mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Compute word starting time from framewise token alignment.
This commit is contained in:
parent
d50e7734a6
commit
75936a5fae
@ -32,7 +32,6 @@ import logging
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
import k2
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
@ -88,19 +87,14 @@ def get_parser():
|
|||||||
help="""Output directory.
|
help="""Output directory.
|
||||||
It contains 3 generated files:
|
It contains 3 generated files:
|
||||||
|
|
||||||
- labels_xxx.h5
|
- token_ali_xxx.h5
|
||||||
- aux_labels_xxx.h5
|
|
||||||
- cuts_xxx.json.gz
|
- cuts_xxx.json.gz
|
||||||
|
|
||||||
where xxx is the value of `--dataset`. For instance, if
|
where xxx is the value of `--dataset`. For instance, if
|
||||||
`--dataset` is `train-clean-100`, it will contain 3 files:
|
`--dataset` is `train-clean-100`, it will contain 2 files:
|
||||||
|
|
||||||
- `labels_train-clean-100.h5`
|
- `token_ali_train-clean-100.h5`
|
||||||
- `aux_labels_train-clean-100.h5`
|
|
||||||
- `cuts_train-clean-100.json.gz`
|
- `cuts_train-clean-100.json.gz`
|
||||||
|
|
||||||
Note: Both labels_xxx.h5 and aux_labels_xxx.h5 contain framewise
|
|
||||||
alignment. The difference is that labels_xxx.h5 contains repeats.
|
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -179,7 +173,6 @@ def compute_alignments(
|
|||||||
ys_list: List[List[int]] = sp.encode(texts, out_type=int)
|
ys_list: List[List[int]] = sp.encode(texts, out_type=int)
|
||||||
|
|
||||||
ali_list = []
|
ali_list = []
|
||||||
word_begin_time_list = []
|
|
||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
# fmt: off
|
# fmt: off
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
@ -208,7 +201,7 @@ def compute_alignments(
|
|||||||
|
|
||||||
num_cuts += len(cut_list)
|
num_cuts += len(cut_list)
|
||||||
|
|
||||||
if batch_idx % 100 == 0:
|
if batch_idx % 2 == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(
|
||||||
@ -255,13 +248,10 @@ def main():
|
|||||||
out_ali_filename = out_dir / f"token_ali_{params.dataset}.h5"
|
out_ali_filename = out_dir / f"token_ali_{params.dataset}.h5"
|
||||||
out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
|
out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
|
||||||
|
|
||||||
for f in (
|
done_file = out_dir / f".{params.dataset}.done"
|
||||||
out_ali_filename,
|
if done_file.is_file():
|
||||||
out_manifest_filename,
|
logging.info(f"{done_file} exists - skipping")
|
||||||
):
|
exit()
|
||||||
if f.exists():
|
|
||||||
logging.info(f"{f} exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
model = get_transducer_model(params)
|
model = get_transducer_model(params)
|
||||||
@ -329,6 +319,7 @@ def main():
|
|||||||
f"saved to {out_ali_filename} and the cut manifest "
|
f"saved to {out_ali_filename} and the cut manifest "
|
||||||
f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
|
f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
|
||||||
)
|
)
|
||||||
|
done_file.touch()
|
||||||
|
|
||||||
|
|
||||||
# torch.set_num_threads(1)
|
# torch.set_num_threads(1)
|
||||||
|
165
egs/librispeech/ASR/transducer_stateless/test_compute_ali.py
Executable file
165
egs/librispeech/ASR/transducer_stateless/test_compute_ali.py
Executable file
@ -0,0 +1,165 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script shows how to get word starting time
|
||||||
|
from framewise token alignment.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
./transducer_stateless/compute_ali.py \
|
||||||
|
--exp-dir ./transducer_stateless/exp \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--dataset train-clean-100 \
|
||||||
|
--out-dir data/ali
|
||||||
|
|
||||||
|
And the you can run:
|
||||||
|
|
||||||
|
./transducer_stateless/test_compute_ali.py \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--ali-dir data/ali \
|
||||||
|
--dataset train-clean-100
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from alignment import get_word_begin_frame
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
from lhotse.dataset import K2SpeechRecognitionDataset, SingleCutSampler
|
||||||
|
from lhotse.dataset.collation import collate_custom_field
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ali-dir",
|
||||||
|
type=Path,
|
||||||
|
default="./data/ali",
|
||||||
|
help="It specifies the directory where alignments can be found.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="""The name of the dataset:
|
||||||
|
Possible values are:
|
||||||
|
- test-clean.
|
||||||
|
- test-other
|
||||||
|
- train-clean-100
|
||||||
|
- train-clean-360
|
||||||
|
- train-other-500
|
||||||
|
- dev-clean
|
||||||
|
- dev-other
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(args.bpe_model)
|
||||||
|
|
||||||
|
cuts_json = args.ali_dir / f"cuts_{args.dataset}.json.gz"
|
||||||
|
|
||||||
|
logging.info(f"Loading {cuts_json}")
|
||||||
|
cuts = load_manifest(cuts_json)
|
||||||
|
|
||||||
|
sampler = SingleCutSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=30,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
dataset = K2SpeechRecognitionDataset(return_cuts=True)
|
||||||
|
|
||||||
|
dl = torch.utils.data.DataLoader(
|
||||||
|
dataset,
|
||||||
|
sampler=sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=1,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
frame_shift = 10 # ms
|
||||||
|
subsampling_factor = 4
|
||||||
|
|
||||||
|
frame_shift_in_second = frame_shift * subsampling_factor / 1000.0
|
||||||
|
|
||||||
|
# key: cut.id
|
||||||
|
# value: a list of pairs (word, time_in_second)
|
||||||
|
word_begin_time_dict = {}
|
||||||
|
for batch in dl:
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
cuts = supervisions["cut"]
|
||||||
|
|
||||||
|
token_alignment, token_alignment_length = collate_custom_field(
|
||||||
|
CutSet.from_cuts(cuts), "token_alignment"
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in range(len(cuts)):
|
||||||
|
assert (
|
||||||
|
(cuts[i].features.num_frames - 1) // 2 - 1
|
||||||
|
) // 2 == token_alignment_length[i]
|
||||||
|
|
||||||
|
word_begin_frame = get_word_begin_frame(
|
||||||
|
token_alignment[i, : token_alignment_length[i]].tolist(), sp=sp
|
||||||
|
)
|
||||||
|
word_begin_time = [
|
||||||
|
"{:.2f}".format(i * frame_shift_in_second)
|
||||||
|
for i in word_begin_frame
|
||||||
|
]
|
||||||
|
|
||||||
|
words = supervisions["text"][i].split()
|
||||||
|
|
||||||
|
assert len(word_begin_frame) == len(words)
|
||||||
|
word_begin_time_dict[cuts[i].id] = list(zip(words, word_begin_time))
|
||||||
|
|
||||||
|
# This is a demo script and we exit here after processing
|
||||||
|
# one batch.
|
||||||
|
# You can find word starting time in the dict "word_begin_time_dict"
|
||||||
|
for cut_id, word_time in word_begin_time_dict.items():
|
||||||
|
print(f"{cut_id}\n{word_time}\n")
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user