mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Re-introduce bias into BasicNorm and replace eps with log_scale.
This commit is contained in:
parent
920ed685ac
commit
71d7843654
@ -430,6 +430,54 @@ class MaxEigLimiterFunction(torch.autograd.Function):
|
||||
return x_grad + x_extra_grad.detach(), None, None, None, None
|
||||
|
||||
|
||||
|
||||
|
||||
class BasicNormFunction(torch.autograd.Function):
|
||||
# This computes:
|
||||
# scales = (torch.mean((x - bias) ** 2, keepdim=True)) ** -0.5 * log_scale.exp()
|
||||
# return (x - bias) * scales
|
||||
# (after unsqueezing the bias), but it does it in a memory-efficient way so that
|
||||
# it can just store the returned value (chances are, this will also be needed for
|
||||
# some other reason, related to the next operation, so we can save memory).
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, x: Tensor, bias: Tensor, log_scale: Tensor, channel_dim: int,
|
||||
store_output_for_backprop: bool) -> Tensor:
|
||||
assert bias.ndim == 1
|
||||
if channel_dim < 0:
|
||||
channel_dim = channel_dim + x.ndim
|
||||
ctx.store_output_for_backprop = store_output_for_backprop
|
||||
ctx.channel_dim = channel_dim
|
||||
for _ in range(channel_dim + 1, x.ndim):
|
||||
bias = bias.unsqueeze(-1)
|
||||
scales = (torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5) * log_scale.exp()
|
||||
ans = x * scales
|
||||
ctx.save_for_backward(ans.detach() if store_output_for_backprop else x,
|
||||
scales.detach(), bias.detach(), log_scale.detach())
|
||||
return ans
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, ans_grad: Tensor) -> Tensor:
|
||||
ans_or_x, scales, bias, log_scale = ctx.saved_tensors
|
||||
if ctx.store_output_for_backprop:
|
||||
x = ans_or_x / scales
|
||||
else:
|
||||
x = ans_or_x
|
||||
x = x.detach()
|
||||
x.requires_grad = True
|
||||
bias.requires_grad = True
|
||||
log_scale.requires_grad = True
|
||||
with torch.enable_grad():
|
||||
# recompute scales from x, bias and log_scale.
|
||||
scales = (torch.mean((x - bias) ** 2, dim=ctx.channel_dim, keepdim=True) ** -0.5) * log_scale.exp()
|
||||
ans = x * scales
|
||||
ans.backward(gradient=ans_grad)
|
||||
return x.grad, bias.grad.flatten(), log_scale.grad, None, None
|
||||
|
||||
|
||||
|
||||
|
||||
class BasicNorm(torch.nn.Module):
|
||||
"""
|
||||
This is intended to be a simpler, and hopefully cheaper, replacement for
|
||||
@ -450,47 +498,57 @@ class BasicNorm(torch.nn.Module):
|
||||
interprted as an offset from the input's ndim if negative.
|
||||
shis is NOT the num_channels; it should typically be one of
|
||||
{-2, -1, 0, 1, 2, 3}.
|
||||
eps: the initial "epsilon" that we add as ballast in:
|
||||
scale = ((input_vec**2).mean() + epsilon)**-0.5
|
||||
Note: our epsilon is actually large, but we keep the name
|
||||
to indicate the connection with conventional LayerNorm.
|
||||
learn_eps: if true, we learn epsilon; if false, we keep it
|
||||
at the initial value.
|
||||
eps_min: float
|
||||
eps_max: float
|
||||
log_scale: the initial log-scale that we multiply the output by; this
|
||||
is learnable.
|
||||
log_scale_min: FloatLike, minimum allowed value of log_scale
|
||||
log_scale_max: FloatLike, maximum allowed value of log_scale
|
||||
store_output_for_backprop: only possibly affects memory use; recommend
|
||||
to set to True if you think the output of this module is more likely
|
||||
than the input of this module to be required to be stored for the
|
||||
backprop.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels: int,
|
||||
channel_dim: int = -1, # CAUTION: see documentation.
|
||||
eps: float = 0.25,
|
||||
learn_eps: bool = True,
|
||||
eps_min: float = -3.0,
|
||||
eps_max: float = 3.0,
|
||||
self,
|
||||
num_channels: int,
|
||||
channel_dim: int = -1, # CAUTION: see documentation.
|
||||
log_scale: float = 1.0,
|
||||
log_scale_min: float = -1.5,
|
||||
log_scale_max: float = 1.5,
|
||||
store_output_for_backprop: bool = False
|
||||
) -> None:
|
||||
super(BasicNorm, self).__init__()
|
||||
self.num_channels = num_channels
|
||||
self.channel_dim = channel_dim
|
||||
if learn_eps:
|
||||
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
|
||||
else:
|
||||
self.register_buffer("eps", torch.tensor(eps).log().detach())
|
||||
self.eps_min = eps_min
|
||||
self.eps_max = eps_max
|
||||
self.log_scale = nn.Parameter(torch.tensor(log_scale))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.log_scale_min = log_scale_min
|
||||
self.log_scale_max = log_scale_max
|
||||
self.store_output_for_backprop = store_output_for_backprop
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
assert x.shape[self.channel_dim] == self.num_channels
|
||||
|
||||
eps = self.eps
|
||||
if self.training:
|
||||
eps = limit_param_value(self.eps, min=self.eps_min, max=self.eps_max)
|
||||
eps = eps.exp()
|
||||
scales = (
|
||||
(torch.mean(x ** 2, dim=self.channel_dim, keepdim=True) + eps)
|
||||
# / (1.0 + eps)
|
||||
) ** -0.5
|
||||
return x * scales
|
||||
|
||||
if torch.jit.is_scripting():
|
||||
channel_dim = self.channel_dim
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
bias = self.bias
|
||||
for _ in range(channel_dim + 1, x.ndim):
|
||||
bias = bias.unsqueeze(-1)
|
||||
scales = ((torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5) *
|
||||
self.log_scale.exp())
|
||||
return x * scales
|
||||
|
||||
log_scale = limit_param_value(self.log_scale,
|
||||
min=float(self.log_scale_min),
|
||||
max=float(self.log_scale_max),
|
||||
training=self.training)
|
||||
|
||||
return BasicNormFunction.apply(x, self.bias, log_scale,
|
||||
self.channel_dim,
|
||||
self.store_output_for_backprop)
|
||||
|
||||
|
||||
|
||||
@ -516,7 +574,8 @@ class PositiveConv1d(nn.Conv1d):
|
||||
(N, C, H)
|
||||
i.e. (batch_size, num_channels, height)
|
||||
"""
|
||||
weight = limit_param_value(self.weight, min=float(self.min), max=float(self.max))
|
||||
weight = limit_param_value(self.weight, min=float(self.min), max=float(self.max),
|
||||
training=self.training)
|
||||
# make absolutely sure there are no negative values. For parameter-averaging-related
|
||||
# reasons, we prefer to also use limit_param_value to make sure the weights stay
|
||||
# positive.
|
||||
@ -634,7 +693,8 @@ class PositiveConv2d(nn.Conv2d):
|
||||
(N, C, H, W)
|
||||
i.e. (batch_size, num_channels, height, width)
|
||||
"""
|
||||
weight = limit_param_value(self.weight, min=float(self.min), max=float(self.max))
|
||||
weight = limit_param_value(self.weight, min=float(self.min), max=float(self.max),
|
||||
training=self.training)
|
||||
# make absolutely sure there are no negative values. For parameter-averaging-related
|
||||
# reasons, we prefer to also use limit_param_value to make sure the weights stay
|
||||
# positive.
|
||||
@ -1156,13 +1216,14 @@ class LimitParamValue(torch.autograd.Function):
|
||||
|
||||
def limit_param_value(x: Tensor,
|
||||
min: float, max: float,
|
||||
prob: float = 0.6):
|
||||
prob: float = 0.6,
|
||||
training: bool = True):
|
||||
# You apply this to (typically) an nn.Parameter during training to ensure that its
|
||||
# (elements mostly) stays within a supplied range. This is done by modifying the
|
||||
# gradients in backprop.
|
||||
# It's not necessary to do this on every batch: do it only some of the time,
|
||||
# to save a little time.
|
||||
if random.random() < prob:
|
||||
if training and random.random() < prob:
|
||||
return LimitParamValue.apply(x, min, max)
|
||||
else:
|
||||
return x
|
||||
|
||||
@ -453,7 +453,7 @@ class ZipformerEncoderLayer(nn.Module):
|
||||
|
||||
self.attention_squeeze = AttentionSqueeze(embed_dim, embed_dim // 2)
|
||||
|
||||
self.norm_final = BasicNorm(embed_dim, eps_max=4.0)
|
||||
self.norm_final = BasicNorm(embed_dim)
|
||||
|
||||
self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5))
|
||||
|
||||
@ -868,11 +868,10 @@ class SimpleCombiner(torch.nn.Module):
|
||||
dim2 = src2.shape[-1]
|
||||
|
||||
|
||||
weight1 = self.weight1
|
||||
if self.training:
|
||||
weight1 = limit_param_value(weight1,
|
||||
min=self.min_weight[0],
|
||||
max=1.0-self.min_weight[1])
|
||||
weight1 = limit_param_value(self.weight1,
|
||||
min=self.min_weight[0],
|
||||
max=1.0-self.min_weight[1],
|
||||
training=self.training)
|
||||
|
||||
src1_dim = src1.shape[-1]
|
||||
src2_dim = src2.shape[-1]
|
||||
@ -1896,7 +1895,8 @@ class Conv2dSubsampling(nn.Module):
|
||||
|
||||
x = x * limit_param_value(self.scale,
|
||||
min=float(self.scale_min),
|
||||
max=float(self.scale_max))
|
||||
max=float(self.scale_max),
|
||||
training=self.training)
|
||||
|
||||
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
||||
x = self.out(x)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user