mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-03 14:14:19 +00:00
Add modified-beam-search and fast-beam-search
This commit is contained in:
parent
7a3e88d2d3
commit
7896baea14
@ -17,10 +17,91 @@
|
|||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Dict, List, Optional
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
import numpy as np
|
import k2
|
||||||
import torch
|
import torch
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
|
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.utils import get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
decoding_graph: k2.Fsa,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
beam: float,
|
||||||
|
max_states: int,
|
||||||
|
max_contexts: int,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
decoding_graph:
|
||||||
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder.
|
||||||
|
encoder_out_lens:
|
||||||
|
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||||
|
before padding.
|
||||||
|
beam:
|
||||||
|
Beam value, similar to the beam used in Kaldi..
|
||||||
|
max_states:
|
||||||
|
Max states per stream per frame.
|
||||||
|
max_contexts:
|
||||||
|
Max contexts pre stream per frame.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
vocab_size = model.decoder.vocab_size
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
decoder_history_len=context_size,
|
||||||
|
beam=beam,
|
||||||
|
max_contexts=max_contexts,
|
||||||
|
max_states=max_states,
|
||||||
|
)
|
||||||
|
individual_streams = []
|
||||||
|
for i in range(B):
|
||||||
|
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, encoder_out_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
||||||
|
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
return hyps
|
||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
def greedy_search(
|
||||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||||
@ -48,7 +129,7 @@ def greedy_search(
|
|||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[blank_id] * context_size, device=device
|
[blank_id] * context_size, device=device, dtype=torch.int64
|
||||||
).reshape(1, context_size)
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
@ -103,8 +184,9 @@ class Hypothesis:
|
|||||||
# Newly predicted tokens are appended to `ys`.
|
# Newly predicted tokens are appended to `ys`.
|
||||||
ys: List[int]
|
ys: List[int]
|
||||||
|
|
||||||
# The log prob of ys
|
# The log prob of ys.
|
||||||
log_prob: float
|
# It contains only one entry.
|
||||||
|
log_prob: torch.Tensor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def key(self) -> str:
|
def key(self) -> str:
|
||||||
@ -113,7 +195,7 @@ class Hypothesis:
|
|||||||
|
|
||||||
|
|
||||||
class HypothesisList(object):
|
class HypothesisList(object):
|
||||||
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None):
|
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
data:
|
data:
|
||||||
@ -125,10 +207,10 @@ class HypothesisList(object):
|
|||||||
self._data = data
|
self._data = data
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def data(self):
|
def data(self) -> Dict[str, Hypothesis]:
|
||||||
return self._data
|
return self._data
|
||||||
|
|
||||||
def add(self, hyp: Hypothesis):
|
def add(self, hyp: Hypothesis) -> None:
|
||||||
"""Add a Hypothesis to `self`.
|
"""Add a Hypothesis to `self`.
|
||||||
|
|
||||||
If `hyp` already exists in `self`, its probability is updated using
|
If `hyp` already exists in `self`, its probability is updated using
|
||||||
@ -140,8 +222,10 @@ class HypothesisList(object):
|
|||||||
"""
|
"""
|
||||||
key = hyp.key
|
key = hyp.key
|
||||||
if key in self:
|
if key in self:
|
||||||
old_hyp = self._data[key]
|
old_hyp = self._data[key] # shallow copy
|
||||||
old_hyp.log_prob = np.logaddexp(old_hyp.log_prob, hyp.log_prob)
|
torch.logaddexp(
|
||||||
|
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
self._data[key] = hyp
|
self._data[key] = hyp
|
||||||
|
|
||||||
@ -153,7 +237,8 @@ class HypothesisList(object):
|
|||||||
length_norm:
|
length_norm:
|
||||||
If True, the `log_prob` of a hypothesis is normalized by the
|
If True, the `log_prob` of a hypothesis is normalized by the
|
||||||
number of tokens in it.
|
number of tokens in it.
|
||||||
|
Returns:
|
||||||
|
Return the hypothesis that has the largest `log_prob`.
|
||||||
"""
|
"""
|
||||||
if length_norm:
|
if length_norm:
|
||||||
return max(
|
return max(
|
||||||
@ -165,6 +250,9 @@ class HypothesisList(object):
|
|||||||
def remove(self, hyp: Hypothesis) -> None:
|
def remove(self, hyp: Hypothesis) -> None:
|
||||||
"""Remove a given hypothesis.
|
"""Remove a given hypothesis.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
`self` is modified **in-place**.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
hyp:
|
hyp:
|
||||||
The hypothesis to be removed from `self`.
|
The hypothesis to be removed from `self`.
|
||||||
@ -175,7 +263,7 @@ class HypothesisList(object):
|
|||||||
assert key in self, f"{key} does not exist"
|
assert key in self, f"{key} does not exist"
|
||||||
del self._data[key]
|
del self._data[key]
|
||||||
|
|
||||||
def filter(self, threshold: float) -> "HypothesisList":
|
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
||||||
"""Remove all Hypotheses whose log_prob is less than threshold.
|
"""Remove all Hypotheses whose log_prob is less than threshold.
|
||||||
|
|
||||||
Caution:
|
Caution:
|
||||||
@ -183,10 +271,10 @@ class HypothesisList(object):
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a new HypothesisList containing all hypotheses from `self`
|
Return a new HypothesisList containing all hypotheses from `self`
|
||||||
that have `log_prob` being greater than the given `threshold`.
|
with `log_prob` being greater than the given `threshold`.
|
||||||
"""
|
"""
|
||||||
ans = HypothesisList()
|
ans = HypothesisList()
|
||||||
for key, hyp in self._data.items():
|
for _, hyp in self._data.items():
|
||||||
if hyp.log_prob > threshold:
|
if hyp.log_prob > threshold:
|
||||||
ans.add(hyp) # shallow copy
|
ans.add(hyp) # shallow copy
|
||||||
return ans
|
return ans
|
||||||
@ -216,6 +304,106 @@ class HypothesisList(object):
|
|||||||
return ", ".join(s)
|
return ", ".join(s)
|
||||||
|
|
||||||
|
|
||||||
|
def modified_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
|
) -> List[int]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
beam:
|
||||||
|
Beam size.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
B = HypothesisList()
|
||||||
|
B.add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||||
|
# current_encoder_out is of shape (1, 1, 1, encoder_out_dim)
|
||||||
|
# fmt: on
|
||||||
|
A = list(B)
|
||||||
|
B = HypothesisList()
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
||||||
|
# ys_log_probs is of shape (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyp in A],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_input is of shape (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||||
|
# decoder_output is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||||
|
|
||||||
|
current_encoder_out = current_encoder_out.expand(
|
||||||
|
decoder_out.size(0), 1, 1, -1
|
||||||
|
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
)
|
||||||
|
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
# now logits is of shape (num_hyps, vocab_size)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
||||||
|
|
||||||
|
# topk_hyp_indexes are indexes into `A`
|
||||||
|
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
||||||
|
topk_token_indexes = topk_indexes % logits.size(-1)
|
||||||
|
|
||||||
|
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
||||||
|
topk_token_indexes = topk_token_indexes.tolist()
|
||||||
|
|
||||||
|
for i in range(len(topk_hyp_indexes)):
|
||||||
|
hyp = A[topk_hyp_indexes[i]]
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[i]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
new_log_prob = topk_log_probs[i]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B.add(new_hyp)
|
||||||
|
|
||||||
|
best_hyp = B.get_most_probable(length_norm=True)
|
||||||
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||||
|
|
||||||
|
return ys
|
||||||
|
|
||||||
|
|
||||||
def beam_search(
|
def beam_search(
|
||||||
model: Transducer,
|
model: Transducer,
|
||||||
encoder_out: torch.Tensor,
|
encoder_out: torch.Tensor,
|
||||||
@ -246,7 +434,9 @@ def beam_search(
|
|||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[blank_id] * context_size, device=device
|
[blank_id] * context_size,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
).reshape(1, context_size)
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
@ -283,7 +473,9 @@ def beam_search(
|
|||||||
|
|
||||||
if cached_key not in decoder_cache:
|
if cached_key not in decoder_cache:
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[y_star.ys[-context_size:]], device=device
|
[y_star.ys[-context_size:]],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
).reshape(1, context_size)
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
@ -309,7 +501,7 @@ def beam_search(
|
|||||||
|
|
||||||
# First, process the blank symbol
|
# First, process the blank symbol
|
||||||
skip_log_prob = log_prob[blank_id]
|
skip_log_prob = log_prob[blank_id]
|
||||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
|
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
||||||
|
|
||||||
# ys[:] returns a copy of ys
|
# ys[:] returns a copy of ys
|
||||||
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||||
|
@ -20,12 +20,18 @@ import argparse
|
|||||||
import logging
|
import logging
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import AishellAsrDataModule
|
from asr_datamodule import AishellAsrDataModule
|
||||||
from beam_search import beam_search, greedy_search
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search,
|
||||||
|
greedy_search,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from decoder import Decoder
|
from decoder import Decoder
|
||||||
from joiner import Joiner
|
from joiner import Joiner
|
||||||
@ -85,6 +91,8 @@ def get_parser():
|
|||||||
help="""Possible values are:
|
help="""Possible values are:
|
||||||
- greedy_search
|
- greedy_search
|
||||||
- beam_search
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -92,7 +100,35 @@ def get_parser():
|
|||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
help="Used only when --decoding-method is beam_search",
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -102,12 +138,14 @@ def get_parser():
|
|||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
"2 means tri-gram",
|
"2 means tri-gram",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=3,
|
||||||
help="Maximum number of symbols per frame",
|
help="Maximum number of symbols per frame",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--export",
|
"--export",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
@ -192,6 +230,7 @@ def decode_one_batch(
|
|||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
lexicon: Lexicon,
|
lexicon: Lexicon,
|
||||||
batch: dict,
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[List[str]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
@ -208,12 +247,15 @@ def decode_one_batch(
|
|||||||
It's the return value of :func:`get_params`.
|
It's the return value of :func:`get_params`.
|
||||||
model:
|
model:
|
||||||
The neural model.
|
The neural model.
|
||||||
|
lexicon:
|
||||||
|
It contains the token symbol table and the word symbol table.
|
||||||
batch:
|
batch:
|
||||||
It is the return value from iterating
|
It is the return value from iterating
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
for the format of the `batch`.
|
for the format of the `batch`.
|
||||||
lexicon:
|
decoding_graph:
|
||||||
It contains the token symbol table and the word symbol table.
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
Returns:
|
Returns:
|
||||||
Return the decoding result. See above description for the format of
|
Return the decoding result. See above description for the format of
|
||||||
the returned dict.
|
the returned dict.
|
||||||
@ -232,32 +274,62 @@ def decode_one_batch(
|
|||||||
x=feature, x_lens=feature_lens
|
x=feature, x_lens=feature_lens
|
||||||
)
|
)
|
||||||
hyps = []
|
hyps = []
|
||||||
batch_size = encoder_out.size(0)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
if params.decoding_method == "fast_beam_search":
|
||||||
# fmt: off
|
hyp_tokens = fast_beam_search(
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
model=model,
|
||||||
# fmt: on
|
decoding_graph=decoding_graph,
|
||||||
if params.decoding_method == "greedy_search":
|
encoder_out=encoder_out,
|
||||||
hyp = greedy_search(
|
encoder_out_lens=encoder_out_lens,
|
||||||
model=model,
|
beam=params.beam,
|
||||||
encoder_out=encoder_out_i,
|
max_contexts=params.max_contexts,
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
max_states=params.max_states,
|
||||||
)
|
)
|
||||||
elif params.decoding_method == "beam_search":
|
for hyp in hyp_tokens:
|
||||||
hyp = beam_search(
|
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
else:
|
||||||
)
|
batch_size = encoder_out.size(0)
|
||||||
else:
|
|
||||||
raise ValueError(
|
for i in range(batch_size):
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
# fmt: off
|
||||||
)
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
def decode_dataset(
|
||||||
@ -265,6 +337,7 @@ def decode_dataset(
|
|||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
lexicon: Lexicon,
|
lexicon: Lexicon,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
@ -275,6 +348,11 @@ def decode_dataset(
|
|||||||
It is returned by :func:`get_params`.
|
It is returned by :func:`get_params`.
|
||||||
model:
|
model:
|
||||||
The neural model.
|
The neural model.
|
||||||
|
lexicon:
|
||||||
|
It contains the token symbol table and the word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
Returns:
|
Returns:
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
@ -303,6 +381,7 @@ def decode_dataset(
|
|||||||
model=model,
|
model=model,
|
||||||
lexicon=lexicon,
|
lexicon=lexicon,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
)
|
)
|
||||||
|
|
||||||
for name, hyps in hyps_dict.items():
|
for name, hyps in hyps_dict.items():
|
||||||
@ -383,11 +462,21 @@ def main():
|
|||||||
params = get_params()
|
params = get_params()
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
assert params.decoding_method in ("greedy_search", "beam_search")
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
)
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
if params.decoding_method == "beam_search":
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += f"-beam-{params.beam_size}"
|
params.suffix += f"-beam-{params.beam_size}"
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
@ -435,6 +524,11 @@ def main():
|
|||||||
model.eval()
|
model.eval()
|
||||||
model.device = device
|
model.device = device
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
@ -451,6 +545,7 @@ def main():
|
|||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
lexicon=lexicon,
|
lexicon=lexicon,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(
|
||||||
|
@ -58,6 +58,7 @@ class Decoder(nn.Module):
|
|||||||
padding_idx=blank_id,
|
padding_idx=blank_id,
|
||||||
)
|
)
|
||||||
self.blank_id = blank_id
|
self.blank_id = blank_id
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
|
||||||
assert context_size >= 1, context_size
|
assert context_size >= 1, context_size
|
||||||
self.context_size = context_size
|
self.context_size = context_size
|
||||||
|
Loading…
x
Reference in New Issue
Block a user