, "0_0_1_0_1_0_0_1": 54, "0_0_1_1_0_0_0_1": 54, "0_0_1_1_0_1_1_0": 54, "0_0_1_1_1_0_0_0": 54, "0_0_1_1_1_1_0_0": 54, "0_1_0_0_0_1_0_0": 54, "0_1_0_0_1_0_1_0": 54, "0_1_0_1_0_0_0_0": 54, "0_1_0_1_1_1_0_0": 54, "0_1_1_0_0_1_1_1": 54, "0_1_1_1_0_0_1_0": 54, "0_1_1_1_1_0_1_0": 54, "1_0_0_0_0_0_0_0": 54, "1_0_0_0_0_0_1_1": 54, "1_0_0_1_0_1_1_1": 54, "1_0_1_1_0_1_1_1": 54, "1_0_1_1_1_1_0_1": 54, "1_1_0_0_0_1_1_1": 54, "1_1_0_0_1_0_1_1": 54, "1_1_0_1_0_1_0_0": 54, "1_1_0_1_1_0_0_1": 54, "1_1_0_1_1_1_1_0": 54, "1_1_1_0_0_1_0_1": 54, "1_1_1_0_1_0_1_0": 54, "1_1_1_1_0_0_1_0": 54, "1_1_1_1_1_0_0_0": 54, "1_1_1_1_1_1_1_1": 54, "54080": 54, "507": 54, "108k": 54, "650": 54, "198": 54, "181": 54, "186": 54, "187": 54, "correctli": 54, "simplest": 54, "nnlm": 56, "complet": 56, "wget": [56, 64], "resourc": 56, "norm": 56, "gzip": 56, "prepare_lm_training_data": 56, "lm_data": 56, "grab": 56, "cup": 56, "coffe": 56, "sort_lm_training_data": 56, "sorted_lm_data": 56, "statist": 56, "lm_data_stat": 56, "aforement": 56, "repeat": 56, "rnn_lm": 56, "tie": 56, "hyper": [56, 64, 65], "coupl": [56, 64, 65], "dai": [56, 64, 65], "former": 58, "mask": [58, 61, 62], "wenet": 58, "did": 58, "request": 58, "complic": 58, "techniqu": 58, "bank": 58, "memor": 58, "histori": 58, "introduc": 58, "variant": 58, "pruned_stateless_emformer_rnnt2": 58, "conv_emformer_transducer_stateless": 58, "ourself": 58, "mechan": 58, "onlin": 60, "lstm_transducer_stateless": 60, "prepare_giga_speech": 60, "cj2vtpiwqhkn9q1tx6ptpg": 60, "dynam": [61, 62], "short": [61, 62], "2012": 61, "05481": 61, "flag": 61, "indic": [61, 62], "whether": 61, "uniformli": [61, 62], "seen": [61, 62], "97vkxf80ru61cnp2alwzzg": 61, "streaming_decod": [61, 62], "wise": [61, 62], "parallel": [61, 62], "bath": [61, 62], "parallelli": [61, 62], "seem": 61, "benefit": 61, "320m": 62, "550": 62, "basicli": 62, "scriptmodul": 62, "jit_trace_export": 62, "jit_trace_pretrain": 62, "monoton": 63, "condit": [64, 65], "variat": [64, 65], "autoencod": [64, 65], "adversari": [64, 65], "piper_phonem": 64, "numba": 64, "espnet_tts_frontend": 64, "monotonic_align": [64, 65], "build_ext": [64, 65], "inplac": [64, 65], "medium": 64, "ground": [64, 65], "truth": [64, 65], "test_onnx": [64, 65], "program": 64, "kotlin": 64, "java": 64, "swift": 64, "offlin": 64, "espeak": 64, "bz2": 64, "xf": 64, "thread": 64, "countri": 64, "plai": 64, "350": 65, "zrjin": 65, "synthesi": 66, "task": 66}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"follow": 0, "code": [0, 9], "style": 0, "contribut": [1, 3], "document": 1, "how": [2, 26, 32, 33], "creat": [2, 13, 20, 25], "recip": [2, 66], "data": [2, 9, 11, 20, 25, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "prepar": [2, 9, 11, 20, 25, 35, 36, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "train": [2, 9, 16, 22, 25, 28, 29, 30, 31, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "decod": [2, 5, 6, 7, 9, 12, 25, 26, 31, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "pre": [2, 22, 28, 29, 30, 31, 35, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62], "model": [2, 5, 15, 22, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65], "lodr": [4, 6], "rnn": [4, 55, 56], "transduc": [4, 6, 7, 28, 29, 30, 40, 46, 60, 61, 62], "wer": [4, 6, 7, 43], "differ": [4, 6, 7, 17], "beam": [4, 6, 7, 40], "size": [4, 6, 7], "languag": [5, 56], "lm": [6, 43, 55], "rescor": [6, 38, 43], "base": [6, 18, 19, 20], "method": 6, "v": 6, "shallow": [6, 7], "fusion": [6, 7], "The": [6, 40], "number": 6, "each": [6, 20], "field": 6, "i": 6, "test": [6, 7, 20, 25, 28, 29, 30], "clean": [6, 7], "other": 6, "time": [6, 7], "docker": [8, 9], "introduct": [9, 58], "view": 9, "avail": 9, "tag": 9, "cuda": [9, 25], "enabl": 9, "imag": 9, "cpu": 9, "onli": 9, "download": [9, 11, 25, 28, 29, 30, 31, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 54, 60, 61, 62, 64, 65], "run": [9, 26, 64], "gpu": 9, "yesno": [9, 53], "within": 9, "contain": 9, "updat": 9, "frequent": 10, "ask": 10, "question": 10, "faq": 10, "oserror": 10, "libtorch_hip": 10, "so": 10, "cannot": 10, "open": 10, "share": 10, "object": 10, "file": [10, 11, 20, 31, 64], "directori": 10, "attributeerror": 10, "modul": 10, "distutil": 10, "ha": 10, "attribut": 10, "version": 10, "importerror": 10, "libpython3": 10, "10": 10, "1": [10, 25, 28, 29, 30, 38, 40, 41, 43], "0": [10, 25], "No": 10, "For": [11, 12, 13, 15, 16], "more": [11, 12, 13, 15, 16], "curiou": [11, 12, 13, 15, 16], "A": 11, "quick": 11, "look": 11, "gener": [11, 20], "environ": [13, 20, 25], "setup": 13, "virtual": [13, 25], "instal": [13, 25, 28, 29, 30, 38, 40, 41, 43, 47, 51, 52, 64], "depend": [13, 64], "icefal": [13, 14, 24, 25, 28, 29, 30], "dummi": 14, "tutori": 14, "export": [15, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 46, 48, 49, 60, 61, 62, 64, 65], "paramet": 15, "via": [15, 28, 29, 30], "state_dict": [15, 26, 46, 48, 49, 60, 61, 62], "torch": [15, 25, 28, 29, 30, 32, 33, 46, 48, 49, 60, 61, 62], "jit": [15, 28, 29, 30, 32, 33, 46, 48, 49, 60, 61, 62], "script": [15, 32, 46, 48, 49, 61, 62], "onnx": [15, 31, 64], "two": 17, "approach": 17, "between": 17, "fst": [18, 20], "forc": [18, 19, 20], "align": [18, 19, 20, 64, 65], "content": [18, 24, 37, 66], "k2": [19, 25], "kaldi": 20, "get": 20, "comput": [20, 43], "log_prob": 20, "token2id": 20, "id2token": 20, "word2id": 20, "id2word": 20, "lexicon": [20, 64], "relat": 20, "convert": 20, "transcript": 20, "an": [20, 56], "graph": 20, "segment": 20, "word": 20, "us": [20, 26, 32, 33, 46, 48, 49, 60, 61, 62], "summari": 20, "huggingfac": [21, 23], "space": 23, "youtub": [23, 25], "video": [23, 25], "toolkit": 25, "cudnn": 25, "torchaudio": 25, "2": [25, 28, 29, 30, 38, 40, 41, 43], "3": [25, 28, 29, 30, 38, 40, 43], "lhots": 25, "4": [25, 28, 29, 30], "exampl": [25, 31, 38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "5": [25, 28, 29, 30], "6": [25, 28, 29, 30], "your": 25, "when": [26, 32, 33], "py": 26, "ncnn": [27, 28, 29, 30], "convemform": 28, "pnnx": [28, 29, 30], "trace": [28, 29, 30, 33, 60, 62], "torchscript": [28, 29, 30], "modifi": [28, 29, 30, 40], "encod": [28, 29, 30], "sherpa": [28, 29, 30, 31, 46, 61, 62, 64], "7": [28, 29], "option": [28, 29, 38, 41, 43, 46, 48, 49, 60, 61, 62], "int8": [28, 29], "quantiz": [28, 29], "lstm": [29, 41, 47, 52, 60], "stream": [30, 42, 57, 58, 61, 62], "zipform": [30, 35, 36, 48, 49, 62], "sound": 31, "finetun": [35, 36], "from": [35, 36], "adapt": 35, "fine": [35, 36, 37], "tune": [35, 36, 37], "supervis": 36, "tabl": [37, 66], "conform": [38, 43, 58], "ctc": [38, 41, 43, 47, 48, 51, 52, 54], "configur": [38, 41, 43, 46, 48, 49, 60, 61, 62], "log": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62], "usag": [38, 40, 41, 43, 46, 48, 49, 60, 61, 62, 64], "case": [38, 40, 41, 43], "kaldifeat": [38, 40, 41, 43, 47, 51, 52, 54], "hlg": [38, 41, 43], "attent": [38, 43], "colab": [38, 40, 41, 43, 47, 51, 52, 54], "notebook": [38, 40, 41, 43, 47, 51, 52, 54], "deploy": [38, 43], "c": [38, 43], "aishel": 39, "stateless": 40, "loss": 40, "todo": 40, "greedi": 40, "search": [40, 64, 65], "tdnn": [41, 47, 51, 52, 54], "non": 42, "asr": [42, 57], "n": 43, "gram": 43, "distil": 44, "hubert": 44, "codebook": 44, "index": 44, "librispeech": [45, 59], "prune": [46, 61], "statelessx": [46, 61], "pretrain": [46, 48, 49, 60, 61, 62, 64, 65], "deploi": [46, 61, 62], "infer": [47, 51, 52, 54, 64, 65], "blank": 48, "skip": 48, "mmi": 49, "timit": 50, "ligru": 51, "emform": 58, "which": 60, "simul": [61, 62], "real": [61, 62], "tt": 63, "vit": [64, 65], "ljspeech": 64, "extra": 64, "build": [64, 65], "monoton": [64, 65], "vctk": 65}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"Follow the code style": [[0, "follow-the-code-style"]], "Contributing to Documentation": [[1, "contributing-to-documentation"]], "How to create a recipe": [[2, "how-to-create-a-recipe"]], "Data Preparation": [[2, "data-preparation"], [11, "data-preparation"], [40, "data-preparation"]], "Training": [[2, "training"], [9, "training"], [16, "training"], [25, "training"], [38, "training"], [40, "training"], [41, "training"], [43, "training"], [44, "training"], [46, "training"], [47, "training"], [48, "training"], [49, "training"], [51, "training"], [52, "training"], [54, "training"], [60, "training"], [61, "training"], [62, "training"], [64, "training"], [65, "training"]], "Decoding": [[2, "decoding"], [9, "decoding"], [12, "decoding"], [25, "decoding"], [35, "decoding"], [38, "decoding"], [40, "decoding"], [41, "decoding"], [43, "decoding"], [44, "decoding"], [46, "decoding"], [47, "decoding"], [48, "decoding"], [49, "decoding"], [51, "decoding"], [52, "decoding"], [54, "decoding"], [60, "decoding"], [61, "decoding"], [62, "decoding"]], "Pre-trained model": [[2, "pre-trained-model"]], "Contributing": [[3, "contributing"]], "LODR for RNN Transducer": [[4, "lodr-for-rnn-transducer"]], "WER of LODR with different beam sizes": [[4, "id1"]], "Decoding with language models": [[5, "decoding-with-language-models"]], "LM rescoring for Transducer": [[6, "lm-rescoring-for-transducer"]], "WERs of LM rescoring with different beam sizes": [[6, "id1"]], "WERs of LM rescoring + LODR with different beam sizes": [[6, "id2"]], "LM-rescoring-based methods vs shallow-fusion-based methods (The numbers in each field is WER on test-clean, WER on test-other and decoding time on test-clean)": [[6, "id3"]], "Shallow fusion for Transducer": [[7, "shallow-fusion-for-transducer"]], "WERs and decoding time (on test-clean) of shallow fusion with different beam sizes": [[7, "id2"]], "Docker": [[8, "docker"]], "Introduction": [[9, "introduction"], [58, "introduction"]], "View available tags": [[9, "view-available-tags"]], "CUDA-enabled docker images": [[9, "cuda-enabled-docker-images"]], "CPU-only docker images": [[9, "cpu-only-docker-images"]], "Download a docker image (CUDA)": [[9, "download-a-docker-image-cuda"]], "Download a docker image (CPU)": [[9, "download-a-docker-image-cpu"]], "Run a docker image with GPU": [[9, "run-a-docker-image-with-gpu"]], "Run a docker image with CPU": [[9, "run-a-docker-image-with-cpu"]], "Run yesno within a docker container": [[9, "run-yesno-within-a-docker-container"]], "Update the code": [[9, "update-the-code"]], "Data preparation": [[9, "data-preparation"], [25, "data-preparation"], [35, "data-preparation"], [36, "data-preparation"], [38, "data-preparation"], [41, "data-preparation"], [43, "data-preparation"], [44, "data-preparation"], [46, "data-preparation"], [47, "data-preparation"], [48, "data-preparation"], [49, "data-preparation"], [51, "data-preparation"], [52, "data-preparation"], [54, "data-preparation"], [60, "data-preparation"], [61, "data-preparation"], [62, "data-preparation"], [64, "data-preparation"], [65, "data-preparation"]], "Frequently Asked Questions (FAQs)": [[10, "frequently-asked-questions-faqs"]], "OSError: libtorch_hip.so: cannot open shared object file: no such file or directory": [[10, "oserror-libtorch-hip-so-cannot-open-shared-object-file-no-such-file-or-directory"]], "AttributeError: module \u2018distutils\u2019 has no attribute \u2018version\u2019": [[10, "attributeerror-module-distutils-has-no-attribute-version"]], "ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory": [[10, "importerror-libpython3-10-so-1-0-cannot-open-shared-object-file-no-such-file-or-directory"]], "For the more curious": [[11, "for-the-more-curious"], [12, "for-the-more-curious"], [13, "for-the-more-curious"], [15, "for-the-more-curious"], [16, "for-the-more-curious"]], "A quick look to the generated files": [[11, "a-quick-look-to-the-generated-files"]], "download": [[11, "download"]], "data": [[11, "data"]], "Environment setup": [[13, "environment-setup"]], "Create a virtual environment": [[13, "create-a-virtual-environment"]], "Install dependencies": [[13, "install-dependencies"]], "Install icefall": [[13, "install-icefall"]], "Icefall for dummies tutorial": [[14, "icefall-for-dummies-tutorial"]], "Model Export": [[15, "model-export"]], "Export the model parameters via model.state_dict()": [[15, "export-the-model-parameters-via-model-state-dict"]], "Export via torch.jit.script()": [[15, "export-via-torch-jit-script"]], "Export via torch.onnx.export()": [[15, "export-via-torch-onnx-export"]], "Two approaches": [[17, "two-approaches"]], "Differences between the two approaches": [[17, "differences-between-the-two-approaches"]], "FST-based forced alignment": [[18, "fst-based-forced-alignment"]], "Contents:": [[18, null], [24, null]], "k2-based forced alignment": [[19, "k2-based-forced-alignment"]], "Kaldi-based forced alignment": [[20, "kaldi-based-forced-alignment"]], "Prepare the environment": [[20, "prepare-the-environment"]], "Get the test data": [[20, "get-the-test-data"]], "Compute log_probs": [[20, "compute-log-probs"]], "Create token2id and id2token": [[20, "create-token2id-and-id2token"]], "Create word2id and id2word": [[20, "create-word2id-and-id2word"]], "Generate lexicon-related files": [[20, "generate-lexicon-related-files"]], "Convert transcript to an FST graph": [[20, "convert-transcript-to-an-fst-graph"]], "Force aligner": [[20, "force-aligner"]], "Segment each word using the computed alignments": [[20, "segment-each-word-using-the-computed-alignments"]], "Summary": [[20, "summary"]], "Huggingface": [[21, "huggingface"]], "Pre-trained models": [[22, "pre-trained-models"]], "Huggingface spaces": [[23, "huggingface-spaces"]], "YouTube Video": [[23, "youtube-video"], [25, "youtube-video"]], "Icefall": [[24, "icefall"]], "Installation": [[25, "installation"]], "(0) Install CUDA toolkit and cuDNN": [[25, "install-cuda-toolkit-and-cudnn"]], "(1) Install torch and torchaudio": [[25, "install-torch-and-torchaudio"]], "(2) Install k2": [[25, "install-k2"]], "(3) Install lhotse": [[25, "install-lhotse"]], "(4) Download icefall": [[25, "download-icefall"]], "Installation example": [[25, "installation-example"]], "(1) Create a virtual environment": [[25, "create-a-virtual-environment"]], "(2) Install CUDA toolkit and cuDNN": [[25, "id1"]], "(3) Install torch and torchaudio": [[25, "id2"]], "(4) Install k2": [[25, "id3"]], "(5) Install lhotse": [[25, "id5"]], "(6) Download icefall": [[25, "id6"]], "Test Your Installation": [[25, "test-your-installation"]], "Export model.state_dict()": [[26, "export-model-state-dict"], [46, "export-model-state-dict"], [48, "export-model-state-dict"], [49, "export-model-state-dict"], [60, "export-model-state-dict"], [61, "export-model-state-dict"], [62, "export-model-state-dict"]], "When to use it": [[26, "when-to-use-it"], [32, "when-to-use-it"], [33, "when-to-use-it"]], "How to export": [[26, "how-to-export"], [32, "how-to-export"], [33, "how-to-export"]], "How to use the exported model": [[26, "how-to-use-the-exported-model"], [32, "how-to-use-the-exported-model"]], "Use the exported model to run decode.py": [[26, "use-the-exported-model-to-run-decode-py"]], "Export to ncnn": [[27, "export-to-ncnn"]], "Export ConvEmformer transducer models to ncnn": [[28, "export-convemformer-transducer-models-to-ncnn"]], "1. Download the pre-trained model": [[28, "download-the-pre-trained-model"], [29, "download-the-pre-trained-model"], [30, "download-the-pre-trained-model"]], "2. Install ncnn and pnnx": [[28, "install-ncnn-and-pnnx"], [29, "install-ncnn-and-pnnx"], [30, "install-ncnn-and-pnnx"]], "3. Export the model via torch.jit.trace()": [[28, "export-the-model-via-torch-jit-trace"], [29, "export-the-model-via-torch-jit-trace"], [30, "export-the-model-via-torch-jit-trace"]], "4. Export torchscript model via pnnx": [[28, "export-torchscript-model-via-pnnx"], [29, "export-torchscript-model-via-pnnx"], [30, "export-torchscript-model-via-pnnx"]], "5. Test the exported models in icefall": [[28, "test-the-exported-models-in-icefall"], [29, "test-the-exported-models-in-icefall"], [30, "test-the-exported-models-in-icefall"]], "6. Modify the exported encoder for sherpa-ncnn": [[28, "modify-the-exported-encoder-for-sherpa-ncnn"], [29, "modify-the-exported-encoder-for-sherpa-ncnn"], [30, "modify-the-exported-encoder-for-sherpa-ncnn"]], "7. (Optional) int8 quantization with sherpa-ncnn": [[28, "optional-int8-quantization-with-sherpa-ncnn"], [29, "optional-int8-quantization-with-sherpa-ncnn"]], "Export LSTM transducer models to ncnn": [[29, "export-lstm-transducer-models-to-ncnn"]], "Export streaming Zipformer transducer models to ncnn": [[30, "export-streaming-zipformer-transducer-models-to-ncnn"]], "Export to ONNX": [[31, "export-to-onnx"]], "sherpa-onnx": [[31, "sherpa-onnx"]], "Example": [[31, "example"]], "Download the pre-trained model": [[31, "download-the-pre-trained-model"], [38, "download-the-pre-trained-model"], [40, "download-the-pre-trained-model"], [41, "download-the-pre-trained-model"], [43, "download-the-pre-trained-model"], [47, "download-the-pre-trained-model"], [51, "download-the-pre-trained-model"], [52, "download-the-pre-trained-model"], [54, "download-the-pre-trained-model"]], "Export the model to ONNX": [[31, "export-the-model-to-onnx"]], "Decode sound files with exported ONNX models": [[31, "decode-sound-files-with-exported-onnx-models"]], "Export model with torch.jit.script()": [[32, "export-model-with-torch-jit-script"]], "Export model with torch.jit.trace()": [[33, "export-model-with-torch-jit-trace"]], "How to use the exported models": [[33, "how-to-use-the-exported-models"]], "Model export": [[34, "model-export"]], "Finetune from a pre-trained Zipformer model with adapters": [[35, "finetune-from-a-pre-trained-zipformer-model-with-adapters"]], "Model preparation": [[35, "model-preparation"], [36, "model-preparation"]], "Fine-tune with adapter": [[35, "fine-tune-with-adapter"]], "Export the model": [[35, "export-the-model"]], "Finetune from a supervised pre-trained Zipformer model": [[36, "finetune-from-a-supervised-pre-trained-zipformer-model"]], "Fine-tune": [[36, "fine-tune"]], "Fine-tune a pre-trained model": [[37, "fine-tune-a-pre-trained-model"]], "Table of Contents": [[37, null], [66, null]], "Conformer CTC": [[38, "conformer-ctc"], [43, "conformer-ctc"]], "Configurable options": [[38, "configurable-options"], [41, "configurable-options"], [43, "configurable-options"], [46, "configurable-options"], [48, "configurable-options"], [49, "configurable-options"], [60, "configurable-options"], [61, "configurable-options"], [62, "configurable-options"]], "Pre-configured options": [[38, "pre-configured-options"], [41, "pre-configured-options"], [43, "pre-configured-options"], [46, "pre-configured-options"], [48, "pre-configured-options"], [49, "pre-configured-options"], [60, "pre-configured-options"], [61, "pre-configured-options"], [62, "pre-configured-options"]], "Training logs": [[38, "training-logs"], [40, "training-logs"], [41, "training-logs"], [43, "training-logs"], [46, "training-logs"], [48, "training-logs"], [49, "training-logs"], [60, "training-logs"], [61, "training-logs"], [62, "training-logs"]], "Usage examples": [[38, "usage-examples"], [40, "usage-examples"], [41, "usage-examples"], [43, "usage-examples"]], "Case 1": [[38, "case-1"], [40, "case-1"], [41, "case-1"], [43, "case-1"]], "Case 2": [[38, "case-2"], [40, "case-2"], [41, "case-2"], [43, "case-2"]], "Case 3": [[38, "case-3"], [40, "case-3"], [43, "case-3"]], "Pre-trained Model": [[38, "pre-trained-model"], [40, "pre-trained-model"], [41, "pre-trained-model"], [43, "pre-trained-model"], [47, "pre-trained-model"], [51, "pre-trained-model"], [52, "pre-trained-model"], [54, "pre-trained-model"]], "Install kaldifeat": [[38, "install-kaldifeat"], [40, "install-kaldifeat"], [41, "install-kaldifeat"], [43, "install-kaldifeat"], [47, "install-kaldifeat"], [51, "install-kaldifeat"], [52, "install-kaldifeat"]], "Usage": [[38, "usage"], [40, "usage"], [41, "usage"], [43, "usage"]], "CTC decoding": [[38, "ctc-decoding"], [43, "ctc-decoding"], [43, "id2"]], "HLG decoding": [[38, "hlg-decoding"], [38, "id2"], [41, "hlg-decoding"], [43, "hlg-decoding"], [43, "id3"]], "HLG decoding + attention decoder rescoring": [[38, "hlg-decoding-attention-decoder-rescoring"]], "Colab notebook": [[38, "colab-notebook"], [40, "colab-notebook"], [41, "colab-notebook"], [43, "colab-notebook"], [47, "colab-notebook"], [51, "colab-notebook"], [52, "colab-notebook"], [54, "colab-notebook"]], "Deployment with C++": [[38, "deployment-with-c"], [43, "deployment-with-c"]], "aishell": [[39, "aishell"]], "Stateless Transducer": [[40, "stateless-transducer"]], "The Model": [[40, "the-model"]], "The Loss": [[40, "the-loss"]], "Todo": [[40, "id1"]], "Greedy search": [[40, "greedy-search"]], "Beam search": [[40, "beam-search"]], "Modified Beam search": [[40, "modified-beam-search"]], "TDNN-LSTM CTC": [[41, "tdnn-lstm-ctc"]], "Non Streaming ASR": [[42, "non-streaming-asr"]], "HLG decoding + LM rescoring": [[43, "hlg-decoding-lm-rescoring"]], "HLG decoding + LM rescoring + attention decoder rescoring": [[43, "hlg-decoding-lm-rescoring-attention-decoder-rescoring"]], "Compute WER with the pre-trained model": [[43, "compute-wer-with-the-pre-trained-model"]], "HLG decoding + n-gram LM rescoring": [[43, "hlg-decoding-n-gram-lm-rescoring"]], "HLG decoding + n-gram LM rescoring + attention decoder rescoring": [[43, "hlg-decoding-n-gram-lm-rescoring-attention-decoder-rescoring"]], "Distillation with HuBERT": [[44, "distillation-with-hubert"]], "Codebook index preparation": [[44, "codebook-index-preparation"]], "LibriSpeech": [[45, "librispeech"], [59, "librispeech"]], "Pruned transducer statelessX": [[46, "pruned-transducer-statelessx"], [61, "pruned-transducer-statelessx"]], "Usage example": [[46, "usage-example"], [48, "usage-example"], [49, "usage-example"], [60, "usage-example"], [61, "usage-example"], [62, "usage-example"]], "Export Model": [[46, "export-model"], [61, "export-model"], [62, "export-model"]], "Export model using torch.jit.script()": [[46, "export-model-using-torch-jit-script"], [48, "export-model-using-torch-jit-script"], [49, "export-model-using-torch-jit-script"], [61, "export-model-using-torch-jit-script"], [62, "export-model-using-torch-jit-script"]], "Download pretrained models": [[46, "download-pretrained-models"], [48, "download-pretrained-models"], [49, "download-pretrained-models"], [60, "download-pretrained-models"], [61, "download-pretrained-models"], [62, "download-pretrained-models"], [64, "download-pretrained-models"], [65, "download-pretrained-models"]], "Deploy with Sherpa": [[46, "deploy-with-sherpa"], [61, "deploy-with-sherpa"], [62, "deploy-with-sherpa"]], "TDNN-LSTM-CTC": [[47, "tdnn-lstm-ctc"], [52, "tdnn-lstm-ctc"]], "Inference with a pre-trained model": [[47, "inference-with-a-pre-trained-model"], [51, "inference-with-a-pre-trained-model"], [52, "inference-with-a-pre-trained-model"], [54, "inference-with-a-pre-trained-model"]], "Zipformer CTC Blank Skip": [[48, "zipformer-ctc-blank-skip"]], "Export models": [[48, "export-models"], [49, "export-models"], [60, "export-models"], [64, "export-models"], [65, "export-models"]], "Zipformer MMI": [[49, "zipformer-mmi"]], "TIMIT": [[50, "timit"]], "TDNN-LiGRU-CTC": [[51, "tdnn-ligru-ctc"]], "YesNo": [[53, "yesno"]], "TDNN-CTC": [[54, "tdnn-ctc"]], "Download kaldifeat": [[54, "download-kaldifeat"]], "RNN-LM": [[55, "rnn-lm"]], "Train an RNN language model": [[56, "train-an-rnn-language-model"]], "Streaming ASR": [[57, "streaming-asr"]], "Streaming Conformer": [[58, "streaming-conformer"]], "Streaming Emformer": [[58, "streaming-emformer"]], "LSTM Transducer": [[60, "lstm-transducer"]], "Which model to use": [[60, "which-model-to-use"]], "Export model using torch.jit.trace()": [[60, "export-model-using-torch-jit-trace"], [62, "export-model-using-torch-jit-trace"]], "Simulate streaming decoding": [[61, "simulate-streaming-decoding"], [62, "simulate-streaming-decoding"]], "Real streaming decoding": [[61, "real-streaming-decoding"], [62, "real-streaming-decoding"]], "Zipformer Transducer": [[62, "zipformer-transducer"]], "TTS": [[63, "tts"]], "VITS-LJSpeech": [[64, "vits-ljspeech"]], "Install extra dependencies": [[64, "install-extra-dependencies"]], "Build Monotonic Alignment Search": [[64, "build-monotonic-alignment-search"], [65, "build-monotonic-alignment-search"]], "Inference": [[64, "inference"], [65, "inference"]], "Usage in sherpa-onnx": [[64, "usage-in-sherpa-onnx"]], "Install sherpa-onnx": [[64, "install-sherpa-onnx"]], "Download lexicon files": [[64, "download-lexicon-files"]], "Run sherpa-onnx": [[64, "run-sherpa-onnx"]], "VITS-VCTK": [[65, "vits-vctk"]], "Recipes": [[66, "recipes"]]}, "indexentries": {}}) \ No newline at end of file
  • Docker