add lm preparation

This commit is contained in:
Yuekai Zhang 2023-12-19 19:05:48 +08:00
parent eb79f1eceb
commit 77d8a15288
4 changed files with 235 additions and 14 deletions

View File

@ -0,0 +1,147 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input lang_dir and generates LG from
- L, the lexicon, built from lang_dir/L_disambig.pt
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G_3_gram.fst.txt
The generated LG is saved in $lang_dir/LG.pt
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
from icefall.lexicon import Lexicon
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
parser.add_argument(
"--lm",
type=str,
default="G_3_gram",
help="""Stem name for LM used in HLG compiling.
""",
)
return parser.parse_args()
def compile_LG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
Return:
An FSA representing LG.
"""
lexicon = Lexicon(lang_dir)
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
if Path(f"data/lm/{lm}.pt").is_file():
logging.info(f"Loading pre-compiled {lm}")
d = torch.load(f"data/lm/{lm}.pt")
G = k2.Fsa.from_dict(d)
else:
logging.info(f"Loading {lm}.fst.txt")
with open(f"data/lm/{lm}.fst.txt") as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
torch.save(G.as_dict(), f"data/lm/{lm}.pt")
first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]
L = k2.arc_sort(L)
G = k2.arc_sort(G)
logging.info("Intersecting L and G")
LG = k2.compose(L, G)
logging.info(f"LG shape: {LG.shape}")
logging.info("Connecting LG")
LG = k2.connect(LG)
logging.info(f"LG shape after k2.connect: {LG.shape}")
logging.info(type(LG.aux_labels))
logging.info("Determinizing LG")
LG = k2.determinize(LG, k2.DeterminizeWeightPushingType.kLogWeightPushing)
logging.info(type(LG.aux_labels))
logging.info("Connecting LG after k2.determinize")
LG = k2.connect(LG)
logging.info("Removing disambiguation symbols on LG")
# LG.labels[LG.labels >= first_token_disambig_id] = 0
# see https://github.com/k2-fsa/k2/pull/1140
labels = LG.labels
labels[labels >= first_token_disambig_id] = 0
LG.labels = labels
assert isinstance(LG.aux_labels, k2.RaggedTensor)
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
return LG
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
if (lang_dir / "LG.pt").is_file():
logging.info(f"{lang_dir}/LG.pt already exists - skipping")
return
logging.info(f"Processing {lang_dir}")
LG = compile_LG(lang_dir, args.lm)
logging.info(f"Saving LG.pt to {lang_dir}")
torch.save(LG.as_dict(), f"{lang_dir}/LG.pt")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../wenetspeech/ASR/local/text2segments.py

View File

@ -0,0 +1 @@
../../../wenetspeech/ASR/local/text2token.py

View File

@ -6,8 +6,8 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail set -eou pipefail
nj=15 nj=15
stage=4 stage=8
stop_stage=4 stop_stage=8
# We assume dl_dir (download dir) contains the following # We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded # directories and files. If not, they will be downloaded
@ -34,9 +34,9 @@ dl_dir=$PWD/download
# It will generate data/lang_bbpe_xxx, # It will generate data/lang_bbpe_xxx,
# data/lang_bbpe_yyy if the array contains xxx, yyy # data/lang_bbpe_yyy if the array contains xxx, yyy
vocab_sizes=( vocab_sizes=(
# 2000 2000
# 1000 # 1000
500 # 500
) )
# All files generated by this script are saved in "data". # All files generated by this script are saved in "data".
@ -103,19 +103,91 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
fi fi
fi fi
lang_phone_dir=data/lang_phone lang_char_dir=data/lang_char
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare G.fst" log "Stage 6: Prepare char based lang"
mkdir -p $lang_phone_dir mkdir -p $lang_char_dir
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) | if ! which jq; then
cat - $dl_dir/icmcasr/resource_icmcasr/lexicon.txt | echo "This script is intended to be used with jq but you have not installed jq
sort | uniq > $lang_phone_dir/lexicon.txt Note: in Linux, you can install jq with the following command:
1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
2. chmod +x ./jq
3. cp jq /usr/bin" && exit 1
fi
if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then
log "Prepare text."
gunzip -c data/manifests/icmcasr-ihm_supervisions_train.jsonl.gz \
| jq '.text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir # The implementation of chinese word segmentation for text,
# and it will take about 15 minutes.
if [ ! -f $lang_phone_dir/L_disambig.pt ]; then if [ ! -f $lang_char_dir/text_words_segmentation ]; then
./local/prepare_lang.py --lang-dir $lang_phone_dir python3 ./local/text2segments.py \
--num-process $nj \
--input-file $lang_char_dir/text \
--output-file $lang_char_dir/text_words_segmentation
fi
if [ -f $lang_char_dir/words.txt ]; then
cd $lang_char_dir
ln -s ../../../../wenetspeech/ASR/data/lang_char/words.txt .
cd ..
else
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh"
exit 1
fi fi
fi fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare G"
if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lang_char_dir/text_words_segmentation \
-lm $lang_char_dir/3-gram.unpruned.arpa
fi
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building LG
python3 -m kaldilm \
--read-symbol-table="$lang_char_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f $lang_char_dir/5-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 5 \
-text $lang_char_dir/text_words_segmentation \
-lm $lang_char_dir/5-gram.unpruned.arpa
fi
if [ ! -f data/lm/G_5_gram.fst.txt ]; then
# It is used in building LG
python3 -m kaldilm \
--read-symbol-table="$lang_char_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=5 \
$lang_char_dir/5-gram.unpruned.arpa > data/lm/G_5_gram.fst.txt
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 15: Compile LG"
if [ ! -d data/lang_bpe_2000/ ]; then
log "Abort! Please run ../../multi_zh-hans/ASR/prepare.sh"
exit 1
cd data
ln -s ../../../../multi_zh-hans/ASR/data/lang_bpe_2000 .
cd ..
else
log "data/lang_bpe_2000/ exists"
fi
lang_dir=data/lang_bpe_2000
python3 ./local/compile_lg.py --lang-dir $lang_dir
#python3 ./local/compile_lg.py --lang-dir $lang_dir --lm G_5_gram
fi