Add files via upload

This commit is contained in:
Mingshuang Luo 2021-09-29 19:24:40 +08:00 committed by GitHub
parent 279dc74b4e
commit 79fd09e3e5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -33,10 +33,7 @@ def get_parser():
)
parser.add_argument(
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
"--world-size", type=int, default=1, help="Number of GPUs for DDP training.",
)
parser.add_argument(
@ -54,10 +51,7 @@ def get_parser():
)
parser.add_argument(
"--num-epochs",
type=int,
default=15,
help="Number of epochs to train.",
"--num-epochs", type=int, default=15, help="Number of epochs to train.",
)
parser.add_argument(
@ -187,10 +181,7 @@ def load_checkpoint_if_available(
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
saved_params = load_checkpoint(
filename,
model=model,
optimizer=optimizer,
scheduler=scheduler,
filename, model=model, optimizer=optimizer, scheduler=scheduler,
)
keys = [
@ -287,16 +278,12 @@ def compute_loss(
batch_size = nnet_output.shape[0]
supervision_segments = torch.tensor(
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
dtype=torch.int32,
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)], dtype=torch.int32,
)
decoding_graph = graph_compiler.compile(texts)
dense_fsa_vec = k2.DenseFsaVec(
nnet_output,
supervision_segments,
)
dense_fsa_vec = k2.DenseFsaVec(nnet_output, supervision_segments,)
loss = k2.ctc_loss(
decoding_graph=decoding_graph,
@ -309,8 +296,8 @@ def compute_loss(
assert loss.requires_grad == is_training
info = LossRecord()
info['frames'] = supervision_segments[:, 2].sum().item()
info['loss'] = loss.detach().cpu().item()
info["frames"] = supervision_segments[:, 2].sum().item()
info["loss"] = loss.detach().cpu().item()
return loss, info
@ -344,7 +331,7 @@ def compute_validation_loss(
if world_size > 1:
tot_loss.reduce(loss.device)
loss_value = tot_loss['loss'] / tot_loss['frames']
loss_value = tot_loss["loss"] / tot_loss["frames"]
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
@ -420,15 +407,9 @@ def train_one_epoch(
if tb_writer is not None:
loss_info.write_summary(
tb_writer,
"train/current_",
params.batch_idx_train
)
tot_loss.write_summary(
tb_writer,
"train/tot_",
params.batch_idx_train
tb_writer, "train/current_", params.batch_idx_train
)
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
valid_info = compute_validation_loss(
@ -439,17 +420,13 @@ def train_one_epoch(
world_size=world_size,
)
model.train()
logging.info(
f"Epoch {params.cur_epoch}, validation {valid_info}"
)
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
if tb_writer is not None:
valid_info.write_summary(
tb_writer,
"train/valid_",
params.batch_idx_train,
tb_writer, "train/valid_", params.batch_idx_train,
)
loss_value = tot_loss['loss'] / tot_loss['frames']
loss_value = tot_loss["loss"] / tot_loss["frames"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
@ -506,9 +483,7 @@ def run(rank, world_size, args):
model = DDP(model, device_ids=[rank])
optimizer = optim.SGD(
model.parameters(),
lr=params.lr,
weight_decay=params.weight_decay,
model.parameters(), lr=params.lr, weight_decay=params.weight_decay,
)
if checkpoints:
@ -542,11 +517,7 @@ def run(rank, world_size, args):
)
save_checkpoint(
params=params,
model=model,
optimizer=optimizer,
scheduler=None,
rank=rank,
params=params, model=model, optimizer=optimizer, scheduler=None, rank=rank,
)
logging.info("Done!")