mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Refactor prepare.sh in librispeech (#1493)
* Refactor prepare.sh in librispeech, break it into three parts, prepare.sh (basic, minimal requirement for transducer), prepare_lm.sh (ngram & nnlm staff), prepare_mmi.sh (for MMI training).
This commit is contained in:
parent
4ed88d9484
commit
711d6bc462
@ -1526,7 +1526,7 @@ done
|
|||||||
|
|
||||||
You may also decode using LODR + LM shallow fusion. This decoding method is proposed in <https://arxiv.org/pdf/2203.16776.pdf>.
|
You may also decode using LODR + LM shallow fusion. This decoding method is proposed in <https://arxiv.org/pdf/2203.16776.pdf>.
|
||||||
It subtracts the internal language model score during shallow fusion, which is approximated by a bi-gram model. The bi-gram can be
|
It subtracts the internal language model score during shallow fusion, which is approximated by a bi-gram model. The bi-gram can be
|
||||||
generated by `generate-lm.sh`, or you may download it from <https://huggingface.co/marcoyang/librispeech_bigram>.
|
generated by `prepare_lm.sh` at stage 4, or you may download it from <https://huggingface.co/marcoyang/librispeech_bigram>.
|
||||||
|
|
||||||
The decoding command is as follows:
|
The decoding command is as follows:
|
||||||
|
|
||||||
|
@ -1,20 +0,0 @@
|
|||||||
#!/usr/bin/env bash
|
|
||||||
|
|
||||||
lang_dir=data/lang_bpe_500
|
|
||||||
|
|
||||||
for ngram in 2 3 4 5; do
|
|
||||||
if [ ! -f $lang_dir/${ngram}gram.arpa ]; then
|
|
||||||
./shared/make_kn_lm.py \
|
|
||||||
-ngram-order ${ngram} \
|
|
||||||
-text $lang_dir/transcript_tokens.txt \
|
|
||||||
-lm $lang_dir/${ngram}gram.arpa
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/${ngram}gram.fst.txt ]; then
|
|
||||||
python3 -m kaldilm \
|
|
||||||
--read-symbol-table="$lang_dir/tokens.txt" \
|
|
||||||
--disambig-symbol='#0' \
|
|
||||||
--max-order=${ngram} \
|
|
||||||
$lang_dir/${ngram}gram.arpa > $lang_dir/${ngram}gram.fst.txt
|
|
||||||
fi
|
|
||||||
done
|
|
@ -28,6 +28,7 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import shutil
|
import shutil
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
|
|
||||||
@ -57,6 +58,18 @@ def get_args():
|
|||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def generate_tokens(lang_dir: Path):
|
||||||
|
"""
|
||||||
|
Generate the tokens.txt from a bpe model.
|
||||||
|
"""
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(str(lang_dir / "bpe.model"))
|
||||||
|
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
||||||
|
with open(lang_dir / "tokens.txt", "w", encoding="utf-8") as f:
|
||||||
|
for sym, i in token2id.items():
|
||||||
|
f.write(f"{sym} {i}\n")
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
args = get_args()
|
args = get_args()
|
||||||
vocab_size = args.vocab_size
|
vocab_size = args.vocab_size
|
||||||
@ -95,6 +108,8 @@ def main():
|
|||||||
|
|
||||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
||||||
|
|
||||||
|
generate_tokens(lang_dir)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
@ -6,8 +6,21 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=15
|
nj=15
|
||||||
stage=-1
|
# run step 0 to step 5 by default
|
||||||
stop_stage=100
|
stage=0
|
||||||
|
stop_stage=5
|
||||||
|
|
||||||
|
# Note: This script just prepare the minimal requirements that needed by a
|
||||||
|
# transducer training with bpe units.
|
||||||
|
#
|
||||||
|
# If you want to use ngram or nnlm, please continue running prepare_lm.sh after
|
||||||
|
# you succeed running this script.
|
||||||
|
#
|
||||||
|
# This script also contains the steps to generate phone based units, but they
|
||||||
|
# will not run automatically, you can generate the phone based units by
|
||||||
|
# bash prepare.sh --stage -1 --stop-stage -1
|
||||||
|
# bash prepare.sh --stage 6 --stop-stage 6
|
||||||
|
|
||||||
|
|
||||||
# We assume dl_dir (download dir) contains the following
|
# We assume dl_dir (download dir) contains the following
|
||||||
# directories and files. If not, they will be downloaded
|
# directories and files. If not, they will be downloaded
|
||||||
@ -17,6 +30,18 @@ stop_stage=100
|
|||||||
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
|
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
|
||||||
# You can download them from https://www.openslr.org/12
|
# You can download them from https://www.openslr.org/12
|
||||||
#
|
#
|
||||||
|
# - $dl_dir/musan
|
||||||
|
# This directory contains the following directories downloaded from
|
||||||
|
# http://www.openslr.org/17/
|
||||||
|
#
|
||||||
|
# - music
|
||||||
|
# - noise
|
||||||
|
# - speech
|
||||||
|
#
|
||||||
|
# lm directory is not necessary for transducer training with bpe units, but it
|
||||||
|
# is needed by phone based modeling, you can download it by running
|
||||||
|
# bash prepare.sh --stage -1 --stop-stage -1
|
||||||
|
# then you can see the following files in the directory.
|
||||||
# - $dl_dir/lm
|
# - $dl_dir/lm
|
||||||
# This directory contains the following files downloaded from
|
# This directory contains the following files downloaded from
|
||||||
# http://www.openslr.org/resources/11
|
# http://www.openslr.org/resources/11
|
||||||
@ -28,14 +53,7 @@ stop_stage=100
|
|||||||
# - librispeech-vocab.txt
|
# - librispeech-vocab.txt
|
||||||
# - librispeech-lexicon.txt
|
# - librispeech-lexicon.txt
|
||||||
# - librispeech-lm-norm.txt.gz
|
# - librispeech-lm-norm.txt.gz
|
||||||
#
|
|
||||||
# - $dl_dir/musan
|
|
||||||
# This directory contains the following directories downloaded from
|
|
||||||
# http://www.openslr.org/17/
|
|
||||||
#
|
|
||||||
# - music
|
|
||||||
# - noise
|
|
||||||
# - speech
|
|
||||||
dl_dir=$PWD/download
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
. shared/parse_options.sh || exit 1
|
. shared/parse_options.sh || exit 1
|
||||||
@ -60,6 +78,8 @@ log() {
|
|||||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
log "Running prepare.sh"
|
||||||
|
|
||||||
log "dl_dir: $dl_dir"
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||||
@ -159,13 +179,49 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
log "Stage 5: Prepare phone based lang"
|
log "Stage 5: Prepare BPE based lang"
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
mkdir -p $lang_dir
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
||||||
|
log "Generate data for BPE training"
|
||||||
|
files=$(
|
||||||
|
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
|
||||||
|
find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt"
|
||||||
|
find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt"
|
||||||
|
)
|
||||||
|
for f in ${files[@]}; do
|
||||||
|
cat $f | cut -d " " -f 2-
|
||||||
|
done > $lang_dir/transcript_words.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/bpe.model ]; then
|
||||||
|
./local/train_bpe_model.py \
|
||||||
|
--lang-dir $lang_dir \
|
||||||
|
--vocab-size $vocab_size \
|
||||||
|
--transcript $lang_dir/transcript_words.txt
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
|
log "Stage 6: Prepare phone based lang"
|
||||||
lang_dir=data/lang_phone
|
lang_dir=data/lang_phone
|
||||||
mkdir -p $lang_dir
|
mkdir -p $lang_dir
|
||||||
|
|
||||||
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
if [ ! -f $dl_dir/lm/librispeech-lexicon.txt ]; then
|
||||||
cat - $dl_dir/lm/librispeech-lexicon.txt |
|
log "No lexicon file in $dl_dir/lm, please run :"
|
||||||
sort | uniq > $lang_dir/lexicon.txt
|
log "prepare.sh --stage -1 --stop-stage -1"
|
||||||
|
exit -1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/lexicon.txt ]; then
|
||||||
|
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
||||||
|
cat - $dl_dir/lm/librispeech-lexicon.txt |
|
||||||
|
sort | uniq > $lang_dir/lexicon.txt
|
||||||
|
fi
|
||||||
|
|
||||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
./local/prepare_lang.py --lang-dir $lang_dir
|
./local/prepare_lang.py --lang-dir $lang_dir
|
||||||
@ -187,253 +243,3 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
$lang_dir/L_disambig.fst
|
$lang_dir/L_disambig.fst
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
||||||
log "Stage 6: Prepare BPE based lang"
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
mkdir -p $lang_dir
|
|
||||||
# We reuse words.txt from phone based lexicon
|
|
||||||
# so that the two can share G.pt later.
|
|
||||||
cp data/lang_phone/words.txt $lang_dir
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
|
||||||
log "Generate data for BPE training"
|
|
||||||
files=$(
|
|
||||||
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
|
|
||||||
find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt"
|
|
||||||
find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt"
|
|
||||||
)
|
|
||||||
for f in ${files[@]}; do
|
|
||||||
cat $f | cut -d " " -f 2-
|
|
||||||
done > $lang_dir/transcript_words.txt
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/bpe.model ]; then
|
|
||||||
./local/train_bpe_model.py \
|
|
||||||
--lang-dir $lang_dir \
|
|
||||||
--vocab-size $vocab_size \
|
|
||||||
--transcript $lang_dir/transcript_words.txt
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
||||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
|
||||||
|
|
||||||
log "Validating $lang_dir/lexicon.txt"
|
|
||||||
./local/validate_bpe_lexicon.py \
|
|
||||||
--lexicon $lang_dir/lexicon.txt \
|
|
||||||
--bpe-model $lang_dir/bpe.model
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/L.fst ]; then
|
|
||||||
log "Converting L.pt to L.fst"
|
|
||||||
./shared/convert-k2-to-openfst.py \
|
|
||||||
--olabels aux_labels \
|
|
||||||
$lang_dir/L.pt \
|
|
||||||
$lang_dir/L.fst
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
|
||||||
log "Converting L_disambig.pt to L_disambig.fst"
|
|
||||||
./shared/convert-k2-to-openfst.py \
|
|
||||||
--olabels aux_labels \
|
|
||||||
$lang_dir/L_disambig.pt \
|
|
||||||
$lang_dir/L_disambig.fst
|
|
||||||
fi
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
||||||
log "Stage 7: Prepare bigram token-level P for MMI training"
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
|
|
||||||
./local/convert_transcript_words_to_tokens.py \
|
|
||||||
--lexicon $lang_dir/lexicon.txt \
|
|
||||||
--transcript $lang_dir/transcript_words.txt \
|
|
||||||
--oov "<UNK>" \
|
|
||||||
> $lang_dir/transcript_tokens.txt
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/P.arpa ]; then
|
|
||||||
./shared/make_kn_lm.py \
|
|
||||||
-ngram-order 2 \
|
|
||||||
-text $lang_dir/transcript_tokens.txt \
|
|
||||||
-lm $lang_dir/P.arpa
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/P.fst.txt ]; then
|
|
||||||
python3 -m kaldilm \
|
|
||||||
--read-symbol-table="$lang_dir/tokens.txt" \
|
|
||||||
--disambig-symbol='#0' \
|
|
||||||
--max-order=2 \
|
|
||||||
$lang_dir/P.arpa > $lang_dir/P.fst.txt
|
|
||||||
fi
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
||||||
log "Stage 8: Prepare G"
|
|
||||||
# We assume you have installed kaldilm, if not, please install
|
|
||||||
# it using: pip install kaldilm
|
|
||||||
|
|
||||||
mkdir -p data/lm
|
|
||||||
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
|
||||||
# It is used in building HLG
|
|
||||||
python3 -m kaldilm \
|
|
||||||
--read-symbol-table="data/lang_phone/words.txt" \
|
|
||||||
--disambig-symbol='#0' \
|
|
||||||
--max-order=3 \
|
|
||||||
$dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
|
||||||
# It is used for LM rescoring
|
|
||||||
python3 -m kaldilm \
|
|
||||||
--read-symbol-table="data/lang_phone/words.txt" \
|
|
||||||
--disambig-symbol='#0' \
|
|
||||||
--max-order=4 \
|
|
||||||
$dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
|
|
||||||
fi
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
|
|
||||||
if [ ! -f $lang_dir/HL.fst ]; then
|
|
||||||
./local/prepare_lang_fst.py \
|
|
||||||
--lang-dir $lang_dir \
|
|
||||||
--ngram-G ./data/lm/G_3_gram.fst.txt
|
|
||||||
fi
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
||||||
log "Stage 9: Compile HLG"
|
|
||||||
./local/compile_hlg.py --lang-dir data/lang_phone
|
|
||||||
|
|
||||||
# Note If ./local/compile_hlg.py throws OOM,
|
|
||||||
# please switch to the following command
|
|
||||||
#
|
|
||||||
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
./local/compile_hlg.py --lang-dir $lang_dir
|
|
||||||
|
|
||||||
# Note If ./local/compile_hlg.py throws OOM,
|
|
||||||
# please switch to the following command
|
|
||||||
#
|
|
||||||
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
# Compile LG for RNN-T fast_beam_search decoding
|
|
||||||
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
||||||
log "Stage 10: Compile LG"
|
|
||||||
./local/compile_lg.py --lang-dir data/lang_phone
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
./local/compile_lg.py --lang-dir $lang_dir
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
|
||||||
log "Stage 11: Generate LM training data"
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
log "Processing vocab_size == ${vocab_size}"
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
out_dir=data/lm_training_bpe_${vocab_size}
|
|
||||||
mkdir -p $out_dir
|
|
||||||
|
|
||||||
./local/prepare_lm_training_data.py \
|
|
||||||
--bpe-model $lang_dir/bpe.model \
|
|
||||||
--lm-data $dl_dir/lm/librispeech-lm-norm.txt \
|
|
||||||
--lm-archive $out_dir/lm_data.pt
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
|
||||||
log "Stage 12: Generate LM validation data"
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
log "Processing vocab_size == ${vocab_size}"
|
|
||||||
out_dir=data/lm_training_bpe_${vocab_size}
|
|
||||||
mkdir -p $out_dir
|
|
||||||
|
|
||||||
if [ ! -f $out_dir/valid.txt ]; then
|
|
||||||
files=$(
|
|
||||||
find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt"
|
|
||||||
find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt"
|
|
||||||
)
|
|
||||||
for f in ${files[@]}; do
|
|
||||||
cat $f | cut -d " " -f 2-
|
|
||||||
done > $out_dir/valid.txt
|
|
||||||
fi
|
|
||||||
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
./local/prepare_lm_training_data.py \
|
|
||||||
--bpe-model $lang_dir/bpe.model \
|
|
||||||
--lm-data $out_dir/valid.txt \
|
|
||||||
--lm-archive $out_dir/lm_data-valid.pt
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
|
||||||
log "Stage 13: Generate LM test data"
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
log "Processing vocab_size == ${vocab_size}"
|
|
||||||
out_dir=data/lm_training_bpe_${vocab_size}
|
|
||||||
mkdir -p $out_dir
|
|
||||||
|
|
||||||
if [ ! -f $out_dir/test.txt ]; then
|
|
||||||
files=$(
|
|
||||||
find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt"
|
|
||||||
find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt"
|
|
||||||
)
|
|
||||||
for f in ${files[@]}; do
|
|
||||||
cat $f | cut -d " " -f 2-
|
|
||||||
done > $out_dir/test.txt
|
|
||||||
fi
|
|
||||||
|
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
|
||||||
./local/prepare_lm_training_data.py \
|
|
||||||
--bpe-model $lang_dir/bpe.model \
|
|
||||||
--lm-data $out_dir/test.txt \
|
|
||||||
--lm-archive $out_dir/lm_data-test.pt
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
|
||||||
log "Stage 14: Sort LM training data"
|
|
||||||
# Sort LM training data by sentence length in descending order
|
|
||||||
# for ease of training.
|
|
||||||
#
|
|
||||||
# Sentence length equals to the number of BPE tokens
|
|
||||||
# in a sentence.
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
|
||||||
out_dir=data/lm_training_bpe_${vocab_size}
|
|
||||||
mkdir -p $out_dir
|
|
||||||
./local/sort_lm_training_data.py \
|
|
||||||
--in-lm-data $out_dir/lm_data.pt \
|
|
||||||
--out-lm-data $out_dir/sorted_lm_data.pt \
|
|
||||||
--out-statistics $out_dir/statistics.txt
|
|
||||||
|
|
||||||
./local/sort_lm_training_data.py \
|
|
||||||
--in-lm-data $out_dir/lm_data-valid.pt \
|
|
||||||
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
|
|
||||||
--out-statistics $out_dir/statistics-valid.txt
|
|
||||||
|
|
||||||
./local/sort_lm_training_data.py \
|
|
||||||
--in-lm-data $out_dir/lm_data-test.pt \
|
|
||||||
--out-lm-data $out_dir/sorted_lm_data-test.pt \
|
|
||||||
--out-statistics $out_dir/statistics-test.txt
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
262
egs/librispeech/ASR/prepare_lm.sh
Executable file
262
egs/librispeech/ASR/prepare_lm.sh
Executable file
@ -0,0 +1,262 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
# This script generate Ngram LM / NNLM and related files that needed by decoding.
|
||||||
|
|
||||||
|
# We assume dl_dir (download dir) contains the following
|
||||||
|
# directories and files. If not, they will be downloaded
|
||||||
|
# by this script automatically.
|
||||||
|
#
|
||||||
|
# - $dl_dir/lm
|
||||||
|
# This directory contains the following files downloaded from
|
||||||
|
# http://www.openslr.org/resources/11
|
||||||
|
#
|
||||||
|
# - 3-gram.pruned.1e-7.arpa.gz
|
||||||
|
# - 3-gram.pruned.1e-7.arpa
|
||||||
|
# - 4-gram.arpa.gz
|
||||||
|
# - 4-gram.arpa
|
||||||
|
# - librispeech-vocab.txt
|
||||||
|
# - librispeech-lexicon.txt
|
||||||
|
# - librispeech-lm-norm.txt.gz
|
||||||
|
#
|
||||||
|
|
||||||
|
. prepare.sh --stage -1 --stop-stage 6 || exit 1
|
||||||
|
|
||||||
|
log "Running prepare_lm.sh"
|
||||||
|
|
||||||
|
stage=0
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "Stage 0: Prepare BPE based lexicon."
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
# We reuse words.txt from phone based lexicon
|
||||||
|
# so that the two can share G.pt later.
|
||||||
|
cp data/lang_phone/words.txt $lang_dir
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
|
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||||
|
|
||||||
|
log "Validating $lang_dir/lexicon.txt"
|
||||||
|
./local/validate_bpe_lexicon.py \
|
||||||
|
--lexicon $lang_dir/lexicon.txt \
|
||||||
|
--bpe-model $lang_dir/bpe.model
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L.fst ]; then
|
||||||
|
log "Converting L.pt to L.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L.pt \
|
||||||
|
$lang_dir/L.fst
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
||||||
|
log "Converting L_disambig.pt to L_disambig.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L_disambig.pt \
|
||||||
|
$lang_dir/L_disambig.fst
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Prepare word level G"
|
||||||
|
# We assume you have installed kaldilm, if not, please install
|
||||||
|
# it using: pip install kaldilm
|
||||||
|
|
||||||
|
mkdir -p data/lm
|
||||||
|
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
||||||
|
# It is used in building HLG
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="data/lang_phone/words.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=3 \
|
||||||
|
$dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
||||||
|
# It is used for LM rescoring
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="data/lang_phone/words.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=4 \
|
||||||
|
$dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/HL.fst ]; then
|
||||||
|
./local/prepare_lang_fst.py \
|
||||||
|
--lang-dir $lang_dir \
|
||||||
|
--ngram-G ./data/lm/G_3_gram.fst.txt
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Compile HLG"
|
||||||
|
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||||
|
|
||||||
|
# Note If ./local/compile_hlg.py throws OOM,
|
||||||
|
# please switch to the following command
|
||||||
|
#
|
||||||
|
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
./local/compile_hlg.py --lang-dir $lang_dir
|
||||||
|
|
||||||
|
# Note If ./local/compile_hlg.py throws OOM,
|
||||||
|
# please switch to the following command
|
||||||
|
#
|
||||||
|
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Compile LG for RNN-T fast_beam_search decoding
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 3: Compile LG"
|
||||||
|
./local/compile_lg.py --lang-dir data/lang_phone
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
./local/compile_lg.py --lang-dir $lang_dir
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Prepare token level ngram G"
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
|
||||||
|
./local/convert_transcript_words_to_tokens.py \
|
||||||
|
--lexicon $lang_dir/lexicon.txt \
|
||||||
|
--transcript $lang_dir/transcript_words.txt \
|
||||||
|
--oov "<UNK>" \
|
||||||
|
> $lang_dir/transcript_tokens.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
for ngram in 2 3 4 5; do
|
||||||
|
if [ ! -f $lang_dir/${ngram}gram.arpa ]; then
|
||||||
|
./shared/make_kn_lm.py \
|
||||||
|
-ngram-order ${ngram} \
|
||||||
|
-text $lang_dir/transcript_tokens.txt \
|
||||||
|
-lm $lang_dir/${ngram}gram.arpa
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/${ngram}gram.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="$lang_dir/tokens.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=${ngram} \
|
||||||
|
$lang_dir/${ngram}gram.arpa > $lang_dir/${ngram}gram.fst.txt
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "Stage 5: Generate NNLM training data"
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
log "Processing vocab_size == ${vocab_size}"
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
out_dir=data/lm_training_bpe_${vocab_size}
|
||||||
|
mkdir -p $out_dir
|
||||||
|
|
||||||
|
./local/prepare_lm_training_data.py \
|
||||||
|
--bpe-model $lang_dir/bpe.model \
|
||||||
|
--lm-data $dl_dir/lm/librispeech-lm-norm.txt \
|
||||||
|
--lm-archive $out_dir/lm_data.pt
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
|
log "Stage 6: Generate NNLM validation data"
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
log "Processing vocab_size == ${vocab_size}"
|
||||||
|
out_dir=data/lm_training_bpe_${vocab_size}
|
||||||
|
mkdir -p $out_dir
|
||||||
|
|
||||||
|
if [ ! -f $out_dir/valid.txt ]; then
|
||||||
|
files=$(
|
||||||
|
find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt"
|
||||||
|
find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt"
|
||||||
|
)
|
||||||
|
for f in ${files[@]}; do
|
||||||
|
cat $f | cut -d " " -f 2-
|
||||||
|
done > $out_dir/valid.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
./local/prepare_lm_training_data.py \
|
||||||
|
--bpe-model $lang_dir/bpe.model \
|
||||||
|
--lm-data $out_dir/valid.txt \
|
||||||
|
--lm-archive $out_dir/lm_data-valid.pt
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
|
log "Stage 7: Generate NNLM test data"
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
log "Processing vocab_size == ${vocab_size}"
|
||||||
|
out_dir=data/lm_training_bpe_${vocab_size}
|
||||||
|
mkdir -p $out_dir
|
||||||
|
|
||||||
|
if [ ! -f $out_dir/test.txt ]; then
|
||||||
|
files=$(
|
||||||
|
find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt"
|
||||||
|
find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt"
|
||||||
|
)
|
||||||
|
for f in ${files[@]}; do
|
||||||
|
cat $f | cut -d " " -f 2-
|
||||||
|
done > $out_dir/test.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
./local/prepare_lm_training_data.py \
|
||||||
|
--bpe-model $lang_dir/bpe.model \
|
||||||
|
--lm-data $out_dir/test.txt \
|
||||||
|
--lm-archive $out_dir/lm_data-test.pt
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
|
log "Stage 8: Sort NNLM training data"
|
||||||
|
# Sort LM training data by sentence length in descending order
|
||||||
|
# for ease of training.
|
||||||
|
#
|
||||||
|
# Sentence length equals to the number of BPE tokens
|
||||||
|
# in a sentence.
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
out_dir=data/lm_training_bpe_${vocab_size}
|
||||||
|
mkdir -p $out_dir
|
||||||
|
./local/sort_lm_training_data.py \
|
||||||
|
--in-lm-data $out_dir/lm_data.pt \
|
||||||
|
--out-lm-data $out_dir/sorted_lm_data.pt \
|
||||||
|
--out-statistics $out_dir/statistics.txt
|
||||||
|
|
||||||
|
./local/sort_lm_training_data.py \
|
||||||
|
--in-lm-data $out_dir/lm_data-valid.pt \
|
||||||
|
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
|
||||||
|
--out-statistics $out_dir/statistics-valid.txt
|
||||||
|
|
||||||
|
./local/sort_lm_training_data.py \
|
||||||
|
--in-lm-data $out_dir/lm_data-test.pt \
|
||||||
|
--out-lm-data $out_dir/sorted_lm_data-test.pt \
|
||||||
|
--out-statistics $out_dir/statistics-test.txt
|
||||||
|
done
|
||||||
|
fi
|
45
egs/librispeech/ASR/prepare_mmi.sh
Executable file
45
egs/librispeech/ASR/prepare_mmi.sh
Executable file
@ -0,0 +1,45 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
|
||||||
|
. prepare.sh --stage -1 --stop-stage 6 || exit 1
|
||||||
|
|
||||||
|
log "Running prepare_mmi.sh"
|
||||||
|
|
||||||
|
stage=0
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "Stage 0: Prepare bigram token-level P for MMI training"
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
|
||||||
|
./local/convert_transcript_words_to_tokens.py \
|
||||||
|
--lexicon $lang_dir/lexicon.txt \
|
||||||
|
--transcript $lang_dir/transcript_words.txt \
|
||||||
|
--oov "<UNK>" \
|
||||||
|
> $lang_dir/transcript_tokens.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/P.arpa ]; then
|
||||||
|
./shared/make_kn_lm.py \
|
||||||
|
-ngram-order 2 \
|
||||||
|
-text $lang_dir/transcript_tokens.txt \
|
||||||
|
-lm $lang_dir/P.arpa
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/P.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="$lang_dir/tokens.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=2 \
|
||||||
|
$lang_dir/P.arpa > $lang_dir/P.fst.txt
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
Loading…
x
Reference in New Issue
Block a user