mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
from local
This commit is contained in:
parent
fa878edd05
commit
738180141f
510
icefall/transformer_lm/attention.py
Normal file
510
icefall/transformer_lm/attention.py
Normal file
@ -0,0 +1,510 @@
|
|||||||
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
from icefall.transformer_lm.scaling import (
|
||||||
|
ActivationBalancer,
|
||||||
|
BasicNorm,
|
||||||
|
DoubleSwish,
|
||||||
|
ScaledConv1d,
|
||||||
|
ScaledConv2d,
|
||||||
|
ScaledLinear,
|
||||||
|
)
|
||||||
|
from icefall.utils import is_jit_tracing
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionMultiheadAttention(nn.Module):
|
||||||
|
r"""Multi-Head Attention layer with relative position encoding
|
||||||
|
|
||||||
|
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
embed_dim: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
|
||||||
|
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||||
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embed_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
) -> None:
|
||||||
|
super(RelPositionMultiheadAttention, self).__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.dropout = dropout
|
||||||
|
self.head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
self.head_dim * num_heads == self.embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
|
||||||
|
self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
|
||||||
|
self.out_proj = ScaledLinear(
|
||||||
|
embed_dim, embed_dim, bias=True, initial_scale=0.25
|
||||||
|
)
|
||||||
|
|
||||||
|
# linear transformation for positional encoding.
|
||||||
|
self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
|
||||||
|
# these two learnable bias are used in matrix c and matrix d
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
|
||||||
|
self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
|
||||||
|
self._reset_parameters()
|
||||||
|
|
||||||
|
def _pos_bias_u(self):
|
||||||
|
return self.pos_bias_u * self.pos_bias_u_scale.exp()
|
||||||
|
|
||||||
|
def _pos_bias_v(self):
|
||||||
|
return self.pos_bias_v * self.pos_bias_v_scale.exp()
|
||||||
|
|
||||||
|
def _reset_parameters(self) -> None:
|
||||||
|
nn.init.normal_(self.pos_bias_u, std=0.01)
|
||||||
|
nn.init.normal_(self.pos_bias_v, std=0.01)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = False,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
left_context: int = 0,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. When given a binary mask and a value is True,
|
||||||
|
the corresponding value on the attention layer will be ignored. When given
|
||||||
|
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||||
|
layer will be ignored
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
left_context (int): left context (in frames) used during streaming decoding.
|
||||||
|
this is used only in real streaming decoding, in other circumstances,
|
||||||
|
it MUST be 0.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||||
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
- Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
return self.multi_head_attention_forward(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
pos_emb,
|
||||||
|
self.embed_dim,
|
||||||
|
self.num_heads,
|
||||||
|
self.in_proj.get_weight(),
|
||||||
|
self.in_proj.get_bias(),
|
||||||
|
self.dropout,
|
||||||
|
self.out_proj.get_weight(),
|
||||||
|
self.out_proj.get_bias(),
|
||||||
|
training=self.training,
|
||||||
|
key_padding_mask=key_padding_mask,
|
||||||
|
need_weights=need_weights,
|
||||||
|
attn_mask=attn_mask,
|
||||||
|
left_context=left_context,
|
||||||
|
)
|
||||||
|
|
||||||
|
def rel_shift(self, x: Tensor, left_context: int = 0) -> Tensor:
|
||||||
|
"""Compute relative positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (batch, head, time1, 2*time1-1+left_context).
|
||||||
|
time1 means the length of query vector.
|
||||||
|
left_context (int): left context (in frames) used during streaming decoding.
|
||||||
|
this is used only in real streaming decoding, in other circumstances,
|
||||||
|
it MUST be 0.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: tensor of shape (batch, head, time1, time2)
|
||||||
|
(note: time2 has the same value as time1, but it is for
|
||||||
|
the key, while time1 is for the query).
|
||||||
|
"""
|
||||||
|
(batch_size, num_heads, time1, n) = x.shape
|
||||||
|
|
||||||
|
time2 = time1 + left_context
|
||||||
|
if not is_jit_tracing():
|
||||||
|
assert (
|
||||||
|
n == left_context + 2 * time1 - 1
|
||||||
|
), f"{n} == {left_context} + 2 * {time1} - 1"
|
||||||
|
|
||||||
|
if is_jit_tracing():
|
||||||
|
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
|
||||||
|
cols = torch.arange(time2)
|
||||||
|
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
|
||||||
|
indexes = rows + cols
|
||||||
|
|
||||||
|
x = x.reshape(-1, n)
|
||||||
|
x = torch.gather(x, dim=1, index=indexes)
|
||||||
|
x = x.reshape(batch_size, num_heads, time1, time2)
|
||||||
|
return x
|
||||||
|
else:
|
||||||
|
# Note: TorchScript requires explicit arg for stride()
|
||||||
|
batch_stride = x.stride(0)
|
||||||
|
head_stride = x.stride(1)
|
||||||
|
time1_stride = x.stride(2)
|
||||||
|
n_stride = x.stride(3)
|
||||||
|
return x.as_strided(
|
||||||
|
(batch_size, num_heads, time1, time2),
|
||||||
|
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||||
|
storage_offset=n_stride * (time1 - 1),
|
||||||
|
)
|
||||||
|
|
||||||
|
def multi_head_attention_forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
embed_dim_to_check: int,
|
||||||
|
num_heads: int,
|
||||||
|
in_proj_weight: Tensor,
|
||||||
|
in_proj_bias: Tensor,
|
||||||
|
dropout_p: float,
|
||||||
|
out_proj_weight: Tensor,
|
||||||
|
out_proj_bias: Tensor,
|
||||||
|
training: bool = True,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = False,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
left_context: int = 0,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
embed_dim_to_check: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||||
|
dropout_p: probability of an element to be zeroed.
|
||||||
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||||
|
training: apply dropout if is ``True``.
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. This is an binary mask. When the value is True,
|
||||||
|
the corresponding value on the attention layer will be filled with -inf.
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
left_context (int): left context (in frames) used during streaming decoding.
|
||||||
|
this is used only in real streaming decoding, in other circumstances,
|
||||||
|
it MUST be 0.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||||
|
length, N is the batch size, E is the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||||
|
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
|
||||||
|
tgt_len, bsz, embed_dim = query.size()
|
||||||
|
if not is_jit_tracing():
|
||||||
|
assert embed_dim == embed_dim_to_check
|
||||||
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||||
|
|
||||||
|
head_dim = embed_dim // num_heads
|
||||||
|
if not is_jit_tracing():
|
||||||
|
assert (
|
||||||
|
head_dim * num_heads == embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
|
||||||
|
scaling = float(head_dim) ** -0.5
|
||||||
|
|
||||||
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
|
# self-attention
|
||||||
|
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||||
|
3, dim=-1
|
||||||
|
)
|
||||||
|
|
||||||
|
elif torch.equal(key, value):
|
||||||
|
# encoder-decoder attention
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = embed_dim * 2
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
k = nn.functional.linear(key, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim * 2
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
v = nn.functional.linear(value, _w, _b)
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
assert (
|
||||||
|
attn_mask.dtype == torch.float32
|
||||||
|
or attn_mask.dtype == torch.float64
|
||||||
|
or attn_mask.dtype == torch.float16
|
||||||
|
or attn_mask.dtype == torch.uint8
|
||||||
|
or attn_mask.dtype == torch.bool
|
||||||
|
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||||
|
attn_mask.dtype
|
||||||
|
)
|
||||||
|
if attn_mask.dtype == torch.uint8:
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
attn_mask = attn_mask.to(torch.bool)
|
||||||
|
|
||||||
|
if attn_mask.dim() == 2:
|
||||||
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
|
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||||
|
elif attn_mask.dim() == 3:
|
||||||
|
if list(attn_mask.size()) != [
|
||||||
|
bsz * num_heads,
|
||||||
|
query.size(0),
|
||||||
|
key.size(0),
|
||||||
|
]:
|
||||||
|
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||||
|
else:
|
||||||
|
raise RuntimeError(
|
||||||
|
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||||
|
)
|
||||||
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
|
# convert ByteTensor key_padding_mask to bool
|
||||||
|
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
|
q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||||
|
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||||
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||||
|
|
||||||
|
src_len = k.size(0)
|
||||||
|
|
||||||
|
if key_padding_mask is not None and not is_jit_tracing():
|
||||||
|
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||||
|
key_padding_mask.size(0), bsz
|
||||||
|
)
|
||||||
|
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||||
|
key_padding_mask.size(1), src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||||
|
|
||||||
|
pos_emb_bsz = pos_emb.size(0)
|
||||||
|
if not is_jit_tracing():
|
||||||
|
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||||
|
|
||||||
|
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||||
|
# (batch, 2*time1, head, d_k) --> (batch, head, d_k, 2*time -1)
|
||||||
|
p = p.permute(0, 2, 3, 1)
|
||||||
|
|
||||||
|
q_with_bias_u = (q + self._pos_bias_u()).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_v = (q + self._pos_bias_v()).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
# compute attention score
|
||||||
|
# first compute matrix a and matrix c
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
|
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
# compute matrix b and matrix d
|
||||||
|
matrix_bd = torch.matmul(q_with_bias_v, p) # (batch, head, time1, 2*time1-1)
|
||||||
|
matrix_bd = self.rel_shift(matrix_bd, left_context)
|
||||||
|
|
||||||
|
attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||||
|
|
||||||
|
if not is_jit_tracing():
|
||||||
|
assert list(attn_output_weights.size()) == [
|
||||||
|
bsz * num_heads,
|
||||||
|
tgt_len,
|
||||||
|
src_len,
|
||||||
|
]
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
if attn_mask.dtype == torch.bool:
|
||||||
|
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||||
|
else:
|
||||||
|
attn_output_weights += attn_mask
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.masked_fill(
|
||||||
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||||
|
float("-inf"),
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||||
|
|
||||||
|
# If we are using dynamic_chunk_training and setting a limited
|
||||||
|
# num_left_chunks, the attention may only see the padding values which
|
||||||
|
# will also be masked out by `key_padding_mask`, at this circumstances,
|
||||||
|
# the whole column of `attn_output_weights` will be `-inf`
|
||||||
|
# (i.e. be `nan` after softmax), so, we fill `0.0` at the masking
|
||||||
|
# positions to avoid invalid loss value below.
|
||||||
|
if (
|
||||||
|
attn_mask is not None
|
||||||
|
and attn_mask.dtype == torch.bool
|
||||||
|
and key_padding_mask is not None
|
||||||
|
):
|
||||||
|
if attn_mask.size(0) != 1:
|
||||||
|
attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len)
|
||||||
|
combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2)
|
||||||
|
else:
|
||||||
|
# attn_mask.shape == (1, tgt_len, src_len)
|
||||||
|
combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze(
|
||||||
|
1
|
||||||
|
).unsqueeze(2)
|
||||||
|
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0)
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output_weights = nn.functional.dropout(
|
||||||
|
attn_output_weights, p=dropout_p, training=training
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
|
|
||||||
|
if not is_jit_tracing():
|
||||||
|
assert list(attn_output.size()) == [
|
||||||
|
bsz * num_heads,
|
||||||
|
tgt_len,
|
||||||
|
head_dim,
|
||||||
|
]
|
||||||
|
|
||||||
|
attn_output = (
|
||||||
|
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||||
|
)
|
||||||
|
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||||
|
|
||||||
|
if need_weights:
|
||||||
|
# average attention weights over heads
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||||
|
else:
|
||||||
|
return attn_output, None
|
||||||
195
icefall/transformer_lm/compute_perplexity.py
Normal file
195
icefall/transformer_lm/compute_perplexity.py
Normal file
@ -0,0 +1,195 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Xiaoyu Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from dataset import get_dataloader
|
||||||
|
from train import get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.transformer_lm.model import TransformerLM
|
||||||
|
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=7,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transformer_lm/exp_full_libri_16layer_maxlen200_8gpu",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-data",
|
||||||
|
type=str,
|
||||||
|
help="Path to the LM test data for computing perplexity",
|
||||||
|
default="transformer_lm/libri_lm_training_bpe500/sorted_lm_data-test.pt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-size",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="Vocabulary size of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-layers",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="Number of RNN layers the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tie-weights",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to share the weights between the input embedding layer and the
|
||||||
|
last output linear layer
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default=50,
|
||||||
|
help="Number of RNN layers the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sent-len",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="Number of RNN layers the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
args.lm_data = Path(args.lm_data)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-ppl/")
|
||||||
|
logging.info("Computing perplexity started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = TransformerLM(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
d_model=params.encoder_dim,
|
||||||
|
embedding_dim=params.embedding_dim,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
nhead=params.nhead,
|
||||||
|
num_layers=params.num_layers,
|
||||||
|
tie_weights=params.tie_weights,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
model.to(device)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
num_param_requires_grad = sum(
|
||||||
|
[p.numel() for p in model.parameters() if p.requires_grad]
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
logging.info(
|
||||||
|
f"Number of model parameters (requires_grad): "
|
||||||
|
f"{num_param_requires_grad} "
|
||||||
|
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Loading LM test data from {params.lm_data}")
|
||||||
|
test_dl = get_dataloader(
|
||||||
|
filename=params.lm_data,
|
||||||
|
is_distributed=False,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
tot_loss = 0.0
|
||||||
|
num_tokens = 0
|
||||||
|
num_sentences = 0
|
||||||
|
for batch_idx, batch in enumerate(test_dl):
|
||||||
|
x, y, sentence_lengths = batch
|
||||||
|
x = x.to(device)
|
||||||
|
y = y.to(device)
|
||||||
|
sentence_lengths = sentence_lengths.to(device)
|
||||||
|
|
||||||
|
nll = model(x, y, sentence_lengths)
|
||||||
|
loss = nll.sum().cpu().item()
|
||||||
|
|
||||||
|
tot_loss += loss
|
||||||
|
num_tokens += sentence_lengths.sum().cpu().item()
|
||||||
|
num_sentences += x.size(0)
|
||||||
|
|
||||||
|
ppl = math.exp(tot_loss / num_tokens)
|
||||||
|
logging.info(
|
||||||
|
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
||||||
|
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
214
icefall/transformer_lm/dataset.py
Normal file
214
icefall/transformer_lm/dataset.py
Normal file
@ -0,0 +1,214 @@
|
|||||||
|
# Copyright (c) 2021 Xiaomi Corporation (authors: Daniel Povey, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
|
|
||||||
|
from icefall.utils import AttributeDict, add_eos, add_sos
|
||||||
|
|
||||||
|
|
||||||
|
class LmDataset(torch.utils.data.Dataset):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
sentences: k2.RaggedTensor,
|
||||||
|
words: k2.RaggedTensor,
|
||||||
|
sentence_lengths: torch.Tensor,
|
||||||
|
max_sent_len: int,
|
||||||
|
batch_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
sentences:
|
||||||
|
A ragged tensor of dtype torch.int32 with 2 axes [sentence][word].
|
||||||
|
words:
|
||||||
|
A ragged tensor of dtype torch.int32 with 2 axes [word][token].
|
||||||
|
sentence_lengths:
|
||||||
|
A 1-D tensor of dtype torch.int32 containing number of tokens
|
||||||
|
of each sentence.
|
||||||
|
max_sent_len:
|
||||||
|
Maximum sentence length. It is used to change the batch size
|
||||||
|
dynamically. In general, we try to keep the product of
|
||||||
|
"max_sent_len in a batch" and "num_of_sent in a batch" being
|
||||||
|
a constant.
|
||||||
|
batch_size:
|
||||||
|
The expected batch size. It is changed dynamically according
|
||||||
|
to the "max_sent_len".
|
||||||
|
|
||||||
|
See `../local/prepare_lm_training_data.py` for how `sentences` and
|
||||||
|
`words` are generated. We assume that `sentences` are sorted by length.
|
||||||
|
See `../local/sort_lm_training_data.py`.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.sentences = sentences
|
||||||
|
self.words = words
|
||||||
|
|
||||||
|
sentence_lengths = sentence_lengths.tolist()
|
||||||
|
|
||||||
|
assert batch_size > 0, batch_size
|
||||||
|
assert max_sent_len > 1, max_sent_len
|
||||||
|
batch_indexes = []
|
||||||
|
num_sentences = sentences.dim0
|
||||||
|
cur = 0
|
||||||
|
while cur < num_sentences:
|
||||||
|
sz = sentence_lengths[cur] // max_sent_len + 1
|
||||||
|
# Assume the current sentence has 3 * max_sent_len tokens,
|
||||||
|
# in the worst case, the subsequent sentences also have
|
||||||
|
# this number of tokens, we should reduce the batch size
|
||||||
|
# so that this batch will not contain too many tokens
|
||||||
|
actual_batch_size = batch_size // sz + 1
|
||||||
|
actual_batch_size = min(actual_batch_size, batch_size)
|
||||||
|
end = cur + actual_batch_size
|
||||||
|
end = min(end, num_sentences)
|
||||||
|
this_batch_indexes = torch.arange(cur, end).tolist()
|
||||||
|
batch_indexes.append(this_batch_indexes)
|
||||||
|
cur = end
|
||||||
|
assert batch_indexes[-1][-1] == num_sentences - 1
|
||||||
|
|
||||||
|
self.batch_indexes = k2.RaggedTensor(batch_indexes)
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
"""Return number of batches in this dataset"""
|
||||||
|
return self.batch_indexes.dim0
|
||||||
|
|
||||||
|
def __getitem__(self, i: int) -> k2.RaggedTensor:
|
||||||
|
"""Get the i'th batch in this dataset
|
||||||
|
Return a ragged tensor with 2 axes [sentence][token].
|
||||||
|
"""
|
||||||
|
assert 0 <= i < len(self), i
|
||||||
|
|
||||||
|
# indexes is a 1-D tensor containing sentence indexes
|
||||||
|
indexes = self.batch_indexes[i]
|
||||||
|
|
||||||
|
# sentence_words is a ragged tensor with 2 axes
|
||||||
|
# [sentence][word]
|
||||||
|
sentence_words = self.sentences[indexes]
|
||||||
|
|
||||||
|
# in case indexes contains only 1 entry, the returned
|
||||||
|
# sentence_words is a 1-D tensor, we have to convert
|
||||||
|
# it to a ragged tensor
|
||||||
|
if isinstance(sentence_words, torch.Tensor):
|
||||||
|
sentence_words = k2.RaggedTensor(sentence_words.unsqueeze(0))
|
||||||
|
|
||||||
|
# sentence_word_tokens is a ragged tensor with 3 axes
|
||||||
|
# [sentence][word][token]
|
||||||
|
sentence_word_tokens = self.words.index(sentence_words)
|
||||||
|
assert sentence_word_tokens.num_axes == 3
|
||||||
|
|
||||||
|
sentence_tokens = sentence_word_tokens.remove_axis(1)
|
||||||
|
return sentence_tokens
|
||||||
|
|
||||||
|
|
||||||
|
class LmDatasetCollate:
|
||||||
|
def __init__(self, sos_id: int, eos_id: int, blank_id: int):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
sos_id:
|
||||||
|
Token ID of the SOS symbol.
|
||||||
|
eos_id:
|
||||||
|
Token ID of the EOS symbol.
|
||||||
|
blank_id:
|
||||||
|
Token ID of the blank symbol.
|
||||||
|
"""
|
||||||
|
self.sos_id = sos_id
|
||||||
|
self.eos_id = eos_id
|
||||||
|
self.blank_id = blank_id
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self, batch: List[k2.RaggedTensor]
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""Return a tuple containing 3 tensors:
|
||||||
|
|
||||||
|
- x, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||||
|
for a sentence starting with `self.sos_id`. It is padded to
|
||||||
|
the max sentence length with `self.blank_id`.
|
||||||
|
|
||||||
|
- y, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||||
|
for a sentence ending with `self.eos_id` before padding.
|
||||||
|
Then it is padded to the max sentence length with
|
||||||
|
`self.blank_id`.
|
||||||
|
|
||||||
|
- lengths, a 2-D tensor of dtype torch.int32, containing the number of
|
||||||
|
tokens of each sentence before padding.
|
||||||
|
"""
|
||||||
|
# The batching stuff has already been done in LmDataset
|
||||||
|
assert len(batch) == 1
|
||||||
|
sentence_tokens = batch[0]
|
||||||
|
row_splits = sentence_tokens.shape.row_splits(1)
|
||||||
|
sentence_token_lengths = row_splits[1:] - row_splits[:-1]
|
||||||
|
sentence_tokens_with_sos = add_sos(sentence_tokens, self.sos_id)
|
||||||
|
sentence_tokens_with_eos = add_eos(sentence_tokens, self.eos_id)
|
||||||
|
|
||||||
|
x = sentence_tokens_with_sos.pad(mode="constant", padding_value=self.blank_id)
|
||||||
|
y = sentence_tokens_with_eos.pad(mode="constant", padding_value=self.blank_id)
|
||||||
|
sentence_token_lengths += 1 # plus 1 since we added a SOS
|
||||||
|
|
||||||
|
return x.to(torch.int64), y.to(torch.int64), sentence_token_lengths
|
||||||
|
|
||||||
|
|
||||||
|
def get_dataloader(
|
||||||
|
filename: str,
|
||||||
|
is_distributed: bool,
|
||||||
|
params: AttributeDict,
|
||||||
|
) -> torch.utils.data.DataLoader:
|
||||||
|
"""Get dataloader for LM training.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Path to the file containing LM data. The file is assumed to
|
||||||
|
be generated by `../local/sort_lm_training_data.py`.
|
||||||
|
is_distributed:
|
||||||
|
True if using DDP training. False otherwise.
|
||||||
|
params:
|
||||||
|
Set `get_params()` from `rnn_lm/train.py`
|
||||||
|
Returns:
|
||||||
|
Return a dataloader containing the LM data.
|
||||||
|
"""
|
||||||
|
lm_data = torch.load(filename)
|
||||||
|
|
||||||
|
words = lm_data["words"]
|
||||||
|
sentences = lm_data["sentences"]
|
||||||
|
sentence_lengths = lm_data["sentence_lengths"]
|
||||||
|
|
||||||
|
dataset = LmDataset(
|
||||||
|
sentences=sentences,
|
||||||
|
words=words,
|
||||||
|
sentence_lengths=sentence_lengths,
|
||||||
|
max_sent_len=params.max_sent_len,
|
||||||
|
batch_size=params.batch_size,
|
||||||
|
)
|
||||||
|
if is_distributed:
|
||||||
|
sampler = DistributedSampler(dataset, shuffle=True, drop_last=True)
|
||||||
|
else:
|
||||||
|
sampler = None
|
||||||
|
|
||||||
|
collate_fn = LmDatasetCollate(
|
||||||
|
sos_id=params.sos_id,
|
||||||
|
eos_id=params.eos_id,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
dataloader = DataLoader(
|
||||||
|
dataset,
|
||||||
|
batch_size=1,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
sampler=sampler,
|
||||||
|
shuffle=sampler is None,
|
||||||
|
)
|
||||||
|
return dataloader
|
||||||
329
icefall/transformer_lm/encoder.py
Normal file
329
icefall/transformer_lm/encoder.py
Normal file
@ -0,0 +1,329 @@
|
|||||||
|
# Copyright (c) 2021 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import copy
|
||||||
|
import math
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
from icefall.transformer_lm.attention import RelPositionMultiheadAttention
|
||||||
|
from icefall.transformer_lm.scaling import (
|
||||||
|
ActivationBalancer,
|
||||||
|
BasicNorm,
|
||||||
|
DoubleSwish,
|
||||||
|
ScaledConv1d,
|
||||||
|
ScaledConv2d,
|
||||||
|
ScaledLinear,
|
||||||
|
)
|
||||||
|
from icefall.utils import is_jit_tracing, make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Transformer(torch.nn.Module):
|
||||||
|
"""_summary_
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_dim (int): Input feature dimension
|
||||||
|
d_mode (int): The dimension of the transformer
|
||||||
|
dim_feedforward (int ): The dimension of the ffw module
|
||||||
|
nhead (int): The number of attention heads
|
||||||
|
dropout_rate (float): dropout rate
|
||||||
|
att_dropout (float): dropout rate in attention module
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_dim: int,
|
||||||
|
d_model: int,
|
||||||
|
dim_feedforward: int,
|
||||||
|
nhead: int = 4,
|
||||||
|
num_layers: int = 6,
|
||||||
|
dropout_rate: float = 0.1,
|
||||||
|
att_dropout: float = 0.0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.encoder_layers = num_layers
|
||||||
|
self.d_model = d_model
|
||||||
|
|
||||||
|
self.embed = ScaledLinear(input_dim, d_model)
|
||||||
|
self.norm_before = BasicNorm(d_model, learn_eps=False)
|
||||||
|
|
||||||
|
self.encoder_pos = RelPositionalEncoding(d_model, dropout_rate)
|
||||||
|
|
||||||
|
encoder_layer = TransformerEncoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
nhead=nhead,
|
||||||
|
dropout_rate=dropout_rate,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder = TransformerEncoder(encoder_layer, num_layers)
|
||||||
|
|
||||||
|
def _create_attention_mask(self, x_lens: torch.Tensor):
|
||||||
|
# create a 2D attention mask to mask out
|
||||||
|
# the upper right half of the attention matrix
|
||||||
|
max_len = max(x_lens)
|
||||||
|
ones = torch.ones(max_len, max_len, device=x_lens.device, dtype=torch.bool)
|
||||||
|
return torch.triu(ones, diagonal=1)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""Transformer forward
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor (B,T,input_dim)
|
||||||
|
x_lens (torch.Tensor): The length of input tensors before padding (B,)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tuple of 2 tensors:
|
||||||
|
- x: output feature of the transformer (B,T,d_model)
|
||||||
|
- x_lens: output feature lens of the transformer
|
||||||
|
"""
|
||||||
|
|
||||||
|
attention_mask = self._create_attention_mask(x_lens)
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
x = self.norm_before(self.embed(x))
|
||||||
|
|
||||||
|
x, pos_emb = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2)
|
||||||
|
|
||||||
|
x = self.encoder(
|
||||||
|
x,
|
||||||
|
pos_emb,
|
||||||
|
mask=attention_mask, # pass the attention mast
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
) # (T, N, C)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
return x, x_lens
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoder(torch.nn.Module):
|
||||||
|
def __init__(self, encoder_layer: torch.nn.Module, num_layers: int) -> None:
|
||||||
|
"""TransformerEncoder is a stack of N encoder layers
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_layer (torch.nn.Module): an instance of the TransformerEncoderLayer()
|
||||||
|
num_layers (int): Number of layers to be stacked
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.layers = nn.ModuleList(
|
||||||
|
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
||||||
|
)
|
||||||
|
self.num_layers = num_layers
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: torch.Tensor,
|
||||||
|
pos_emb: torch.Tensor,
|
||||||
|
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
mask: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""_summary_
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
output: transformer encoded features
|
||||||
|
"""
|
||||||
|
output = src
|
||||||
|
|
||||||
|
for layer_index, mod in enumerate(self.layers):
|
||||||
|
output = mod(
|
||||||
|
output,
|
||||||
|
pos_emb,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
src_mask=mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoderLayer(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
dim_feedforward: int,
|
||||||
|
nhead: int,
|
||||||
|
dropout_rate: float,
|
||||||
|
):
|
||||||
|
"""TransformerEncoderLayer is made up of self-attn and feedforward module
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model (int): The model size
|
||||||
|
dim_feedforward (int): Dimension of ffw module
|
||||||
|
nhead (int): Number of heads
|
||||||
|
dropout_rate (float): Dropout rate
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.d_model = d_model
|
||||||
|
|
||||||
|
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
self.feed_forward = nn.Sequential(
|
||||||
|
ScaledLinear(d_model, dim_feedforward),
|
||||||
|
ActivationBalancer(channel_dim=-1),
|
||||||
|
DoubleSwish(),
|
||||||
|
nn.Dropout(dropout_rate),
|
||||||
|
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.norm_final = BasicNorm(d_model)
|
||||||
|
|
||||||
|
self.balancer = ActivationBalancer(
|
||||||
|
channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
|
||||||
|
)
|
||||||
|
|
||||||
|
self.dropout = nn.Dropout(dropout_rate)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: torch.Tensor,
|
||||||
|
pos_emb: torch.Tensor,
|
||||||
|
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
src_mask: Optional[torch.Tensor] = None,
|
||||||
|
cache=None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
"""
|
||||||
|
src_orig = src
|
||||||
|
|
||||||
|
src_att = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
pos_emb=pos_emb,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
src = src + self.dropout(src_att)
|
||||||
|
|
||||||
|
# feed forward module
|
||||||
|
src = src + self.dropout(self.feed_forward(src))
|
||||||
|
|
||||||
|
src = self.norm_final(self.balancer(src))
|
||||||
|
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
"""Relative positional encoding module.
|
||||||
|
|
||||||
|
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: Embedding dimension.
|
||||||
|
dropout_rate: Dropout rate.
|
||||||
|
max_len: Maximum input length.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||||
|
"""Construct an PositionalEncoding object."""
|
||||||
|
super(RelPositionalEncoding, self).__init__()
|
||||||
|
if is_jit_tracing():
|
||||||
|
# 10k frames correspond to ~100k ms, e.g., 100 seconds, i.e.,
|
||||||
|
# It assumes that the maximum input won't have more than
|
||||||
|
# 10k frames.
|
||||||
|
#
|
||||||
|
# TODO(fangjun): Use torch.jit.script() for this module
|
||||||
|
max_len = 10000
|
||||||
|
|
||||||
|
self.d_model = d_model
|
||||||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||||
|
self.pe = None
|
||||||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||||
|
|
||||||
|
def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None:
|
||||||
|
"""Reset the positional encodings."""
|
||||||
|
x_size_1 = x.size(1) + left_context
|
||||||
|
if self.pe is not None:
|
||||||
|
# self.pe contains both positive and negative parts
|
||||||
|
# the length of self.pe is 2 * input_len - 1
|
||||||
|
if self.pe.size(1) >= x_size_1 * 2 - 1:
|
||||||
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
# Suppose `i` means to the position of query vector and `j` means the
|
||||||
|
# position of key vector. We use position relative positions when keys
|
||||||
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||||
|
pe_positive = torch.zeros(x_size_1, self.d_model)
|
||||||
|
pe_negative = torch.zeros(x_size_1, self.d_model)
|
||||||
|
position = torch.arange(0, x_size_1, dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||||
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||||
|
|
||||||
|
# Reserve the order of positive indices and concat both positive and
|
||||||
|
# negative indices. This is used to support the shifting trick
|
||||||
|
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||||
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||||
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
left_context: int = 0,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||||
|
left_context (int): left context (in frames) used during streaming decoding.
|
||||||
|
this is used only in real streaming decoding, in other circumstances,
|
||||||
|
it MUST be 0.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||||
|
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.extend_pe(x, left_context)
|
||||||
|
x_size_1 = x.size(1) + left_context
|
||||||
|
pos_emb = self.pe[
|
||||||
|
:,
|
||||||
|
self.pe.size(1) // 2
|
||||||
|
- x_size_1
|
||||||
|
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||||
|
+ x.size(1),
|
||||||
|
]
|
||||||
|
return self.dropout(x), self.dropout(pos_emb)
|
||||||
186
icefall/transformer_lm/export.py
Normal file
186
icefall/transformer_lm/export.py
Normal file
@ -0,0 +1,186 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from model import TransformerLM
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.utils import AttributeDict, load_averaged_model, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=11,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=5,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-size",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="Vocabulary size of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-dim",
|
||||||
|
type=int,
|
||||||
|
default=768,
|
||||||
|
help="Embedding dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-dim",
|
||||||
|
type=int,
|
||||||
|
default=768,
|
||||||
|
help="Encoder dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dim_feedforward",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Hidden dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nhead",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Number of attention heads",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-layers",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="Number of Transformer layers",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tie-weights",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""True to share the weights between the input embedding layer and the
|
||||||
|
last output linear layer
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="rnn_lm/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = AttributeDict({})
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = TransformerLM(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
d_model=params.encoder_dim,
|
||||||
|
embedding_dim=params.embedding_dim,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
nhead=params.nhead,
|
||||||
|
num_layers=params.num_layers,
|
||||||
|
tie_weights=params.tie_weights,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
model = load_averaged_model(
|
||||||
|
params.exp_dir, model, params.epoch, params.avg, device
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = params.exp_dir / "cpu_jit.pt"
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
||||||
115
icefall/transformer_lm/model.py
Normal file
115
icefall/transformer_lm/model.py
Normal file
@ -0,0 +1,115 @@
|
|||||||
|
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from icefall.transformer_lm.encoder import Transformer
|
||||||
|
from icefall.utils import AttributeDict, add_eos, add_sos, make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerLM(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
d_model: int,
|
||||||
|
dim_feedforward: int,
|
||||||
|
nhead: int = 8,
|
||||||
|
num_layers: int = 16,
|
||||||
|
tie_weights: bool = True,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
emb_dropout_rate: float = 0.0,
|
||||||
|
params: AttributeDict = None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.params = params
|
||||||
|
|
||||||
|
self.input_embedding = torch.nn.Embedding(
|
||||||
|
num_embeddings=vocab_size,
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder = Transformer(
|
||||||
|
input_dim=embedding_dim,
|
||||||
|
d_model=d_model,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
nhead=nhead,
|
||||||
|
num_layers=num_layers,
|
||||||
|
dropout_rate=dropout,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.output_linear = torch.nn.Linear(
|
||||||
|
in_features=d_model, out_features=vocab_size
|
||||||
|
)
|
||||||
|
if tie_weights:
|
||||||
|
logging.info("Tying weights")
|
||||||
|
assert d_model == embedding_dim, (d_model, embedding_dim)
|
||||||
|
self.output_linear.weight = self.input_embedding.weight
|
||||||
|
else:
|
||||||
|
logging.info("Not tying weights")
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
y: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
return_logits: bool = False,
|
||||||
|
):
|
||||||
|
"""Forward transformer language model
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tokens (B,L)
|
||||||
|
y (torch.Tensor): Output tokens (with EOS appended) (B,L)
|
||||||
|
x_lens (torch.Tensor): Length of input tokens before padding (B,)
|
||||||
|
return_logits (bool, optional): Return logits instead of NLL
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
x = self.input_embedding(x)
|
||||||
|
|
||||||
|
x, x_lens = self.encoder(x, x_lens)
|
||||||
|
|
||||||
|
logits = self.output_linear(x)
|
||||||
|
|
||||||
|
if return_logits:
|
||||||
|
return logits
|
||||||
|
|
||||||
|
nll_loss = F.cross_entropy(
|
||||||
|
logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
|
||||||
|
)
|
||||||
|
|
||||||
|
mask = make_pad_mask(x_lens).reshape(-1)
|
||||||
|
nll_loss.masked_fill_(mask, 0)
|
||||||
|
|
||||||
|
return nll_loss
|
||||||
|
|
||||||
|
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
|
||||||
|
|
||||||
|
bs = x.size(0)
|
||||||
|
|
||||||
|
state = None
|
||||||
|
logits = self.forward(x, x, x_lens, return_logits=True)
|
||||||
|
index = torch.arange(bs)
|
||||||
|
|
||||||
|
last_logits = logits[index, x_lens - 1, :]
|
||||||
|
|
||||||
|
return last_logits.log_softmax(-1), state
|
||||||
1015
icefall/transformer_lm/scaling.py
Normal file
1015
icefall/transformer_lm/scaling.py
Normal file
File diff suppressed because it is too large
Load Diff
609
icefall/transformer_lm/train.py
Normal file
609
icefall/transformer_lm/train.py
Normal file
@ -0,0 +1,609 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./transformer_lm/train.py \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 1 \
|
||||||
|
--use-fp16 0 \
|
||||||
|
--num-layers 12 \
|
||||||
|
--batch-size 400
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from dataset import get_dataloader
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import TransformerLM
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
exp_dir/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transformer_lm/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, logs, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default=400,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-data",
|
||||||
|
type=str,
|
||||||
|
default="data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||||
|
help="LM training data",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-data-valid",
|
||||||
|
type=str,
|
||||||
|
default="data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||||
|
help="LM validation data",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-size",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="Vocabulary size of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-layers",
|
||||||
|
type=int,
|
||||||
|
default=12,
|
||||||
|
help="Number of Transformer layers in the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tie-weights",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""True to share the weights between the input embedding layer and the
|
||||||
|
last output linear layer
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters."""
|
||||||
|
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"max_sent_len": 200,
|
||||||
|
"sos_id": 1,
|
||||||
|
"eos_id": 1,
|
||||||
|
"blank_id": 0,
|
||||||
|
"lr": 1e-3,
|
||||||
|
"weight_decay": 1e-6,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 200,
|
||||||
|
"reset_interval": 2000,
|
||||||
|
"valid_interval": 1000,
|
||||||
|
"nhead": 8,
|
||||||
|
"embedding_dim": 768,
|
||||||
|
"encoder_dim": 768,
|
||||||
|
"dim_feedforward": 2048,
|
||||||
|
"dropout": 0.1,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
logging.info(f"Loading checkpoint: {filename}")
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
model: nn.Module,
|
||||||
|
x: torch.Tensor,
|
||||||
|
y: torch.Tensor,
|
||||||
|
sentence_lengths: torch.Tensor,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||||
|
"""Compute the negative log-likelihood loss given a model and its input.
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The NN model,
|
||||||
|
x:
|
||||||
|
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
||||||
|
each row starts with SOS ID.
|
||||||
|
y:
|
||||||
|
A 2-D tensor. Each row is a shifted version of the corresponding row
|
||||||
|
in `x` but ends with an EOS ID (before padding).
|
||||||
|
sentence_lengths:
|
||||||
|
A 1-D tensor containing number of tokens of each sentence
|
||||||
|
before padding.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation.
|
||||||
|
"""
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
device = model.device
|
||||||
|
x = x.to(device)
|
||||||
|
y = y.to(device)
|
||||||
|
sentence_lengths = sentence_lengths.to(device)
|
||||||
|
|
||||||
|
nll = model(x, y, sentence_lengths)
|
||||||
|
loss = nll.sum()
|
||||||
|
|
||||||
|
num_tokens = sentence_lengths.sum().item()
|
||||||
|
|
||||||
|
loss_info = MetricsTracker()
|
||||||
|
# Note: Due to how MetricsTracker() is designed,
|
||||||
|
# we use "frames" instead of "num_tokens" as a key here
|
||||||
|
loss_info["frames"] = num_tokens
|
||||||
|
loss_info["loss"] = loss.detach().item()
|
||||||
|
return loss, loss_info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
x, y, sentence_lengths = batch
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
model=model,
|
||||||
|
x=x,
|
||||||
|
y=y,
|
||||||
|
sentence_lengths=sentence_lengths,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all sentences is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
x, y, sentence_lengths = batch
|
||||||
|
batch_size = x.size(0)
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
model=model,
|
||||||
|
x=x,
|
||||||
|
y=y,
|
||||||
|
sentence_lengths=sentence_lengths,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
# Note: "frames" here means "num_tokens"
|
||||||
|
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
||||||
|
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
||||||
|
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar("train/tot_ppl", tot_ppl, params.batch_idx_train)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
||||||
|
f"ppl: {valid_ppl}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
is_distributed = world_size > 1
|
||||||
|
|
||||||
|
fix_random_seed(params.seed)
|
||||||
|
if is_distributed:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = TransformerLM(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
d_model=params.encoder_dim,
|
||||||
|
embedding_dim=params.embedding_dim,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
nhead=params.nhead,
|
||||||
|
num_layers=params.num_layers,
|
||||||
|
tie_weights=params.tie_weights,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if is_distributed:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
optimizer = optim.Adam(
|
||||||
|
model.parameters(),
|
||||||
|
lr=params.lr,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
if checkpoints:
|
||||||
|
logging.info("Load optimizer state_dict from checkpoint")
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
logging.info(f"Loading LM training data from {params.lm_data}")
|
||||||
|
train_dl = get_dataloader(
|
||||||
|
filename=params.lm_data,
|
||||||
|
is_distributed=is_distributed,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
||||||
|
valid_dl = get_dataloader(
|
||||||
|
filename=params.lm_data_valid,
|
||||||
|
is_distributed=is_distributed,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Note: No learning rate scheduler is used here
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
if is_distributed:
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if is_distributed:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
Loading…
x
Reference in New Issue
Block a user