mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Fix potential bugs in PyTorch that exist in label_smoothing. (#300)
This commit is contained in:
parent
7c0070e6f6
commit
78b8792d1d
@ -1,98 +0,0 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class LabelSmoothingLoss(torch.nn.Module):
|
||||
"""
|
||||
Implement the LabelSmoothingLoss proposed in the following paper
|
||||
https://arxiv.org/pdf/1512.00567.pdf
|
||||
(Rethinking the Inception Architecture for Computer Vision)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ignore_index: int = -1,
|
||||
label_smoothing: float = 0.1,
|
||||
reduction: str = "sum",
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ignore_index:
|
||||
ignored class id
|
||||
label_smoothing:
|
||||
smoothing rate (0.0 means the conventional cross entropy loss)
|
||||
reduction:
|
||||
It has the same meaning as the reduction in
|
||||
`torch.nn.CrossEntropyLoss`. It can be one of the following three
|
||||
values: (1) "none": No reduction will be applied. (2) "mean": the
|
||||
mean of the output is taken. (3) "sum": the output will be summed.
|
||||
"""
|
||||
super().__init__()
|
||||
assert 0.0 <= label_smoothing < 1.0
|
||||
self.ignore_index = ignore_index
|
||||
self.label_smoothing = label_smoothing
|
||||
self.reduction = reduction
|
||||
|
||||
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Compute loss between x and target.
|
||||
|
||||
Args:
|
||||
x:
|
||||
prediction of dimension
|
||||
(batch_size, input_length, number_of_classes).
|
||||
target:
|
||||
target masked with self.ignore_index of
|
||||
dimension (batch_size, input_length).
|
||||
|
||||
Returns:
|
||||
A scalar tensor containing the loss without normalization.
|
||||
"""
|
||||
assert x.ndim == 3
|
||||
assert target.ndim == 2
|
||||
assert x.shape[:2] == target.shape
|
||||
num_classes = x.size(-1)
|
||||
x = x.reshape(-1, num_classes)
|
||||
# Now x is of shape (N*T, C)
|
||||
|
||||
# We don't want to change target in-place below,
|
||||
# so we make a copy of it here
|
||||
target = target.clone().reshape(-1)
|
||||
|
||||
ignored = target == self.ignore_index
|
||||
target[ignored] = 0
|
||||
|
||||
true_dist = torch.nn.functional.one_hot(
|
||||
target, num_classes=num_classes
|
||||
).to(x)
|
||||
|
||||
true_dist = (
|
||||
true_dist * (1 - self.label_smoothing)
|
||||
+ self.label_smoothing / num_classes
|
||||
)
|
||||
# Set the value of ignored indexes to 0
|
||||
true_dist[ignored] = 0
|
||||
|
||||
loss = -1 * (torch.log_softmax(x, dim=1) * true_dist)
|
||||
if self.reduction == "sum":
|
||||
return loss.sum()
|
||||
elif self.reduction == "mean":
|
||||
return loss.sum() / (~ignored).sum()
|
||||
else:
|
||||
return loss.sum(dim=-1)
|
1
egs/aishell/ASR/conformer_ctc/label_smoothing.py
Symbolic link
1
egs/aishell/ASR/conformer_ctc/label_smoothing.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/label_smoothing.py
|
@ -1,98 +0,0 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class LabelSmoothingLoss(torch.nn.Module):
|
||||
"""
|
||||
Implement the LabelSmoothingLoss proposed in the following paper
|
||||
https://arxiv.org/pdf/1512.00567.pdf
|
||||
(Rethinking the Inception Architecture for Computer Vision)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ignore_index: int = -1,
|
||||
label_smoothing: float = 0.1,
|
||||
reduction: str = "sum",
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ignore_index:
|
||||
ignored class id
|
||||
label_smoothing:
|
||||
smoothing rate (0.0 means the conventional cross entropy loss)
|
||||
reduction:
|
||||
It has the same meaning as the reduction in
|
||||
`torch.nn.CrossEntropyLoss`. It can be one of the following three
|
||||
values: (1) "none": No reduction will be applied. (2) "mean": the
|
||||
mean of the output is taken. (3) "sum": the output will be summed.
|
||||
"""
|
||||
super().__init__()
|
||||
assert 0.0 <= label_smoothing < 1.0
|
||||
self.ignore_index = ignore_index
|
||||
self.label_smoothing = label_smoothing
|
||||
self.reduction = reduction
|
||||
|
||||
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Compute loss between x and target.
|
||||
|
||||
Args:
|
||||
x:
|
||||
prediction of dimension
|
||||
(batch_size, input_length, number_of_classes).
|
||||
target:
|
||||
target masked with self.ignore_index of
|
||||
dimension (batch_size, input_length).
|
||||
|
||||
Returns:
|
||||
A scalar tensor containing the loss without normalization.
|
||||
"""
|
||||
assert x.ndim == 3
|
||||
assert target.ndim == 2
|
||||
assert x.shape[:2] == target.shape
|
||||
num_classes = x.size(-1)
|
||||
x = x.reshape(-1, num_classes)
|
||||
# Now x is of shape (N*T, C)
|
||||
|
||||
# We don't want to change target in-place below,
|
||||
# so we make a copy of it here
|
||||
target = target.clone().reshape(-1)
|
||||
|
||||
ignored = target == self.ignore_index
|
||||
target[ignored] = 0
|
||||
|
||||
true_dist = torch.nn.functional.one_hot(
|
||||
target, num_classes=num_classes
|
||||
).to(x)
|
||||
|
||||
true_dist = (
|
||||
true_dist * (1 - self.label_smoothing)
|
||||
+ self.label_smoothing / num_classes
|
||||
)
|
||||
# Set the value of ignored indexes to 0
|
||||
true_dist[ignored] = 0
|
||||
|
||||
loss = -1 * (torch.log_softmax(x, dim=1) * true_dist)
|
||||
if self.reduction == "sum":
|
||||
return loss.sum()
|
||||
elif self.reduction == "mean":
|
||||
return loss.sum() / (~ignored).sum()
|
||||
else:
|
||||
return loss.sum(dim=-1)
|
1
egs/aishell/ASR/conformer_mmi/label_smoothing.py
Symbolic link
1
egs/aishell/ASR/conformer_mmi/label_smoothing.py
Symbolic link
@ -0,0 +1 @@
|
||||
../conformer_ctc/label_smoothing.py
|
@ -76,7 +76,11 @@ class LabelSmoothingLoss(torch.nn.Module):
|
||||
target = target.clone().reshape(-1)
|
||||
|
||||
ignored = target == self.ignore_index
|
||||
target[ignored] = 0
|
||||
|
||||
# See https://github.com/k2-fsa/icefall/issues/240
|
||||
# and https://github.com/k2-fsa/icefall/issues/297
|
||||
# for why we don't use target[ignored] = 0 here
|
||||
target = torch.where(ignored, torch.zeros_like(target), target)
|
||||
|
||||
true_dist = torch.nn.functional.one_hot(
|
||||
target, num_classes=num_classes
|
||||
@ -86,8 +90,17 @@ class LabelSmoothingLoss(torch.nn.Module):
|
||||
true_dist * (1 - self.label_smoothing)
|
||||
+ self.label_smoothing / num_classes
|
||||
)
|
||||
|
||||
# Set the value of ignored indexes to 0
|
||||
true_dist[ignored] = 0
|
||||
#
|
||||
# See https://github.com/k2-fsa/icefall/issues/240
|
||||
# and https://github.com/k2-fsa/icefall/issues/297
|
||||
# for why we don't use true_dist[ignored] = 0 here
|
||||
true_dist = torch.where(
|
||||
ignored.unsqueeze(1).repeat(1, true_dist.shape[1]),
|
||||
torch.zeros_like(true_dist),
|
||||
true_dist,
|
||||
)
|
||||
|
||||
loss = -1 * (torch.log_softmax(x, dim=1) * true_dist)
|
||||
if self.reduction == "sum":
|
||||
|
Loading…
x
Reference in New Issue
Block a user