mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 13:34:20 +00:00
Add RNN params to parser
This commit is contained in:
parent
7e7bc22cb5
commit
779589a2de
@ -144,7 +144,6 @@ def main():
|
|||||||
args.lm_data = Path(args.lm_data)
|
args.lm_data = Path(args.lm_data)
|
||||||
|
|
||||||
params = AttributeDict(vars(args))
|
params = AttributeDict(vars(args))
|
||||||
print(params)
|
|
||||||
|
|
||||||
setup_logger(f"{params.exp_dir}/log-ppl/")
|
setup_logger(f"{params.exp_dir}/log-ppl/")
|
||||||
logging.info("Computing perplexity started")
|
logging.info("Computing perplexity started")
|
||||||
|
@ -70,9 +70,9 @@ class LmDataset(torch.utils.data.Dataset):
|
|||||||
# in the worst case, the subsequent sentences also have
|
# in the worst case, the subsequent sentences also have
|
||||||
# this number of tokens, we should reduce the batch size
|
# this number of tokens, we should reduce the batch size
|
||||||
# so that this batch will not contain too many tokens
|
# so that this batch will not contain too many tokens
|
||||||
actucal_batch_size = batch_size // sz + 1
|
actual_batch_size = batch_size // sz + 1
|
||||||
actucal_batch_size = min(actucal_batch_size, batch_size)
|
actual_batch_size = min(actual_batch_size, batch_size)
|
||||||
end = cur + actucal_batch_size
|
end = cur + actual_batch_size
|
||||||
end = min(end, num_sentences)
|
end = min(end, num_sentences)
|
||||||
this_batch_indexes = torch.arange(cur, end).tolist()
|
this_batch_indexes = torch.arange(cur, end).tolist()
|
||||||
batch_indexes.append(this_batch_indexes)
|
batch_indexes.append(this_batch_indexes)
|
||||||
|
@ -56,10 +56,7 @@ def main():
|
|||||||
max_sent_len=3,
|
max_sent_len=3,
|
||||||
batch_size=4,
|
batch_size=4,
|
||||||
)
|
)
|
||||||
print(dataset.sentences)
|
|
||||||
print(dataset.words)
|
|
||||||
print(dataset.batch_indexes)
|
|
||||||
print(len(dataset))
|
|
||||||
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
||||||
dataloader = torch.utils.data.DataLoader(
|
dataloader = torch.utils.data.DataLoader(
|
||||||
dataset, batch_size=1, collate_fn=collate_fn
|
dataset, batch_size=1, collate_fn=collate_fn
|
||||||
|
@ -40,7 +40,7 @@ def test_rnn_lm_model():
|
|||||||
)
|
)
|
||||||
lengths = torch.tensor([4, 3, 2])
|
lengths = torch.tensor([4, 3, 2])
|
||||||
nll_loss = model(x, y, lengths)
|
nll_loss = model(x, y, lengths)
|
||||||
print(nll_loss)
|
|
||||||
"""
|
"""
|
||||||
tensor([[1.1180, 1.3059, 1.2426, 1.7773],
|
tensor([[1.1180, 1.3059, 1.2426, 1.7773],
|
||||||
[1.4231, 1.2783, 1.7321, 0.0000],
|
[1.4231, 1.2783, 1.7321, 0.0000],
|
||||||
|
@ -1,607 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
./rnn_lm/train.py \
|
|
||||||
--start-epoch 0 \
|
|
||||||
--num-epochs 20 \
|
|
||||||
--batch-size 200 \
|
|
||||||
|
|
||||||
If you want to use DDP training, e.g., a single node with 4 GPUs,
|
|
||||||
use:
|
|
||||||
|
|
||||||
python -m torch.distributed.launch \
|
|
||||||
--use_env \
|
|
||||||
--nproc_per_node 4 \
|
|
||||||
./rnn_lm/train.py \
|
|
||||||
--use-ddp-launch true \
|
|
||||||
--start-epoch 0 \
|
|
||||||
--num-epochs 10 \
|
|
||||||
--batch-size 200
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from pathlib import Path
|
|
||||||
from shutil import copyfile
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.multiprocessing as mp
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.optim as optim
|
|
||||||
from lhotse.utils import fix_random_seed
|
|
||||||
from rnn_lm.dataset import get_dataloader
|
|
||||||
from rnn_lm.model import RnnLmModel
|
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
||||||
from torch.nn.utils import clip_grad_norm_
|
|
||||||
from torch.utils.tensorboard import SummaryWriter
|
|
||||||
|
|
||||||
from icefall.checkpoint import load_checkpoint
|
|
||||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
||||||
from icefall.dist import (
|
|
||||||
cleanup_dist,
|
|
||||||
get_local_rank,
|
|
||||||
get_rank,
|
|
||||||
get_world_size,
|
|
||||||
setup_dist,
|
|
||||||
)
|
|
||||||
from icefall.utils import (
|
|
||||||
AttributeDict,
|
|
||||||
MetricsTracker,
|
|
||||||
get_env_info,
|
|
||||||
setup_logger,
|
|
||||||
str2bool,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--world-size",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="Number of GPUs for DDP training.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--master-port",
|
|
||||||
type=int,
|
|
||||||
default=12354,
|
|
||||||
help="Master port to use for DDP training.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--tensorboard",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Should various information be logged in tensorboard.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-epochs",
|
|
||||||
type=int,
|
|
||||||
default=10,
|
|
||||||
help="Number of epochs to train.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--start-epoch",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""Resume training from from this epoch.
|
|
||||||
If it is positive, it will load checkpoint from
|
|
||||||
exp_dir/epoch-{start_epoch-1}.pt
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="rnn_lm/exp_small",
|
|
||||||
help="""The experiment dir.
|
|
||||||
It specifies the directory where all training related
|
|
||||||
files, e.g., checkpoints, logs, etc, are saved
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--batch-size",
|
|
||||||
type=int,
|
|
||||||
default=50,
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-ddp-launch",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="True if using torch.distributed.launch",
|
|
||||||
)
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
"""Return a dict containing training parameters."""
|
|
||||||
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
# LM training/validation data
|
|
||||||
"lm_data": "data/lm_training_bpe_500/sorted_lm_data.pt",
|
|
||||||
"lm_data_valid": "data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
|
||||||
"max_sent_len": 200,
|
|
||||||
"sos_id": 1,
|
|
||||||
"eos_id": 1,
|
|
||||||
"blank_id": 0,
|
|
||||||
# model related
|
|
||||||
#
|
|
||||||
# vocab size of the BPE model
|
|
||||||
"vocab_size": 500,
|
|
||||||
"embedding_dim": 1024,
|
|
||||||
"hidden_dim": 1024,
|
|
||||||
"num_layers": 2,
|
|
||||||
#
|
|
||||||
"lr": 1e-3,
|
|
||||||
"weight_decay": 1e-6,
|
|
||||||
#
|
|
||||||
"best_train_loss": float("inf"),
|
|
||||||
"best_valid_loss": float("inf"),
|
|
||||||
"best_train_epoch": -1,
|
|
||||||
"best_valid_epoch": -1,
|
|
||||||
"batch_idx_train": 0,
|
|
||||||
"log_interval": 200,
|
|
||||||
"reset_interval": 2000,
|
|
||||||
"valid_interval": 30000,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def load_checkpoint_if_available(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
||||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
||||||
) -> None:
|
|
||||||
"""Load checkpoint from file.
|
|
||||||
|
|
||||||
If params.start_epoch is positive, it will load the checkpoint from
|
|
||||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
|
||||||
|
|
||||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
|
||||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
||||||
and `best_valid_loss` in `params`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
The return value of :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The training model.
|
|
||||||
optimizer:
|
|
||||||
The optimizer that we are using.
|
|
||||||
scheduler:
|
|
||||||
The learning rate scheduler we are using.
|
|
||||||
Returns:
|
|
||||||
Return None.
|
|
||||||
"""
|
|
||||||
if params.start_epoch <= 0:
|
|
||||||
return
|
|
||||||
|
|
||||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
||||||
logging.info(f"Loading checkpoint: {filename}")
|
|
||||||
saved_params = load_checkpoint(
|
|
||||||
filename,
|
|
||||||
model=model,
|
|
||||||
optimizer=optimizer,
|
|
||||||
scheduler=scheduler,
|
|
||||||
)
|
|
||||||
|
|
||||||
keys = [
|
|
||||||
"best_train_epoch",
|
|
||||||
"best_valid_epoch",
|
|
||||||
"batch_idx_train",
|
|
||||||
"best_train_loss",
|
|
||||||
"best_valid_loss",
|
|
||||||
]
|
|
||||||
for k in keys:
|
|
||||||
params[k] = saved_params[k]
|
|
||||||
|
|
||||||
return saved_params
|
|
||||||
|
|
||||||
|
|
||||||
def save_checkpoint(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
||||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
||||||
rank: int = 0,
|
|
||||||
) -> None:
|
|
||||||
"""Save model, optimizer, scheduler and training stats to file.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The training model.
|
|
||||||
"""
|
|
||||||
if rank != 0:
|
|
||||||
return
|
|
||||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
||||||
save_checkpoint_impl(
|
|
||||||
filename=filename,
|
|
||||||
model=model,
|
|
||||||
params=params,
|
|
||||||
optimizer=optimizer,
|
|
||||||
scheduler=scheduler,
|
|
||||||
rank=rank,
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.best_train_epoch == params.cur_epoch:
|
|
||||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
||||||
copyfile(src=filename, dst=best_train_filename)
|
|
||||||
|
|
||||||
if params.best_valid_epoch == params.cur_epoch:
|
|
||||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
||||||
copyfile(src=filename, dst=best_valid_filename)
|
|
||||||
|
|
||||||
|
|
||||||
def compute_loss(
|
|
||||||
model: nn.Module,
|
|
||||||
x: torch.Tensor,
|
|
||||||
y: torch.Tensor,
|
|
||||||
sentence_lengths: torch.Tensor,
|
|
||||||
is_training: bool,
|
|
||||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
|
||||||
"""Compute the negative log-likelihood loss given a model and its input.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The NN model, e.g., RnnLmModel.
|
|
||||||
x:
|
|
||||||
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
|
||||||
each row starts with SOS ID.
|
|
||||||
y:
|
|
||||||
A 2-D tensor. Each row is a shifted version of the corresponding row
|
|
||||||
in `x` but ends with an EOS ID (before padding).
|
|
||||||
sentence_lengths:
|
|
||||||
A 1-D tensor containing number of tokens of each sentence
|
|
||||||
before padding.
|
|
||||||
is_training:
|
|
||||||
True for training. False for validation.
|
|
||||||
"""
|
|
||||||
with torch.set_grad_enabled(is_training):
|
|
||||||
device = model.device
|
|
||||||
x = x.to(device)
|
|
||||||
y = y.to(device)
|
|
||||||
sentence_lengths = sentence_lengths.to(device)
|
|
||||||
|
|
||||||
nll = model(x, y, sentence_lengths)
|
|
||||||
loss = nll.sum()
|
|
||||||
|
|
||||||
num_tokens = sentence_lengths.sum().item()
|
|
||||||
|
|
||||||
loss_info = MetricsTracker()
|
|
||||||
# Note: Due to how MetricsTracker() is designed,
|
|
||||||
# we use "frames" instead of "num_tokens" as a key here
|
|
||||||
loss_info["frames"] = num_tokens
|
|
||||||
loss_info["loss"] = loss.detach().item()
|
|
||||||
return loss, loss_info
|
|
||||||
|
|
||||||
|
|
||||||
def compute_validation_loss(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
valid_dl: torch.utils.data.DataLoader,
|
|
||||||
world_size: int = 1,
|
|
||||||
) -> MetricsTracker:
|
|
||||||
"""Run the validation process. The validation loss
|
|
||||||
is saved in `params.valid_loss`.
|
|
||||||
"""
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
tot_loss = MetricsTracker()
|
|
||||||
|
|
||||||
for batch_idx, batch in enumerate(valid_dl):
|
|
||||||
x, y, sentence_lengths = batch
|
|
||||||
|
|
||||||
loss, loss_info = compute_loss(
|
|
||||||
model=model,
|
|
||||||
x=x,
|
|
||||||
y=y,
|
|
||||||
sentence_lengths=sentence_lengths,
|
|
||||||
is_training=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
assert loss.requires_grad is False
|
|
||||||
tot_loss = tot_loss + loss_info
|
|
||||||
|
|
||||||
if world_size > 1:
|
|
||||||
tot_loss.reduce(loss.device)
|
|
||||||
|
|
||||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
||||||
if loss_value < params.best_valid_loss:
|
|
||||||
params.best_valid_epoch = params.cur_epoch
|
|
||||||
params.best_valid_loss = loss_value
|
|
||||||
|
|
||||||
return tot_loss
|
|
||||||
|
|
||||||
|
|
||||||
def train_one_epoch(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
optimizer: torch.optim.Optimizer,
|
|
||||||
train_dl: torch.utils.data.DataLoader,
|
|
||||||
valid_dl: torch.utils.data.DataLoader,
|
|
||||||
tb_writer: Optional[SummaryWriter] = None,
|
|
||||||
world_size: int = 1,
|
|
||||||
) -> None:
|
|
||||||
"""Train the model for one epoch.
|
|
||||||
|
|
||||||
The training loss from the mean of all sentences is saved in
|
|
||||||
`params.train_loss`. It runs the validation process every
|
|
||||||
`params.valid_interval` batches.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The model for training.
|
|
||||||
optimizer:
|
|
||||||
The optimizer we are using.
|
|
||||||
train_dl:
|
|
||||||
Dataloader for the training dataset.
|
|
||||||
valid_dl:
|
|
||||||
Dataloader for the validation dataset.
|
|
||||||
tb_writer:
|
|
||||||
Writer to write log messages to tensorboard.
|
|
||||||
world_size:
|
|
||||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
||||||
"""
|
|
||||||
model.train()
|
|
||||||
|
|
||||||
tot_loss = MetricsTracker()
|
|
||||||
|
|
||||||
for batch_idx, batch in enumerate(train_dl):
|
|
||||||
params.batch_idx_train += 1
|
|
||||||
x, y, sentence_lengths = batch
|
|
||||||
batch_size = x.size(0)
|
|
||||||
|
|
||||||
loss, loss_info = compute_loss(
|
|
||||||
model=model,
|
|
||||||
x=x,
|
|
||||||
y=y,
|
|
||||||
sentence_lengths=sentence_lengths,
|
|
||||||
is_training=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# summary stats
|
|
||||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
if batch_idx % params.log_interval == 0:
|
|
||||||
# Note: "frames" here means "num_tokens"
|
|
||||||
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
|
||||||
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
|
||||||
|
|
||||||
logging.info(
|
|
||||||
f"Epoch {params.cur_epoch}, "
|
|
||||||
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
|
||||||
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
|
||||||
f"batch size: {batch_size}"
|
|
||||||
)
|
|
||||||
|
|
||||||
if tb_writer is not None:
|
|
||||||
loss_info.write_summary(
|
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
tot_loss.write_summary(
|
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
tb_writer.add_scalar(
|
|
||||||
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
tb_writer.add_scalar(
|
|
||||||
"train/tot_ppl", tot_ppl, params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
|
||||||
logging.info("Computing validation loss")
|
|
||||||
|
|
||||||
valid_info = compute_validation_loss(
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
valid_dl=valid_dl,
|
|
||||||
world_size=world_size,
|
|
||||||
)
|
|
||||||
model.train()
|
|
||||||
|
|
||||||
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
|
||||||
logging.info(
|
|
||||||
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
|
||||||
f"ppl: {valid_ppl}"
|
|
||||||
)
|
|
||||||
|
|
||||||
if tb_writer is not None:
|
|
||||||
valid_info.write_summary(
|
|
||||||
tb_writer, "train/valid_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
tb_writer.add_scalar(
|
|
||||||
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
||||||
params.train_loss = loss_value
|
|
||||||
if params.train_loss < params.best_train_loss:
|
|
||||||
params.best_train_epoch = params.cur_epoch
|
|
||||||
params.best_train_loss = params.train_loss
|
|
||||||
|
|
||||||
|
|
||||||
def run(rank, world_size, args):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
rank:
|
|
||||||
It is a value between 0 and `world_size-1`, which is
|
|
||||||
passed automatically by `mp.spawn()` in :func:`main`.
|
|
||||||
The node with rank 0 is responsible for saving checkpoint.
|
|
||||||
world_size:
|
|
||||||
Number of GPUs for DDP training.
|
|
||||||
args:
|
|
||||||
The return value of get_parser().parse_args()
|
|
||||||
"""
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
if params.use_ddp_launch:
|
|
||||||
local_rank = get_local_rank()
|
|
||||||
else:
|
|
||||||
local_rank = rank
|
|
||||||
|
|
||||||
logging.warning(
|
|
||||||
f"rank: {rank}, world_size: {world_size}, local_rank: {local_rank}"
|
|
||||||
)
|
|
||||||
|
|
||||||
fix_random_seed(42)
|
|
||||||
if world_size > 1:
|
|
||||||
setup_dist(rank, world_size, params.master_port, params.use_ddp_launch)
|
|
||||||
|
|
||||||
setup_logger(
|
|
||||||
f"{params.exp_dir}/log/log-train", rank=rank, world_size=world_size
|
|
||||||
)
|
|
||||||
logging.info("Training started")
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
if args.tensorboard and rank == 0:
|
|
||||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
||||||
else:
|
|
||||||
tb_writer = None
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", local_rank)
|
|
||||||
|
|
||||||
logging.info(f"Device: {device}, rank: {rank}, local_rank: {local_rank}")
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = RnnLmModel(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.embedding_dim,
|
|
||||||
hidden_dim=params.hidden_dim,
|
|
||||||
num_layers=params.num_layers,
|
|
||||||
)
|
|
||||||
|
|
||||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
if world_size > 1:
|
|
||||||
model = DDP(model, device_ids=[local_rank])
|
|
||||||
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
optimizer = optim.Adam(
|
|
||||||
model.parameters(),
|
|
||||||
lr=params.lr,
|
|
||||||
weight_decay=params.weight_decay,
|
|
||||||
)
|
|
||||||
if checkpoints:
|
|
||||||
logging.info("Load optimizer state_dict from checkpoint")
|
|
||||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
||||||
|
|
||||||
logging.info(f"Loading LM training data from {params.lm_data}")
|
|
||||||
train_dl = get_dataloader(
|
|
||||||
filename=params.lm_data,
|
|
||||||
is_distributed=world_size > 1,
|
|
||||||
params=params,
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
|
||||||
valid_dl = get_dataloader(
|
|
||||||
filename=params.lm_data_valid,
|
|
||||||
is_distributed=world_size > 1,
|
|
||||||
params=params,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: No learning rate scheduler is used here
|
|
||||||
for epoch in range(params.start_epoch, params.num_epochs):
|
|
||||||
if world_size > 1:
|
|
||||||
train_dl.sampler.set_epoch(epoch)
|
|
||||||
|
|
||||||
params.cur_epoch = epoch
|
|
||||||
|
|
||||||
train_one_epoch(
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
optimizer=optimizer,
|
|
||||||
train_dl=train_dl,
|
|
||||||
valid_dl=valid_dl,
|
|
||||||
tb_writer=tb_writer,
|
|
||||||
world_size=world_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
save_checkpoint(
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
optimizer=optimizer,
|
|
||||||
rank=rank,
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
|
||||||
|
|
||||||
if world_size > 1:
|
|
||||||
torch.distributed.barrier()
|
|
||||||
cleanup_dist()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
args = parser.parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
if args.use_ddp_launch:
|
|
||||||
# for torch.distributed.lanunch
|
|
||||||
rank = get_rank()
|
|
||||||
world_size = get_world_size()
|
|
||||||
print(f"rank: {rank}, world_size: {world_size}")
|
|
||||||
# This following is a hack as the default log level
|
|
||||||
# is warning
|
|
||||||
logging.info = logging.warning
|
|
||||||
run(rank=rank, world_size=world_size, args=args)
|
|
||||||
return
|
|
||||||
|
|
||||||
world_size = args.world_size
|
|
||||||
assert world_size >= 1
|
|
||||||
if world_size > 1:
|
|
||||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
||||||
else:
|
|
||||||
run(rank=0, world_size=1, args=args)
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
@ -124,6 +124,13 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--batch-size",
|
"--batch-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -136,6 +143,49 @@ def get_parser():
|
|||||||
default=False,
|
default=False,
|
||||||
help="True if using torch.distributed.launch",
|
help="True if using torch.distributed.launch",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-data",
|
||||||
|
type=str,
|
||||||
|
default="data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||||
|
help="LM training data",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-data-valid",
|
||||||
|
type=str,
|
||||||
|
default="data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||||
|
help="LM validation data",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-size",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="Vocabulary size of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Embedding dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--hidden-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Hidden dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-layers",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of RNN layers the model",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -144,24 +194,12 @@ def get_params() -> AttributeDict:
|
|||||||
|
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
# LM training/validation data
|
|
||||||
"lm_data": "data/lm_training_bpe_500/sorted_lm_data.pt",
|
|
||||||
"lm_data_valid": "data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
|
||||||
"max_sent_len": 200,
|
"max_sent_len": 200,
|
||||||
"sos_id": 1,
|
"sos_id": 1,
|
||||||
"eos_id": 1,
|
"eos_id": 1,
|
||||||
"blank_id": 0,
|
"blank_id": 0,
|
||||||
# model related
|
|
||||||
#
|
|
||||||
# vocab size of the BPE model
|
|
||||||
"vocab_size": 500,
|
|
||||||
"embedding_dim": 2048,
|
|
||||||
"hidden_dim": 2048,
|
|
||||||
"num_layers": 4,
|
|
||||||
#
|
|
||||||
"lr": 1e-3,
|
"lr": 1e-3,
|
||||||
"weight_decay": 1e-6,
|
"weight_decay": 1e-6,
|
||||||
#
|
|
||||||
"best_train_loss": float("inf"),
|
"best_train_loss": float("inf"),
|
||||||
"best_valid_loss": float("inf"),
|
"best_valid_loss": float("inf"),
|
||||||
"best_train_epoch": -1,
|
"best_train_epoch": -1,
|
||||||
@ -321,14 +359,14 @@ def compute_validation_loss(
|
|||||||
|
|
||||||
for batch_idx, batch in enumerate(valid_dl):
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
x, y, sentence_lengths = batch
|
x, y, sentence_lengths = batch
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
loss, loss_info = compute_loss(
|
loss, loss_info = compute_loss(
|
||||||
model=model,
|
model=model,
|
||||||
x=x,
|
x=x,
|
||||||
y=y,
|
y=y,
|
||||||
sentence_lengths=sentence_lengths,
|
sentence_lengths=sentence_lengths,
|
||||||
is_training=False,
|
is_training=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
assert loss.requires_grad is False
|
assert loss.requires_grad is False
|
||||||
tot_loss = tot_loss + loss_info
|
tot_loss = tot_loss + loss_info
|
||||||
@ -383,14 +421,14 @@ def train_one_epoch(
|
|||||||
params.batch_idx_train += 1
|
params.batch_idx_train += 1
|
||||||
x, y, sentence_lengths = batch
|
x, y, sentence_lengths = batch
|
||||||
batch_size = x.size(0)
|
batch_size = x.size(0)
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
loss, loss_info = compute_loss(
|
loss, loss_info = compute_loss(
|
||||||
model=model,
|
model=model,
|
||||||
x=x,
|
x=x,
|
||||||
y=y,
|
y=y,
|
||||||
sentence_lengths=sentence_lengths,
|
sentence_lengths=sentence_lengths,
|
||||||
is_training=True,
|
is_training=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
# summary stats
|
# summary stats
|
||||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
Loading…
x
Reference in New Issue
Block a user