add length filter condition

This commit is contained in:
yaozengwei 2022-12-30 16:06:28 +08:00
parent e84630adf2
commit 723320e015
5 changed files with 75 additions and 3 deletions

View File

@ -1064,6 +1064,20 @@ def run(rank, world_size, args):
)
return False
# Zipformer has DownsampledZipformerEncoders with different downsampling factors
# after encoder_embed that does T -> (T - 7) // 2
ds = tuple(map(int, params.zipformer_downsampling_factors.split(",")))
max_ds = max(ds)
T = (c.num_frames - 7) // 2
if T < max_ds:
logging.warning(
f"Exclude cut with ID {c.id} from training. "
f"Number of frames (before encoder_embed): {c.num_frames}. "
f"Number of frames (after encoder_embed): {T}. "
f"Max downsampling factor in Zipformer: {max_ds}. "
)
return False
return True
train_cuts = train_cuts.filter(remove_short_and_long_utt)

View File

@ -1112,6 +1112,20 @@ def run(rank, world_size, args):
)
return False
# Zipformer has DownsampledZipformerEncoders with different downsampling factors
# after encoder_embed that does T -> (T - 7) // 2
ds = tuple(map(int, params.zipformer_downsampling_factors.split(",")))
max_ds = max(ds)
T = (c.num_frames - 7) // 2
if T < max_ds:
logging.warning(
f"Exclude cut with ID {c.id} from training. "
f"Number of frames (before encoder_embed): {c.num_frames}. "
f"Number of frames (after encoder_embed): {T}. "
f"Max downsampling factor in Zipformer: {max_ds}. "
)
return False
return True
train_cuts = train_cuts.filter(remove_short_and_long_utt)

View File

@ -55,9 +55,9 @@ import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from decoder import Decoder
from frame_reducer import FrameReducer
from joiner import Joiner
from lconv import LConv
from frame_reducer import FrameReducer
from lhotse.cut import Cut
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
@ -1103,6 +1103,20 @@ def run(rank, world_size, args):
)
return False
# Zipformer has DownsampledZipformerEncoders with different downsampling factors
# after encoder_embed that does T -> (T - 7) // 2
ds = tuple(map(int, params.zipformer_downsampling_factors.split(",")))
max_ds = max(ds)
T = (c.num_frames - 7) // 2
if T < max_ds:
logging.warning(
f"Exclude cut with ID {c.id} from training. "
f"Number of frames (before encoder_embed): {c.num_frames}. "
f"Number of frames (after encoder_embed): {T}. "
f"Max downsampling factor in Zipformer: {max_ds}. "
)
return False
return True
train_cuts = train_cuts.filter(remove_short_and_long_utt)

View File

@ -1089,6 +1089,20 @@ def run(rank, world_size, args):
)
return False
# Zipformer has DownsampledZipformerEncoders with different downsampling factors
# after encoder_embed that does T -> (T - 7) // 2
ds = tuple(map(int, params.zipformer_downsampling_factors.split(",")))
max_ds = max(ds)
T = (c.num_frames - 7) // 2
if T < max_ds:
logging.warning(
f"Exclude cut with ID {c.id} from training. "
f"Number of frames (before encoder_embed): {c.num_frames}. "
f"Number of frames (after encoder_embed): {T}. "
f"Max downsampling factor in Zipformer: {max_ds}. "
)
return False
return True
train_cuts = train_cuts.filter(remove_short_and_long_utt)

View File

@ -1017,7 +1017,7 @@ def train_one_epoch(
def filter_short_and_long_utterances(
cuts: CutSet, sp: spm.SentencePieceProcessor
cuts: CutSet, sp: spm.SentencePieceProcessor, zipformer_downsampling_factors: str
) -> CutSet:
def remove_short_and_long_utt(c: Cut):
# Keep only utterances with duration between 1 second and 20 seconds
@ -1054,6 +1054,20 @@ def filter_short_and_long_utterances(
)
return False
# Zipformer has DownsampledZipformerEncoders with different downsampling factors
# after encoder_embed that does T -> (T - 7) // 2
ds = tuple(map(int, zipformer_downsampling_factors.split(",")))
max_ds = max(ds)
T = (c.num_frames - 7) // 2
if T < max_ds:
logging.warning(
f"Exclude cut with ID {c.id} from training. "
f"Number of frames (before encoder_embed): {c.num_frames}. "
f"Number of frames (after encoder_embed): {T}. "
f"Max downsampling factor in Zipformer: {max_ds}. "
)
return False
return True
cuts = cuts.filter(remove_short_and_long_utt)
@ -1159,7 +1173,9 @@ def run(rank, world_size, args):
train_cuts += librispeech.train_clean_360_cuts()
train_cuts += librispeech.train_other_500_cuts()
train_cuts = filter_short_and_long_utterances(train_cuts, sp)
train_cuts = filter_short_and_long_utterances(
train_cuts, sp, params.zipformer_downsampling_factors
)
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
# XL 10k hours