diff --git a/egs/wenetspeech/ASR/whisper/asr_datamodule.py b/egs/wenetspeech/ASR/whisper/asr_datamodule.py new file mode 120000 index 000000000..a074d6085 --- /dev/null +++ b/egs/wenetspeech/ASR/whisper/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/asr_datamodule.py \ No newline at end of file diff --git a/egs/wenetspeech/ASR/whisper/decode.py b/egs/wenetspeech/ASR/whisper/decode.py new file mode 100755 index 000000000..1806867dd --- /dev/null +++ b/egs/wenetspeech/ASR/whisper/decode.py @@ -0,0 +1,491 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, +# Fangjun Kuang, +# Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import whisper +from whisper.normalizers import BasicTextNormalizer +import k2 +import torch +import torch.nn as nn +from asr_datamodule import WenetSpeechAsrDataModule +from model import load_model + +from icefall.checkpoint import load_checkpoint, average_checkpoints_with_averaged_model +from icefall.decode import ( + get_lattice, + nbest_decoding, + nbest_oracle, + one_best_decoding, + rescore_with_attention_decoder, +) +from icefall.env import get_env_info +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + write_error_stats, +) +from zhconv import convert +from tn.chinese.normalizer import Normalizer +import re + +def average_checkpoints( + filenames: List[Path], device: torch.device = torch.device("cpu") +) -> dict: + """Average a list of checkpoints. + + Args: + filenames: + Filenames of the checkpoints to be averaged. We assume all + checkpoints are saved by :func:`save_checkpoint`. + device: + Move checkpoints to this device before averaging. + Returns: + Return a dict (i.e., state_dict) which is the average of all + model state dicts contained in the checkpoints. + """ + n = len(filenames) + + if "model" in torch.load(filenames[0], map_location=device): + avg = torch.load(filenames[0], map_location=device)["model"] + else: + avg = torch.load(filenames[0], map_location=device) + + # Identify shared parameters. Two parameters are said to be shared + # if they have the same data_ptr + uniqued: Dict[int, str] = dict() + + for k, v in avg.items(): + v_data_ptr = v.data_ptr() + if v_data_ptr in uniqued: + continue + uniqued[v_data_ptr] = k + + uniqued_names = list(uniqued.values()) + + for i in range(1, n): + if "model" in torch.load(filenames[i], map_location=device): + state_dict = torch.load(filenames[i], map_location=device)["model"] + else: + state_dict = torch.load(filenames[i], map_location=device) + for k in uniqued_names: + avg[k] += state_dict[k] + + for k in uniqued_names: + if avg[k].is_floating_point(): + avg[k] /= n + else: + avg[k] //= n + + return avg + +def remove_punctuation(text: str or List[str]): + # https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py + punctuation = '!,.;:?、!,。;:?' + if isinstance(text, str): + text = re.sub(r'[{}]+'.format(punctuation), '', text).strip() + return text + elif isinstance(text, list): + result_text = [] + for t in text: + t = re.sub(r'[{}]+'.format(punctuation), '', t).strip() + result_text.append(t) + return result_text + else: + raise Exception(f'Not support type {type(text)}') + +def to_simple(text: str or List[str]): + if isinstance(text, str): + text = convert(text, 'zh-cn') + return text + elif isinstance(text, list): + result_text = [] + for t in text: + t = convert(t, 'zh-cn') + result_text.append(t) + return result_text + else: + raise Exception(f'Not support type{type(text)}') + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=-1, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=1, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--method", + type=str, + default="beam-search", + help="""Decoding method. + Supported values are: + - beam-search + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=1, + help="beam size for beam search decoding", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="whisper/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--model-name", + type=str, + default="large-v2", + choices=["large-v2", "large-v3", "medium", "small", "tiny"], + help="""The model name to use. + """, + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "env_info": get_env_info(), + } + ) + return params + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + batch: dict, +) -> Dict[str, List[List[int]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if decoding method is 1best, the key is the string `no_rescore`. + If attention rescoring is used, the key is the string + `ngram_lm_scale_xxx_attention_scale_xxx`, where `xxx` is the + value of `lm_scale` and `attention_scale`. An example key is + `ngram_lm_scale_0.7_attention_scale_0.5` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + + - params.method is "1best", it uses 1best decoding without LM rescoring. + - params.method is "nbest", it uses nbest decoding without LM rescoring. + - params.method is "attention-decoder", it uses attention rescoring. + + model: + The neural model. + HLG: + The decoding graph. Used when params.method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.method is ctc-decoding. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + lexicon: + It contains the token symbol table and the word symbol table. + sos_id: + The token ID of the SOS. + eos_id: + The token ID of the EOS. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + dtype = torch.float16 + device = torch.device("cuda") + + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device, dtype=dtype).transpose(1, 2) + + supervisions = batch["supervisions"] + feature_len = supervisions["num_frames"] + feature_len = feature_len.to(device, dtype=dtype) + results = model.decode(feature, params.decoding_options) + hyps = [result.text for result in results] + + hyps = remove_punctuation(hyps) + hyps = to_simple(hyps) + + hyps = [params.normalizer.normalize(hyp) for hyp in hyps] + + key = "beam-search" + + return {key: hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. Used when params.method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.method is ctc-decoding. + lexicon: + It contains the token symbol table and the word symbol table. + sos_id: + The token ID for SOS. + eos_id: + The token ID for EOS. + Returns: + Return a dict, whose key may be "no-rescore" if the decoding method is + 1best or it may be "ngram_lm_scale_0.7_attention_scale_0.5" if attention + rescoring is used. Its value is a list of tuples. Each tuple contains two + elements: The first is the reference transcript, and the second is the + predicted result. + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + batch=batch, + ) + + for lm_scale, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[lm_scale].extend(this_batch) + + num_cuts += len(batch["supervisions"]["text"]) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + + enable_log = True + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + if enable_log: + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + # we compute CER for aishell dataset. + results_char = [] + for res in results: + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results_char, enable_log=enable_log + ) + test_set_wers[key] = wer + + if enable_log: + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" + with open(errs_info, "w") as f: + print("settings\tCER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, CER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + WenetSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + setup_logger(f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}") + + options = whisper.DecodingOptions(task="transcribe", language="zh", without_timestamps=True, beam_size=params.beam_size) + params.decoding_options = options + params.cleaner = BasicTextNormalizer() + params.normalizer = Normalizer() + + logging.info("Decoding started") + logging.info(params) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda") + + logging.info(f"device: {device}") + + model = load_model(params.model_name) + if params.epoch > 0: + if params.avg > 1: + start = params.epoch - params.avg + assert start >= 1, start + checkpoint = torch.load(f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location='cpu') + if 'model' not in checkpoint: + filenames = [f"{params.exp_dir}/epoch-{epoch}.pt" for epoch in range(start, params.epoch + 1)] + model.load_state_dict(average_checkpoints(filenames)) + else: + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + # save checkpoints + filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt" + torch.save(model.state_dict(), filename) + else: + checkpoint = torch.load(f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location='cpu') + if 'model' not in checkpoint: + model.load_state_dict(checkpoint, strict=True) + else: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + model.to(device) + model.eval() + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + wenetspeech = WenetSpeechAsrDataModule(args) + + def remove_short_utt(c: Cut): + T = ((c.num_frames - 7) // 2 + 1) // 2 + if T <= 0: + logging.warning( + f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}." + ) + return T > 0 + + # dev_cuts = wenetspeech.valid_cuts() + # dev_cuts = dev_cuts.filter(remove_short_utt) + # dev_dl = wenetspeech.valid_dataloaders(dev_cuts) + + # test_net_cuts = wenetspeech.test_net_cuts() + # test_net_cuts = test_net_cuts.filter(remove_short_utt) + # test_net_dl = wenetspeech.test_dataloaders(test_net_cuts) + + test_meeting_cuts = wenetspeech.test_meeting_cuts() + test_meeting_cuts = test_meeting_cuts.filter(remove_short_utt) + test_meeting_dl = wenetspeech.test_dataloaders(test_meeting_cuts) + + # test_sets = ["DEV", "TEST_NET", "TEST_MEETING"] + # test_dls = [dev_dl, test_net_dl, test_meeting_dl] + + test_sets = ["TEST_MEETING"] + test_dls = [test_meeting_dl] + + for test_set, test_dl in zip(test_sets, test_dls): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + ) + + save_results(params=params, test_set_name=test_set, results_dict=results_dict) + + logging.info("Done!") + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/wenetspeech/ASR/whisper/model.py b/egs/wenetspeech/ASR/whisper/model.py new file mode 100755 index 000000000..9ec412513 --- /dev/null +++ b/egs/wenetspeech/ASR/whisper/model.py @@ -0,0 +1,431 @@ +import torch +import torch.nn as nn +import base64 +import gzip +import warnings +from tqdm import tqdm +from dataclasses import dataclass +from typing import Dict, Iterable, Optional, Union +import os +import urllib +import hashlib +import numpy as np + +import torch.nn.functional as F +from torch import Tensor + +from whisper.decoding import decode as decode_function +from whisper.transcribe import transcribe as transcribe_function + + +@dataclass +class ModelDimensions: + n_mels: int + n_audio_ctx: int + n_audio_state: int + n_audio_head: int + n_audio_layer: int + n_vocab: int + n_text_ctx: int + n_text_state: int + n_text_head: int + n_text_layer: int + + +class LayerNorm(nn.LayerNorm): + def forward(self, x: Tensor) -> Tensor: + return super().forward(x.float()).type(x.dtype) + + +class Linear(nn.Linear): + def forward(self, x: Tensor) -> Tensor: + return F.linear( + x, + self.weight.to(x.dtype), + None if self.bias is None else self.bias.to(x.dtype), + ) + + +class Conv1d(nn.Conv1d): + def _conv_forward( + self, x: Tensor, weight: Tensor, bias: Optional[Tensor] + ) -> Tensor: + return super()._conv_forward( + x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) + ) + + +def sinusoids(length, channels, max_timescale=10000): + """Returns sinusoids for positional embedding""" + assert channels % 2 == 0 + log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) + inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) + scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] + return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) + + +class MultiHeadAttention(nn.Module): + def __init__(self, n_state: int, n_head: int): + super().__init__() + self.n_head = n_head + self.query = Linear(n_state, n_state) + self.key = Linear(n_state, n_state, bias=False) + self.value = Linear(n_state, n_state) + self.out = Linear(n_state, n_state) + + def forward( + self, + x: Tensor, + xa: Optional[Tensor] = None, + mask: Optional[Tensor] = None, + kv_cache: Optional[dict] = None, + ): + q = self.query(x) + + if kv_cache is None or xa is None or self.key not in kv_cache: + # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; + # otherwise, perform key/value projections for self- or cross-attention as usual. + k = self.key(x if xa is None else xa) + v = self.value(x if xa is None else xa) + else: + # for cross-attention, calculate keys and values once and reuse in subsequent calls. + k = kv_cache[self.key] + v = kv_cache[self.value] + + wv, qk = self.qkv_attention(q, k, v, mask) + return self.out(wv), qk + + def qkv_attention( + self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None + ): + n_batch, n_ctx, n_state = q.shape + scale = (n_state // self.n_head) ** -0.25 + q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale + k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale + v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) + + qk = q @ k + if mask is not None: + qk = qk + mask[:n_ctx, :n_ctx] + qk = qk.float() + + w = F.softmax(qk, dim=-1).to(q.dtype) + return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() + + +class ResidualAttentionBlock(nn.Module): + def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): + super().__init__() + + self.attn = MultiHeadAttention(n_state, n_head) + self.attn_ln = LayerNorm(n_state) + + self.cross_attn = ( + MultiHeadAttention(n_state, n_head) if cross_attention else None + ) + self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None + + n_mlp = n_state * 4 + self.mlp = nn.Sequential( + Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state) + ) + self.mlp_ln = LayerNorm(n_state) + + def forward( + self, + x: Tensor, + xa: Optional[Tensor] = None, + mask: Optional[Tensor] = None, + kv_cache: Optional[dict] = None, + ): + x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0] + if self.cross_attn: + x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0] + x = x + self.mlp(self.mlp_ln(x)) + return x + + +class AudioEncoder(nn.Module): + def __init__( + self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int + ): + super().__init__() + self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) + self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) + self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) + + self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( + [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] + ) + self.ln_post = LayerNorm(n_state) + + def forward(self, x: Tensor): + """ + x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) + the mel spectrogram of the audio + """ + x = F.gelu(self.conv1(x)) + x = F.gelu(self.conv2(x)) + x = x.permute(0, 2, 1) + + # change whisper to process audio with any length + x = (x + self.positional_embedding[:x.shape[1],:]).to(x.dtype) + + for block in self.blocks: + x = block(x) + + x = self.ln_post(x) + return x + + +class TextDecoder(nn.Module): + def __init__( + self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int + ): + super().__init__() + + self.token_embedding = nn.Embedding(n_vocab, n_state) + self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) + + self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( + [ + ResidualAttentionBlock(n_state, n_head, cross_attention=True) + for _ in range(n_layer) + ] + ) + self.ln = LayerNorm(n_state) + + mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1) + self.register_buffer("mask", mask, persistent=False) + + def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): + """ + x : torch.LongTensor, shape = (batch_size, <= n_ctx) + the text tokens + xa : torch.Tensor, shape = (batch_size, n_audio_ctx, n_audio_state) + the encoded audio features to be attended on + """ + offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 + x = ( + self.token_embedding(x) + + self.positional_embedding[offset : offset + x.shape[-1]] + ) + x = x.to(xa.dtype) + + for block in self.blocks: + x = block(x, xa, mask=self.mask, kv_cache=kv_cache) + + x = self.ln(x) + logits = ( + x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1) + ).float() + + return logits + +class Whisper(nn.Module): + def __init__(self, dims: ModelDimensions): + super().__init__() + self.dims = dims + self.encoder = AudioEncoder( + self.dims.n_mels, + self.dims.n_audio_ctx, + self.dims.n_audio_state, + self.dims.n_audio_head, + self.dims.n_audio_layer, + ) + self.decoder = TextDecoder( + self.dims.n_vocab, + self.dims.n_text_ctx, + self.dims.n_text_state, + self.dims.n_text_head, + self.dims.n_text_layer, + ) + # use the last half layers for alignment by default; see `set_alignment_heads()` below + all_heads = torch.zeros( + self.dims.n_text_layer, self.dims.n_text_head, dtype=torch.bool + ) + all_heads[self.dims.n_text_layer // 2 :] = True + self.register_buffer("alignment_heads", all_heads.to_sparse(), persistent=False) + + def set_alignment_heads(self, dump: bytes): + array = np.frombuffer( + gzip.decompress(base64.b85decode(dump)), dtype=bool + ).copy() + mask = torch.from_numpy(array).reshape( + self.dims.n_text_layer, self.dims.n_text_head + ) + self.register_buffer("alignment_heads", mask.to_sparse(), persistent=False) + + def embed_audio(self, mel: torch.Tensor): + return self.encoder(mel) + + def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor): + return self.decoder(tokens, audio_features) + + def forward( + self, mel: torch.Tensor, tokens: torch.Tensor + ) -> Dict[str, torch.Tensor]: + return self.decoder(tokens, self.encoder(mel)) + + @property + def device(self): + return next(self.parameters()).device + + @property + def is_multilingual(self): + return self.dims.n_vocab >= 51865 + + @property + def num_languages(self): + return self.dims.n_vocab - 51765 - int(self.is_multilingual) + + def install_kv_cache_hooks(self, cache: Optional[dict] = None): + """ + The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value + tensors calculated for the previous positions. This method returns a dictionary that stores + all caches, and the necessary hooks for the key and value projection modules that save the + intermediate tensors to be reused during later calculations. + + Returns + ------- + cache : Dict[nn.Module, torch.Tensor] + A dictionary object mapping the key/value projection modules to its cache + hooks : List[RemovableHandle] + List of PyTorch RemovableHandle objects to stop the hooks to be called + """ + cache = {**cache} if cache is not None else {} + hooks = [] + + def save_to_cache(module, _, output): + if module not in cache or output.shape[1] > self.dims.n_text_ctx: + # save as-is, for the first token or cross attention + cache[module] = output + else: + cache[module] = torch.cat([cache[module], output], dim=1).detach() + return cache[module] + + def install_hooks(layer: nn.Module): + if isinstance(layer, MultiHeadAttention): + hooks.append(layer.key.register_forward_hook(save_to_cache)) + hooks.append(layer.value.register_forward_hook(save_to_cache)) + + self.decoder.apply(install_hooks) + return cache, hooks + + transcribe = transcribe_function + decode = decode_function + +_MODELS = { + "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", + "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", + "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", + "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", + "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", + "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", + "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", + "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", + "large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt", + "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", + "large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt", + "large": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", +} + +def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]: + os.makedirs(root, exist_ok=True) + + expected_sha256 = url.split("/")[-2] + download_target = os.path.join(root, os.path.basename(url)) + + if os.path.exists(download_target) and not os.path.isfile(download_target): + raise RuntimeError(f"{download_target} exists and is not a regular file") + + if os.path.isfile(download_target): + with open(download_target, "rb") as f: + model_bytes = f.read() + if hashlib.sha256(model_bytes).hexdigest() == expected_sha256: + return model_bytes if in_memory else download_target + else: + warnings.warn( + f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" + ) + + with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: + with tqdm( + total=int(source.info().get("Content-Length")), + ncols=80, + unit="iB", + unit_scale=True, + unit_divisor=1024, + ) as loop: + while True: + buffer = source.read(8192) + if not buffer: + break + + output.write(buffer) + loop.update(len(buffer)) + + model_bytes = open(download_target, "rb").read() + if hashlib.sha256(model_bytes).hexdigest() != expected_sha256: + raise RuntimeError( + "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." + ) + + return model_bytes if in_memory else download_target + +def load_model( + name: str, + device: Optional[Union[str, torch.device]] = 'cpu', + download_root: str = None, + in_memory: bool = False, +) -> Whisper: + """ + Load a Whisper ASR model + + Parameters + ---------- + name : str + one of the official model names listed by `whisper.available_models()`, or + path to a model checkpoint containing the model dimensions and the model state_dict. + device : Union[str, torch.device] + the PyTorch device to put the model into + download_root: str + path to download the model files; by default, it uses "~/.cache/whisper" + in_memory: bool + whether to preload the model weights into host memory + + Returns + ------- + model : Whisper + The Whisper ASR model instance + """ + + # if device is None: + # device = "cuda" if torch.cuda.is_available() else "cpu" + if download_root is None: + default = os.path.join(os.path.expanduser("~"), ".cache") + download_root = os.path.join(os.getenv("XDG_CACHE_HOME", default), "whisper") + + if name in _MODELS: + checkpoint_file = _download(_MODELS[name], download_root, in_memory) + # alignment_heads = _ALIGNMENT_HEADS[name] + alignment_heads = None + elif os.path.isfile(name): + checkpoint_file = open(name, "rb").read() if in_memory else name + alignment_heads = None + else: + raise RuntimeError( + f"Model {name} not found; available models = {available_models()}" + ) + + with ( + io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb") + ) as fp: + checkpoint = torch.load(fp, map_location=device) + del checkpoint_file + + dims = ModelDimensions(**checkpoint["dims"]) + model = Whisper(dims) + model.load_state_dict(checkpoint["model_state_dict"]) + + return model.to(device) \ No newline at end of file