mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
update
This commit is contained in:
parent
f96bbdef41
commit
7961b6bf23
12
egs/librispeech/ASR/decode.sh
Executable file
12
egs/librispeech/ASR/decode.sh
Executable file
@ -0,0 +1,12 @@
|
||||
export CUDA_VISIBLE_DEVICES=2
|
||||
|
||||
for epoch in {30..30}; do
|
||||
for ((avg=1; avg<=$epoch-1; avg++)); do
|
||||
./zipformer_lstm/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--exp-dir ./zipformer_lstm/exp_dropout0.2 \
|
||||
--max-duration 2000 \
|
||||
--decoding-method greedy_search
|
||||
done
|
||||
done
|
8
egs/librispeech/ASR/decode_single.sh
Executable file
8
egs/librispeech/ASR/decode_single.sh
Executable file
@ -0,0 +1,8 @@
|
||||
export CUDA_VISIBLE_DEVICES=$1
|
||||
|
||||
./zipformer_lstm/decode.py \
|
||||
--epoch $2 \
|
||||
--avg $3 \
|
||||
--exp-dir ./zipformer_lstm/exp \
|
||||
--max-duration 2000 \
|
||||
--decoding-method beam_search
|
11
egs/librispeech/ASR/sync.sh
Executable file
11
egs/librispeech/ASR/sync.sh
Executable file
@ -0,0 +1,11 @@
|
||||
project=icefall-asr-librispeech-zipformer-2023-11-04
|
||||
run=4V10032G_lstm1_decoderdropout0.2_bpe500
|
||||
recipe=zipformer_lstm
|
||||
|
||||
wandb sync ${recipe}/exp_dropout0.2/tensorboard/ --sync-tensorboard -p $project --id $run
|
||||
|
||||
while true
|
||||
do
|
||||
wandb sync ${recipe}/exp_dropout0.2/tensorboard/ --sync-tensorboard -p $project --id $run --append
|
||||
sleep 60
|
||||
done
|
@ -36,7 +36,7 @@ def greedy_search(model: nn.Module, encoder_out: torch.Tensor) -> List[int]:
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
device = model.encoder_embed.device
|
||||
device = next(model.parameters()).device
|
||||
|
||||
sos = torch.tensor([blank_id], device=device, dtype=torch.int64).reshape(1, 1)
|
||||
decoder_out, (h, c) = model.decoder(sos)
|
||||
|
@ -76,7 +76,7 @@ class Decoder(nn.Module):
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
|
||||
# self.embedding_dropout = nn.Dropout(embedding_dropout)
|
||||
self.embedding_dropout = nn.Dropout(embedding_dropout)
|
||||
|
||||
self.rnn = nn.LSTM(
|
||||
input_size=decoder_dim,
|
||||
@ -113,6 +113,8 @@ class Decoder(nn.Module):
|
||||
# at utterance start, we use negative ids in beam_search.py
|
||||
embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1)
|
||||
|
||||
embedding_out = self.embedding_dropout(embedding_out)
|
||||
|
||||
embedding_out = self.balancer(embedding_out)
|
||||
|
||||
rnn_out, (h, c) = self.rnn(embedding_out, states)
|
||||
|
Loading…
x
Reference in New Issue
Block a user