mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-12 03:22:19 +00:00
add lm preparation
This commit is contained in:
parent
eb79f1eceb
commit
77d8a15288
147
egs/icmcasr/ASR/local/compile_lg.py
Normal file
147
egs/icmcasr/ASR/local/compile_lg.py
Normal file
@ -0,0 +1,147 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input lang_dir and generates LG from
|
||||
|
||||
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||
|
||||
Caution: We use a lexicon that contains disambiguation symbols
|
||||
|
||||
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||
|
||||
The generated LG is saved in $lang_dir/LG.pt
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lm",
|
||||
type=str,
|
||||
default="G_3_gram",
|
||||
help="""Stem name for LM used in HLG compiling.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compile_LG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||
|
||||
Return:
|
||||
An FSA representing LG.
|
||||
"""
|
||||
lexicon = Lexicon(lang_dir)
|
||||
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||
|
||||
if Path(f"data/lm/{lm}.pt").is_file():
|
||||
logging.info(f"Loading pre-compiled {lm}")
|
||||
d = torch.load(f"data/lm/{lm}.pt")
|
||||
G = k2.Fsa.from_dict(d)
|
||||
else:
|
||||
logging.info(f"Loading {lm}.fst.txt")
|
||||
with open(f"data/lm/{lm}.fst.txt") as f:
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
torch.save(G.as_dict(), f"data/lm/{lm}.pt")
|
||||
|
||||
first_token_disambig_id = lexicon.token_table["#0"]
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
L = k2.arc_sort(L)
|
||||
G = k2.arc_sort(G)
|
||||
|
||||
logging.info("Intersecting L and G")
|
||||
LG = k2.compose(L, G)
|
||||
logging.info(f"LG shape: {LG.shape}")
|
||||
|
||||
logging.info("Connecting LG")
|
||||
LG = k2.connect(LG)
|
||||
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||
|
||||
logging.info(type(LG.aux_labels))
|
||||
logging.info("Determinizing LG")
|
||||
|
||||
LG = k2.determinize(LG, k2.DeterminizeWeightPushingType.kLogWeightPushing)
|
||||
logging.info(type(LG.aux_labels))
|
||||
|
||||
logging.info("Connecting LG after k2.determinize")
|
||||
LG = k2.connect(LG)
|
||||
|
||||
logging.info("Removing disambiguation symbols on LG")
|
||||
|
||||
# LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||
# see https://github.com/k2-fsa/k2/pull/1140
|
||||
labels = LG.labels
|
||||
labels[labels >= first_token_disambig_id] = 0
|
||||
LG.labels = labels
|
||||
|
||||
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||
|
||||
LG = k2.remove_epsilon(LG)
|
||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||
|
||||
LG = k2.connect(LG)
|
||||
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
LG = k2.arc_sort(LG)
|
||||
|
||||
return LG
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
if (lang_dir / "LG.pt").is_file():
|
||||
logging.info(f"{lang_dir}/LG.pt already exists - skipping")
|
||||
return
|
||||
|
||||
logging.info(f"Processing {lang_dir}")
|
||||
|
||||
LG = compile_LG(lang_dir, args.lm)
|
||||
logging.info(f"Saving LG.pt to {lang_dir}")
|
||||
torch.save(LG.as_dict(), f"{lang_dir}/LG.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
1
egs/icmcasr/ASR/local/text2segments.py
Symbolic link
1
egs/icmcasr/ASR/local/text2segments.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../wenetspeech/ASR/local/text2segments.py
|
1
egs/icmcasr/ASR/local/text2token.py
Symbolic link
1
egs/icmcasr/ASR/local/text2token.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../wenetspeech/ASR/local/text2token.py
|
@ -6,8 +6,8 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
set -eou pipefail
|
||||
|
||||
nj=15
|
||||
stage=4
|
||||
stop_stage=4
|
||||
stage=8
|
||||
stop_stage=8
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
@ -34,9 +34,9 @@ dl_dir=$PWD/download
|
||||
# It will generate data/lang_bbpe_xxx,
|
||||
# data/lang_bbpe_yyy if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
# 2000
|
||||
2000
|
||||
# 1000
|
||||
500
|
||||
# 500
|
||||
)
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
@ -103,19 +103,91 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
lang_phone_dir=data/lang_phone
|
||||
lang_char_dir=data/lang_char
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Prepare G.fst"
|
||||
mkdir -p $lang_phone_dir
|
||||
log "Stage 6: Prepare char based lang"
|
||||
mkdir -p $lang_char_dir
|
||||
|
||||
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
||||
cat - $dl_dir/icmcasr/resource_icmcasr/lexicon.txt |
|
||||
sort | uniq > $lang_phone_dir/lexicon.txt
|
||||
if ! which jq; then
|
||||
echo "This script is intended to be used with jq but you have not installed jq
|
||||
Note: in Linux, you can install jq with the following command:
|
||||
1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
||||
2. chmod +x ./jq
|
||||
3. cp jq /usr/bin" && exit 1
|
||||
fi
|
||||
if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then
|
||||
log "Prepare text."
|
||||
gunzip -c data/manifests/icmcasr-ihm_supervisions_train.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' \
|
||||
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
||||
fi
|
||||
|
||||
./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir
|
||||
|
||||
if [ ! -f $lang_phone_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang.py --lang-dir $lang_phone_dir
|
||||
# The implementation of chinese word segmentation for text,
|
||||
# and it will take about 15 minutes.
|
||||
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
|
||||
python3 ./local/text2segments.py \
|
||||
--num-process $nj \
|
||||
--input-file $lang_char_dir/text \
|
||||
--output-file $lang_char_dir/text_words_segmentation
|
||||
fi
|
||||
if [ -f $lang_char_dir/words.txt ]; then
|
||||
cd $lang_char_dir
|
||||
ln -s ../../../../wenetspeech/ASR/data/lang_char/words.txt .
|
||||
cd ..
|
||||
else
|
||||
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Prepare G"
|
||||
if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then
|
||||
python3 ./shared/make_kn_lm.py \
|
||||
-ngram-order 3 \
|
||||
-text $lang_char_dir/text_words_segmentation \
|
||||
-lm $lang_char_dir/3-gram.unpruned.arpa
|
||||
fi
|
||||
|
||||
mkdir -p data/lm
|
||||
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
||||
# It is used in building LG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="$lang_char_dir/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
$lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_char_dir/5-gram.unpruned.arpa ]; then
|
||||
python3 ./shared/make_kn_lm.py \
|
||||
-ngram-order 5 \
|
||||
-text $lang_char_dir/text_words_segmentation \
|
||||
-lm $lang_char_dir/5-gram.unpruned.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f data/lm/G_5_gram.fst.txt ]; then
|
||||
# It is used in building LG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="$lang_char_dir/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=5 \
|
||||
$lang_char_dir/5-gram.unpruned.arpa > data/lm/G_5_gram.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 15: Compile LG"
|
||||
if [ ! -d data/lang_bpe_2000/ ]; then
|
||||
log "Abort! Please run ../../multi_zh-hans/ASR/prepare.sh"
|
||||
exit 1
|
||||
cd data
|
||||
ln -s ../../../../multi_zh-hans/ASR/data/lang_bpe_2000 .
|
||||
cd ..
|
||||
else
|
||||
log "data/lang_bpe_2000/ exists"
|
||||
fi
|
||||
lang_dir=data/lang_bpe_2000
|
||||
python3 ./local/compile_lg.py --lang-dir $lang_dir
|
||||
#python3 ./local/compile_lg.py --lang-dir $lang_dir --lm G_5_gram
|
||||
fi
|
Loading…
x
Reference in New Issue
Block a user