mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 02:22:17 +00:00
add file
This commit is contained in:
parent
5596da0704
commit
72f5c5e17f
351
egs/tal_csasr/ASR/lstm_transducer_stateless3/streaming-ncnn-decode.py
Executable file
351
egs/tal_csasr/ASR/lstm_transducer_stateless3/streaming-ncnn-decode.py
Executable file
@ -0,0 +1,351 @@
|
||||
#!/usr/bin/env python3
|
||||
# flake8: noqa
|
||||
#
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Please see
|
||||
https://k2-fsa.github.io/icefall/model-export/export-ncnn.html
|
||||
for usage
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from typing import List, Optional
|
||||
|
||||
import k2
|
||||
import ncnn
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
help="Path to tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-param-filename",
|
||||
type=str,
|
||||
help="Path to encoder.ncnn.param",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-bin-filename",
|
||||
type=str,
|
||||
help="Path to encoder.ncnn.bin",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder-param-filename",
|
||||
type=str,
|
||||
help="Path to decoder.ncnn.param",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder-bin-filename",
|
||||
type=str,
|
||||
help="Path to decoder.ncnn.bin",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-param-filename",
|
||||
type=str,
|
||||
help="Path to joiner.ncnn.param",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-bin-filename",
|
||||
type=str,
|
||||
help="Path to joiner.ncnn.bin",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_filename",
|
||||
type=str,
|
||||
help="Path to foo.wav",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self, args):
|
||||
self.init_encoder(args)
|
||||
self.init_decoder(args)
|
||||
self.init_joiner(args)
|
||||
|
||||
def init_encoder(self, args):
|
||||
encoder_net = ncnn.Net()
|
||||
encoder_net.opt.use_packing_layout = False
|
||||
encoder_net.opt.use_fp16_storage = False
|
||||
encoder_net.opt.num_threads = 4
|
||||
|
||||
encoder_param = args.encoder_param_filename
|
||||
encoder_model = args.encoder_bin_filename
|
||||
|
||||
encoder_net.load_param(encoder_param)
|
||||
encoder_net.load_model(encoder_model)
|
||||
|
||||
self.encoder_net = encoder_net
|
||||
|
||||
def init_decoder(self, args):
|
||||
decoder_param = args.decoder_param_filename
|
||||
decoder_model = args.decoder_bin_filename
|
||||
|
||||
decoder_net = ncnn.Net()
|
||||
decoder_net.opt.use_packing_layout = False
|
||||
decoder_net.opt.num_threads = 4
|
||||
|
||||
decoder_net.load_param(decoder_param)
|
||||
decoder_net.load_model(decoder_model)
|
||||
|
||||
self.decoder_net = decoder_net
|
||||
|
||||
def init_joiner(self, args):
|
||||
joiner_param = args.joiner_param_filename
|
||||
joiner_model = args.joiner_bin_filename
|
||||
joiner_net = ncnn.Net()
|
||||
joiner_net.opt.use_packing_layout = False
|
||||
joiner_net.opt.num_threads = 4
|
||||
|
||||
joiner_net.load_param(joiner_param)
|
||||
joiner_net.load_model(joiner_model)
|
||||
|
||||
self.joiner_net = joiner_net
|
||||
|
||||
def run_encoder(self, x, states):
|
||||
with self.encoder_net.create_extractor() as ex:
|
||||
ex.input("in0", ncnn.Mat(x.numpy()).clone())
|
||||
x_lens = torch.tensor([x.size(0)], dtype=torch.float32)
|
||||
ex.input("in1", ncnn.Mat(x_lens.numpy()).clone())
|
||||
ex.input("in2", ncnn.Mat(states[0].numpy()).clone())
|
||||
ex.input("in3", ncnn.Mat(states[1].numpy()).clone())
|
||||
|
||||
ret, ncnn_out0 = ex.extract("out0")
|
||||
assert ret == 0, ret
|
||||
|
||||
ret, ncnn_out1 = ex.extract("out1")
|
||||
assert ret == 0, ret
|
||||
|
||||
ret, ncnn_out2 = ex.extract("out2")
|
||||
assert ret == 0, ret
|
||||
|
||||
ret, ncnn_out3 = ex.extract("out3")
|
||||
assert ret == 0, ret
|
||||
|
||||
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||
encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(torch.int32)
|
||||
hx = torch.from_numpy(ncnn_out2.numpy()).clone()
|
||||
cx = torch.from_numpy(ncnn_out3.numpy()).clone()
|
||||
return encoder_out, encoder_out_lens, hx, cx
|
||||
|
||||
def run_decoder(self, decoder_input):
|
||||
assert decoder_input.dtype == torch.int32
|
||||
|
||||
with self.decoder_net.create_extractor() as ex:
|
||||
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
|
||||
ret, ncnn_out0 = ex.extract("out0")
|
||||
assert ret == 0, ret
|
||||
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||
return decoder_out
|
||||
|
||||
def run_joiner(self, encoder_out, decoder_out):
|
||||
with self.joiner_net.create_extractor() as ex:
|
||||
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
|
||||
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
|
||||
ret, ncnn_out0 = ex.extract("out0")
|
||||
assert ret == 0, ret
|
||||
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||
return joiner_out
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def create_streaming_feature_extractor() -> OnlineFeature:
|
||||
"""Create a CPU streaming feature extractor.
|
||||
|
||||
At present, we assume it returns a fbank feature extractor with
|
||||
fixed options. In the future, we will support passing in the options
|
||||
from outside.
|
||||
|
||||
Returns:
|
||||
Return a CPU streaming feature extractor.
|
||||
"""
|
||||
opts = FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
return OnlineFbank(opts)
|
||||
|
||||
|
||||
def greedy_search(
|
||||
model: Model,
|
||||
encoder_out: torch.Tensor,
|
||||
decoder_out: Optional[torch.Tensor] = None,
|
||||
hyp: Optional[List[int]] = None,
|
||||
):
|
||||
assert encoder_out.ndim == 1
|
||||
context_size = 2
|
||||
blank_id = 0
|
||||
|
||||
if decoder_out is None:
|
||||
assert hyp is None, hyp
|
||||
hyp = [blank_id] * context_size
|
||||
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
|
||||
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||
else:
|
||||
assert decoder_out.ndim == 1
|
||||
assert hyp is not None, hyp
|
||||
|
||||
joiner_out = model.run_joiner(encoder_out, decoder_out)
|
||||
y = joiner_out.argmax(dim=0).item()
|
||||
if y != blank_id:
|
||||
hyp.append(y)
|
||||
decoder_input = hyp[-context_size:]
|
||||
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
|
||||
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||
|
||||
return hyp, decoder_out
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
model = Model(args)
|
||||
|
||||
sound_file = args.sound_filename
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
online_fbank = create_streaming_feature_extractor()
|
||||
|
||||
logging.info(f"Reading sound files: {sound_file}")
|
||||
wave_samples = read_sound_files(
|
||||
filenames=[sound_file],
|
||||
expected_sample_rate=sample_rate,
|
||||
)[0]
|
||||
logging.info(wave_samples.shape)
|
||||
|
||||
num_encoder_layers = 12
|
||||
batch_size = 1
|
||||
d_model = 512
|
||||
rnn_hidden_size = 1024
|
||||
|
||||
states = (
|
||||
torch.zeros(num_encoder_layers, batch_size, d_model),
|
||||
torch.zeros(
|
||||
num_encoder_layers,
|
||||
batch_size,
|
||||
rnn_hidden_size,
|
||||
),
|
||||
)
|
||||
|
||||
hyp = None
|
||||
decoder_out = None
|
||||
|
||||
num_processed_frames = 0
|
||||
segment = 9
|
||||
offset = 4
|
||||
|
||||
chunk = 3200 # 0.2 second
|
||||
|
||||
start = 0
|
||||
while start < wave_samples.numel():
|
||||
end = min(start + chunk, wave_samples.numel())
|
||||
samples = wave_samples[start:end]
|
||||
start += chunk
|
||||
|
||||
online_fbank.accept_waveform(
|
||||
sampling_rate=sample_rate,
|
||||
waveform=samples,
|
||||
)
|
||||
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
||||
frames = []
|
||||
for i in range(segment):
|
||||
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
||||
num_processed_frames += offset
|
||||
frames = torch.cat(frames, dim=0)
|
||||
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states)
|
||||
states = (hx, cx)
|
||||
hyp, decoder_out = greedy_search(
|
||||
model, encoder_out.squeeze(0), decoder_out, hyp
|
||||
)
|
||||
online_fbank.accept_waveform(
|
||||
sampling_rate=sample_rate, waveform=torch.zeros(8000, dtype=torch.int32)
|
||||
)
|
||||
|
||||
online_fbank.input_finished()
|
||||
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
||||
frames = []
|
||||
for i in range(segment):
|
||||
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
||||
num_processed_frames += offset
|
||||
frames = torch.cat(frames, dim=0)
|
||||
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states)
|
||||
states = (hx, cx)
|
||||
hyp, decoder_out = greedy_search(
|
||||
model, encoder_out.squeeze(0), decoder_out, hyp
|
||||
)
|
||||
|
||||
symbol_table = k2.SymbolTable.from_file(args.tokens)
|
||||
|
||||
context_size = 2
|
||||
text = ""
|
||||
for i in hyp[context_size:]:
|
||||
text += symbol_table[i]
|
||||
text = text.replace("▁", " ").strip()
|
||||
|
||||
logging.info(sound_file)
|
||||
logging.info(text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user