mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
First draft of new approach to learning rates + init
This commit is contained in:
parent
4929e4cf32
commit
72f4a673b1
@ -1017,93 +1017,6 @@ class Conv2dSubsampling(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* self.warmup ** (-0.5 - -0.333)
|
||||
* min(step ** (-0.333), step * self.warmup ** (-1.333))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
feature_dim = 50
|
||||
|
254
egs/librispeech/ASR/pruned_transducer_stateless2/optim.py
Normal file
254
egs/librispeech/ASR/pruned_transducer_stateless2/optim.py
Normal file
@ -0,0 +1,254 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||
#
|
||||
# See ../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import random
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
class Eve(Optimizer):
|
||||
r"""
|
||||
Implements Eve algorithm. This is a modified version of AdamW with a special
|
||||
way of setting the weight-decay / shrinkage-factor, which is designed to make the
|
||||
rms of the parameters approach a particular specified value (generally 0.1). This is
|
||||
for use with networks with 'scaled' versions of modules (see scaling.py), which
|
||||
will be close to invariant to the absolute scale on the parameter matrix.
|
||||
|
||||
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
|
||||
Eve is unpublished so far.
|
||||
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float, optional): learning rate (default: 1e-3)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its square (default: (0.9, 0.999))
|
||||
eps (float, optional): term added to the denominator to improve
|
||||
numerical stability (default: 1e-8)
|
||||
weight_decay (float, optional): weight decay coefficient (default: 1e-2)
|
||||
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
||||
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
||||
(default: False)
|
||||
|
||||
.. _Adam\: A Method for Stochastic Optimization:
|
||||
https://arxiv.org/abs/1412.6980
|
||||
.. _Decoupled Weight Decay Regularization:
|
||||
https://arxiv.org/abs/1711.05101
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.98), eps=1e-8,
|
||||
target_rms=0.1):
|
||||
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
if not 0 < target_rms <= 10.0:
|
||||
raise ValueError("Invalid target_rms value: {}".format(target_rms))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
target_rms=target_rms)
|
||||
super(Eve, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(Eve, self).__setstate__(state)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
|
||||
# Perform optimization step
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('AdamW does not support sparse gradients')
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
state['step'] += 1
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
|
||||
step_size = group['lr'] / bias_correction1
|
||||
target_rms = group['target_rms']
|
||||
delta = exp_avg / denom
|
||||
|
||||
# we'll be doing: p += delta * step_size.
|
||||
# In the normal case delta_rms (the rms value of the elements of
|
||||
# delta) will be very close to 1.0, but we compute it here so
|
||||
# that if we don't use a particular parameter, its value won't
|
||||
# shrink to zero.
|
||||
# delta_var is the expected change in the variance of the parameter
|
||||
# values, i.e. of E[param_elem^2], due to this step. It will
|
||||
# be close to 1.
|
||||
|
||||
# Let us define:
|
||||
# delta_var_from_update = (delta**2).mean() * step_size * step_size
|
||||
|
||||
# Suppose we are going to shrinkage with a small value epsilon (not the
|
||||
# same as the eps above!), i.e. param *= (1-epsilon). Then
|
||||
# if E[param_elem^2] == target_rms^2,
|
||||
# E[(param_elem*(1-epsilon))^2] == target_rms^2 (1- 2epsilon + epsilon^2),
|
||||
# which we can put as:
|
||||
# delta_var_from_shrinkage \simeq -2 epsilon target_rms^2.
|
||||
# Setting delta_var_from_shrinkage = -delta_var_from_update
|
||||
# because we want them to cancel,
|
||||
# delta_var_from_update = 2 epsilon target_rms^2, or:
|
||||
# epsilon = delta_var_from_update / (2 * target_rms^2)
|
||||
# = (delta**2).mean() * 0.5 * (step_size / target_rms)**2.
|
||||
# Note: step_size is close to the learning rate. For an example, if
|
||||
# lr = 1.0e-04 and target_rms == 0.1, then in the normal case where
|
||||
# (delta**2).mean() == 1, we will have:
|
||||
# epsilon = 1.0 * 0.5 * (1.0e-04 / 0.1) = 1.0e-06.
|
||||
# Note that this is close to the "traditional" value used for weight
|
||||
# decay.
|
||||
|
||||
# this is the weight-decay amount...
|
||||
weight_decay = (delta ** 2).mean().sqrt() * ((0.5 * (step_size / target_rms)) ** 2)
|
||||
|
||||
p.mul_(1 - weight_decay)
|
||||
p.add_(delta, alpha=-step_size)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* self.warmup ** (-0.5 - -0.333)
|
||||
* min(step ** (-0.333), step * self.warmup ** (-1.333))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
@ -158,7 +158,10 @@ class ScaledLinear(nn.Linear):
|
||||
self._reset_parameters(initial_speed) # Overrides the reset_parameters in nn.Linear
|
||||
|
||||
def _reset_parameters(self, initial_speed: float):
|
||||
std = 0.01 / initial_speed
|
||||
# we plan to use Eve as the optimizer, which will eventually make the stddev approach
|
||||
# 0.1 as that's the target_rms we set, but we initialize with a larger stddev
|
||||
# to have the same effect as a warm-up period.
|
||||
std = 0.5 / initial_speed
|
||||
a = (3 ** 0.5) * std
|
||||
nn.init.uniform_(self.weight, -a, a)
|
||||
if self.bias is not None:
|
||||
@ -196,7 +199,7 @@ class ScaledConv1d(nn.Conv1d):
|
||||
self._reset_parameters(initial_speed) # Overrides the reset_parameters in base class
|
||||
|
||||
def _reset_parameters(self, initial_speed: float):
|
||||
std = 0.01 / initial_speed
|
||||
std = 0.5 / initial_speed
|
||||
a = (3 ** 0.5) * std
|
||||
nn.init.uniform_(self.weight, -a, a)
|
||||
if self.bias is not None:
|
||||
@ -241,7 +244,7 @@ class ScaledConv2d(nn.Conv2d):
|
||||
self._reset_parameters(initial_speed) # Overrides the reset_parameters in base class
|
||||
|
||||
def _reset_parameters(self, initial_speed: float):
|
||||
std = 0.01 / initial_speed
|
||||
std = 0.5 / initial_speed
|
||||
a = (3 ** 0.5) * std
|
||||
nn.init.uniform_(self.weight, -a, a)
|
||||
if self.bias is not None:
|
||||
@ -476,9 +479,8 @@ class ScaledEmbedding(nn.Module):
|
||||
self.reset_parameters(initial_speed)
|
||||
|
||||
|
||||
|
||||
def reset_parameters(self, initial_speed: float = 1.0) -> None:
|
||||
std = 0.01 / initial_speed
|
||||
std = 0.5 / initial_speed
|
||||
nn.init.normal_(self.weight, std=std)
|
||||
nn.init.constant_(self.scale, torch.tensor(1.0/std).log())
|
||||
|
||||
|
@ -28,7 +28,10 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 300 \
|
||||
--lr-factor 1.5
|
||||
--initial-lr 0.002 \
|
||||
--lr-decay-steps 10000 \
|
||||
--num-lr-decays 4
|
||||
|
||||
"""
|
||||
|
||||
|
||||
@ -52,6 +55,7 @@ from lhotse.cut import Cut
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import Transducer
|
||||
from optim import Eve
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
@ -141,17 +145,24 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-factor",
|
||||
"--initial-lr",
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="The lr_factor for Noam optimizer",
|
||||
default=0.002,
|
||||
help="The initial learning rate",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--warm-step",
|
||||
"--lr-decay-steps",
|
||||
type=float,
|
||||
default=60000,
|
||||
help="The number of warmup steps for the (modified) Noam optimizer",
|
||||
default=5000,
|
||||
help="The number of steps before we decay (halve) the learning rate",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-lr-decays",
|
||||
type=float,
|
||||
default=4,
|
||||
help="The total number of times we decay (halve) the learning rate"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -426,6 +437,7 @@ def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optimal.lr_scheduler._LRScheduler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
@ -449,6 +461,7 @@ def save_checkpoint(
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=sampler,
|
||||
rank=rank,
|
||||
)
|
||||
@ -574,6 +587,7 @@ def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
@ -594,6 +608,8 @@ def train_one_epoch(
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler, we call step() every step.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
@ -636,6 +652,7 @@ def train_one_epoch(
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
return
|
||||
@ -651,6 +668,7 @@ def train_one_epoch(
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=train_dl.sampler,
|
||||
rank=rank,
|
||||
)
|
||||
@ -756,17 +774,24 @@ def run(rank, world_size, args):
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model.device = device
|
||||
|
||||
optimizer = Noam(
|
||||
optimizer = Eve(
|
||||
model.parameters(),
|
||||
model_size=params.encoder_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
)
|
||||
lr=params.initial_lr, betas=(0.9, 0.98),
|
||||
eps=1e-9, target_rms=0.1)
|
||||
scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
[ n * params.lr_decay_steps for n in range(1, params.num_lr_decays+1) ],
|
||||
gamma=0.5)
|
||||
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
if checkpoints and "scheduler" in checkpoints:
|
||||
logging.info("Loading scheduler state dict")
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
@ -839,6 +864,7 @@ def run(rank, world_size, args):
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sp=sp,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
|
Loading…
x
Reference in New Issue
Block a user