fix style

This commit is contained in:
marcoyang 2024-03-15 11:05:45 +08:00
parent 7ead73f746
commit 77bfecd3d8
6 changed files with 66 additions and 54 deletions

View File

@ -484,13 +484,9 @@ class LibriSpeechAsrDataModule:
@lru_cache()
def gigaspeech_dev_cuts(self) -> CutSet:
logging.info("About to get Gigaspeech dev cuts")
return load_manifest_lazy(
self.args.manifest_dir / "cuts_DEV.jsonl.gz"
)
return load_manifest_lazy(self.args.manifest_dir / "cuts_DEV.jsonl.gz")
@lru_cache()
def gigaspeech_test_cuts(self) -> CutSet:
logging.info("About to get Gigaspeech test cuts")
return load_manifest_lazy(
self.args.manifest_dir / "cuts_TEST.jsonl.gz"
)
return load_manifest_lazy(self.args.manifest_dir / "cuts_TEST.jsonl.gz")

View File

@ -121,7 +121,7 @@ from beam_search import (
modified_beam_search_lm_shallow_fusion,
modified_beam_search_LODR,
)
from finetune import add_model_arguments, add_finetune_arguments, get_model, get_params
from finetune import add_finetune_arguments, add_model_arguments, get_model, get_params
from icefall import ContextGraph, LmScorer, NgramLm
from icefall.checkpoint import (

View File

@ -165,9 +165,9 @@ from typing import List, Tuple
import k2
import torch
from finetune import add_finetune_arguments, add_model_arguments, get_model, get_params
from scaling_converter import convert_scaled_to_non_scaled
from torch import Tensor, nn
from finetune import add_model_arguments, add_finetune_arguments, get_model, get_params
from icefall.checkpoint import (
average_checkpoints,
@ -499,7 +499,7 @@ def main():
for k in param_names:
assert k in state_dict.keys()
new_state_dict[k] = state_dict[k]
base_model.load_state_dict(new_state_dict, strict=True)
model = base_model

View File

@ -147,17 +147,11 @@ def add_finetune_arguments(parser: argparse.ArgumentParser):
)
parser.add_argument(
"--use-lora",
type=str2bool,
default=True,
help="If use LoRA for fine-tune"
"--use-lora", type=str2bool, default=True, help="If use LoRA for fine-tune"
)
parser.add_argument(
"--lora-r",
type=int,
default=0,
help="The bottleneck dimension of LoRA"
"--lora-r", type=int, default=0, help="The bottleneck dimension of LoRA"
)
parser.add_argument(
@ -1287,8 +1281,12 @@ def run(rank, world_size, args):
else:
p.requires_grad = False
logging.info("A total of {} trainable parameters ({:.3f}% of the whole model)".format(num_trainable, num_trainable/num_param * 100))
logging.info(
"A total of {} trainable parameters ({:.3f}% of the whole model)".format(
num_trainable, num_trainable / num_param * 100
)
)
model.to(device)
if world_size > 1:
logging.info("Using DDP")

View File

@ -15,16 +15,17 @@
# limitations under the License.
from typing import Optional, Tuple, Union
import logging
import k2
from torch.cuda.amp import custom_fwd, custom_bwd
import random
import torch
import math
import random
from typing import Optional, Tuple, Union
import k2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
def logaddexp_onnx(x: Tensor, y: Tensor) -> Tensor:
@ -518,18 +519,19 @@ def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear:
torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale)
return ans
class LoRALayer:
def __init__(
self,
r: int,
lora_alpha: int,
self,
r: int,
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,
):
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
if lora_dropout > 0.0:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
@ -537,23 +539,29 @@ class LoRALayer:
self.merged = False
self.merge_weights = merge_weights
class ScaledLinear_lora(nn.Linear, LoRALayer):
def __init__(
self,
in_features: int,
out_features: int,
r: int=0,
fan_in_fan_out: bool=False,
lora_alpha: int=1,
lora_dropout: float=0.0,
r: int = 0,
fan_in_fan_out: bool = False,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
initial_scale: float = 1.0,
merge_weights: bool = True,
**kwargs,
):
nn.Linear.__init__(self, in_features, out_features, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
merge_weights=merge_weights)
LoRALayer.__init__(
self,
r=r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
merge_weights=merge_weights,
)
self.initial_scale = initial_scale
self.fan_in_fan_out = fan_in_fan_out
if r > 0:
@ -563,7 +571,7 @@ class ScaledLinear_lora(nn.Linear, LoRALayer):
self.weight.requires_grad = False
self.reset_parameters()
def reset_parameters(self):
# initialize the parameters
nn.Linear.reset_parameters(self)
@ -572,16 +580,19 @@ class ScaledLinear_lora(nn.Linear, LoRALayer):
with torch.no_grad():
self.weight[:] *= initial_scale
if self.bias is not None:
nn.init.uniform_(self.bias, -0.1 * initial_scale, 0.1 * initial_scale)
if hasattr(self, 'lora_A'):
nn.init.uniform_(
self.bias, -0.1 * initial_scale, 0.1 * initial_scale
)
if hasattr(self, "lora_A"):
# initialize B the same way as the default for nn.Linear and A to zero
# this is different than what is described in the paper but should not affect performance
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def train(self, mode: bool=True):
def train(self, mode: bool = True):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
nn.Linear.train(self, mode)
if mode:
# We don't want the weights to be merged in training mode
@ -595,18 +606,24 @@ class ScaledLinear_lora(nn.Linear, LoRALayer):
# Merge the weights and mark it
if self.r > 0:
self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
self.merged = True
self.merged = True
def forward(self, x: torch.Tensor):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
if self.r > 0 and not self.merged:
result = F.linear(x, T(self.weight), bias=self.bias)
delta_result = self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)
delta_result = (
self.lora_dropout(x)
@ self.lora_A.transpose(0, 1)
@ self.lora_B.transpose(0, 1)
)
return result + delta_result * self.scaling
else:
return F.linear(x, T(self.weight), bias=self.bias)
def ScaledConv1d(*args, initial_scale: float = 1.0, **kwargs) -> nn.Conv1d:
"""
Behaves like a constructor of a modified version of nn.Conv1d
@ -1740,6 +1757,7 @@ class ActivationDropoutAndLinear(torch.nn.Module):
self.dropout_shared_dim,
)
class ActivationDropoutAndLinear_lora(torch.nn.Module):
def __init__(
self,
@ -1749,9 +1767,9 @@ class ActivationDropoutAndLinear_lora(torch.nn.Module):
activation: str = "SwooshL",
dropout_p: FloatLike = 0.0,
dropout_shared_dim: Optional[int] = -1,
r: int=0,
lora_alpha: int=1,
lora_dropout: float=0.0,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
initial_scale: float = 1.0,
):
super().__init__()

View File

@ -30,7 +30,6 @@ from scaling import (
)
from scaling import (
ScaledLinear, # not as in other dirs.. just scales down initial parameter values.
ScaledLinear_lora
)
from scaling import (
ActivationDropoutAndLinear,
@ -40,6 +39,7 @@ from scaling import (
ChunkCausalDepthwiseConv1d,
Dropout2,
FloatLike,
ScaledLinear_lora,
ScheduledFloat,
Whiten,
convert_num_channels,
@ -636,7 +636,7 @@ class Zipformer2EncoderLayer(nn.Module):
)
self.self_attn1 = SelfAttention(
embed_dim,
embed_dim,
num_heads,
value_head_dim,
lora_r=lora_r,
@ -645,7 +645,7 @@ class Zipformer2EncoderLayer(nn.Module):
)
self.self_attn2 = SelfAttention(
embed_dim,
embed_dim,
num_heads,
value_head_dim,
lora_r=lora_r,
@ -654,7 +654,7 @@ class Zipformer2EncoderLayer(nn.Module):
)
self.feed_forward1 = FeedforwardModule(
embed_dim,
embed_dim,
(feedforward_dim * 3) // 4,
dropout,
lora_r=lora_r,
@ -672,7 +672,7 @@ class Zipformer2EncoderLayer(nn.Module):
)
self.feed_forward3 = FeedforwardModule(
embed_dim,
embed_dim,
(feedforward_dim * 5) // 4,
dropout,
lora_r=lora_r,
@ -1566,7 +1566,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)),
lora_r: int = 0,
lora_alpha: int = 4,
lora_dropout: float=0.0
lora_dropout: float = 0.0,
) -> None:
super().__init__()
self.embed_dim = embed_dim
@ -1935,7 +1935,7 @@ class SelfAttention(nn.Module):
value_head_dim: int,
lora_r: int = 0,
lora_alpha: int = 4,
lora_dropout: float=0.0
lora_dropout: float = 0.0,
) -> None:
super().__init__()
self.in_proj = ScaledLinear_lora(
@ -2064,7 +2064,7 @@ class FeedforwardModule(nn.Module):
dropout: FloatLike,
lora_r: int = 0,
lora_alpha: int = 4,
lora_dropout: float=0.0
lora_dropout: float = 0.0,
):
super(FeedforwardModule, self).__init__()
self.in_proj = ScaledLinear_lora(