diff --git a/egs/tedlium3/ASR/2 b/egs/tedlium3/ASR/2 deleted file mode 100644 index eb6f9ea6e..000000000 --- a/egs/tedlium3/ASR/2 +++ /dev/null @@ -1,231 +0,0 @@ -#!/usr/bin/env bash - -# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 -export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python - -set -eou pipefail - -stage=0 -stop_stage=100 - -# We assume dl_dir (download dir) contains the following -# directories and files. If not, they will be downloaded -# by this script automatically. -# -# - $dl_dir/tedlium3 -# You can find data, doc, legacy, LM, etc, inside it. -# You can download them from https://www.openslr.org/51 -# -# - $dl_dir/musan -# This directory contains the following directories downloaded from -# http://www.openslr.org/17/ -# -# - music -# - noise -# - speech -dl_dir=/DB - -. shared/parse_options.sh || exit 1 - -# vocab size for sentence piece models. -# It will generate data/lang_bpe_xxx, -# data/lang_bpe_yyy if the array contains xxx, yyy -vocab_sizes=( - 5000 - 2000 - 1000 - 500 -) - -# All files generated by this script are saved in "data". -# You can safely remove "data" and rerun this script to regenerate it. -mkdir -p data - -log() { - # This function is from espnet - local fname=${BASH_SOURCE[1]##*/} - echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" -} - -log "dl_dir: $dl_dir" - -if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then - log "Stage 0: Download data" - - # If you have pre-downloaded it to /path/to/tedlium3, - # you can create a symlink - # - # ln -sfv /path/to/tedlium3 $dl_dir/tedlium3 - # - if [ ! -d $dl_dir/tedlium3 ]; then - lhotse download tedlium $dl_dir - mv $dl_dir/TEDLIUM_release-3 $dl_dir/tedlium3 - fi - - # Download big and small 4 gram lanuage models - if [ ! -d $dl_dir/lm ]; then - wget --continue http://kaldi-asr.org/models/5/4gram_small.arpa.gz -P $dl_dir/lm - wget --continue http://kaldi-asr.org/models/5/4gram_big.arpa.gz -P $dl_dir/lm - gzip -d $dl_dir/lm/4gram_small.arpa.gz $dl_dir/lm/4gram_big.arpa.gz - fi - - # If you have pre-downloaded it to /path/to/musan, - # you can create a symlink - # - #ln -sfv /path/to/musan $dl_dir/musan - - if [ ! -d $dl_dir/musan ]; then - lhotse download musan $dl_dir - fi -fi - -if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then - log "Stage 1: Prepare tedlium3 manifests" - if [ ! -f data/manifests/.tedlium3.done ]; then - # We assume that you have downloaded the tedlium3 corpus - # to $dl_dir/tedlium3 - mkdir -p data/manifests - lhotse prepare tedlium $dl_dir/tedlium3 data/manifests - touch data/manifests/.tedlium3.done - fi -fi - -if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then - log "Stage 2: Prepare musan manifests" - # We assume that you have downloaded the musan corpus - # to data/musan - if [ ! -e data/manifests/.musan.done ]; then - mkdir -p data/manifests - lhotse prepare musan $dl_dir/musan data/manifests - touch data/manifests/.musan.done - fi -fi - -if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then - log "Stage 3: Compute fbank for tedlium3" - - if [ ! -e data/fbank/.tedlium3.done ]; then - mkdir -p data/fbank - - python3 ./local/compute_fbank_tedlium.py - - gunzip -c data/fbank/tedlium_cuts_train.jsonl.gz | shuf | \ - gzip -c > data/fbank/tedlium_cuts_train-shuf.jsonl.gz - mv data/fbank/tedlium_cuts_train-shuf.jsonl.gz \ - data/fbank/tedlium_cuts_train.jsonl.gz - - touch data/fbank/.tedlium3.done - fi -fi - -if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then - log "Stage 4: Compute fbank for musan" - if [ ! -e data/fbank/.musan.done ]; then - mkdir -p data/fbank - python3 ./local/compute_fbank_musan.py - touch data/fbank/.musan.done - fi -fi - -if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then - log "Stage 5: Prepare BPE train data and set of words" - lang_dir=data/lang - mkdir -p $lang_dir - - if [ ! -f $lang_dir/train.txt ]; then - gunzip -c $dl_dir/tedlium3/LM/*.en.gz | sed 's: <\/s>::g' > $lang_dir/train_orig.txt - - ./local/prepare_transcripts.py \ - --input-text-path $lang_dir/train_orig.txt \ - --output-text-path $lang_dir/train.txt - fi - - if [ ! -f $lang_dir/words.txt ]; then - - awk '{print $1}' $dl_dir/tedlium3/TEDLIUM.152k.dic | - sed 's:([0-9])::g' | sort | uniq > $lang_dir/words_orig.txt - - ./local/prepare_words.py --lang-dir $lang_dir - fi -fi - -if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then - log "Stage 6: Prepare BPE based lang" - - for vocab_size in ${vocab_sizes[@]}; do - lang_dir=data/lang_bpe_${vocab_size} - mkdir -p $lang_dir - # We reuse words.txt from phone based lexicon - # so that the two can share G.pt later. - cp data/lang/words.txt $lang_dir - - ./local/train_bpe_model.py \ - --lang-dir $lang_dir \ - --vocab-size $vocab_size \ - --transcript data/lang/train.txt - - if [ ! -f $lang_dir/L_disambig.pt ]; then - ./local/prepare_lang_bpe.py --lang-dir $lang_dir --oov "" - fi - done -fi - -if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then - log "Stage 7: Prepare G" - # We assume you have install kaldilm, if not, please install - # it using: pip install kaldilm - - mkdir -p data/lm - if [ ! -f data/lm/G_4_gram_small.fst.txt ]; then - # It is used in building HLG - python3 -m kaldilm \ - --read-symbol-table="data/lang/words.txt" \ - --disambig-symbol='#0' \ - --max-order=4 \ - --max-arpa-warnings=-1 \ - $dl_dir/lm/4gram_small.arpa > data/lm/G_4_gram_small.fst.txt - fi - - if [ ! -f data/lm/G_4_gram_big.fst.txt ]; then - # It is used for LM rescoring - python3 -m kaldilm \ - --read-symbol-table="data/lang/words.txt" \ - --disambig-symbol='#0' \ - --max-order=4 \ - --max-arpa-warnings=-1 \ - $dl_dir/lm/4gram_big.arpa > data/lm/G_4_gram_big.fst.txt - fi -fi - -if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then - log "Stage 8: Compile HLG" - - for vocab_size in ${vocab_sizes[@]}; do - lang_dir=data/lang_bpe_${vocab_size} - - if [ ! -f $lang_dir/HLG.pt ]; then - ./local/compile_hlg.py \ - --lang-dir $lang_dir \ - --lm G_4_gram_small - fi - done -fi - -if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then - log "Stage 9: Split cuts by speaker id" - gzip -d data/fbank/tedlium_cuts_test.jsonl.gz - - i=0 - for spk in $dl_dir/tedlium3/legacy/test/sph/*; do - spk_id=${spk#*sph\/} - spk_id=${spk_id%.sph} - echo $spk_id - cat data/fbank/tedlium_cuts_test.jsonl | grep speaker\":\ \"$spk_id\" > data/fbank/tedlium_cuts_test_$i.jsonl - gzip data/fbank/tedlium_cuts_test_$i.jsonl - i=`expr $i + 1` - done - - gzip data/fbank/tedlium_cuts_test.jsonl - #cat data/fbank/tedlium_cuts_test.jsonl.gz | grep - -fi