Merge 136c03d040ad8d81ae8d0ccf5a3a5d9d11d9c79c into cbf8c18ebd274dfeea9b8aa224ff5faad713c28c

This commit is contained in:
Fangjun Kuang 2022-02-20 09:14:54 +08:00 committed by GitHub
commit 711c1ccbcd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 298 additions and 16 deletions

View File

@ -19,7 +19,9 @@ import argparse
import logging
from functools import lru_cache
from pathlib import Path
from typing import Callable, List, Optional
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
from lhotse.dataset import (
BucketingSampler,
@ -179,7 +181,27 @@ class LibriSpeechAsrDataModule:
"with training dataset. ",
)
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
def train_dataloaders(
self,
cuts_train: CutSet,
extra_input_transforms: Optional[
List[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]
],
) -> DataLoader:
"""
Args:
cuts_train:
The cutset for training.
extra_input_transforms:
The extra input transforms that will be applied after all input
transforms, e.g., after SpecAugment if there is any.
Each input transform accepts two input arguments:
- A 3-D torch.Tensor of shape (N, T, C)
- A 2-D torch.Tensor of shape (num_seqs, 3), where the
first column is `sequence_idx`, the second column is
`start_frame`, and the third column is `num_frames`.
and returns a 3-D torch.Tensor of shape (N, T, C).
"""
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(
self.args.manifest_dir / "cuts_musan.json.gz"
@ -228,6 +250,10 @@ class LibriSpeechAsrDataModule:
else:
logging.info("Disable SpecAugment")
if extra_input_transforms is not None:
input_transforms += extra_input_transforms
logging.info(f"Input transforms: {input_transforms}")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,

View File

@ -629,9 +629,11 @@ class RelPositionMultiheadAttention(nn.Module):
if torch.equal(query, key) and torch.equal(key, value):
# self-attention
q, k, v = nn.functional.linear(
query, in_proj_weight, in_proj_bias
).chunk(3, dim=-1)
q, k, v = (
nn.functional.linear(query, in_proj_weight, in_proj_bias)
.relu()
.chunk(3, dim=-1)
)
elif torch.equal(key, value):
# encoder-decoder attention
@ -642,7 +644,7 @@ class RelPositionMultiheadAttention(nn.Module):
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = nn.functional.linear(query, _w, _b)
q = nn.functional.linear(query, _w, _b).relu()
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
@ -650,7 +652,7 @@ class RelPositionMultiheadAttention(nn.Module):
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
k, v = nn.functional.linear(key, _w, _b).relu().chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
@ -660,7 +662,7 @@ class RelPositionMultiheadAttention(nn.Module):
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = nn.functional.linear(query, _w, _b)
q = nn.functional.linear(query, _w, _b).relu()
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
@ -669,7 +671,7 @@ class RelPositionMultiheadAttention(nn.Module):
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = nn.functional.linear(key, _w, _b)
k = nn.functional.linear(key, _w, _b).relu()
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
@ -678,7 +680,7 @@ class RelPositionMultiheadAttention(nn.Module):
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = nn.functional.linear(value, _w, _b)
v = nn.functional.linear(value, _w, _b).relu()
if attn_mask is not None:
assert (

View File

@ -441,7 +441,9 @@ def main():
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
model.to(device)
model.eval()

View File

@ -0,0 +1,84 @@
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from lhotse.utils import LOG_EPSILON
def apply_frame_shift(
features: torch.Tensor,
supervision_segments: torch.Tensor,
) -> torch.Tensor:
"""Apply random frame shift along the time axis.
For instance, for the input frame `[a, b, c, d]`,
- If frame shift is 0, the resulting output is `[a, b, c, d]`
- If frame shift is -1, the resulting output is `[b, c, d, a]`
- If frame shift is 1, the resulting output is `[d, a, b, c]`
- If frame shift is 2, the resulting output is `[c, d, a, b]`
Args:
features:
A 3-D tensor of shape (N, T, C).
supervision_segments:
A 2-D tensor of shape (num_seqs, 3). The first column is
`sequence_idx`, the second column is `start_frame`, and
the third column is `num_frames`.
Returns:
Return a 3-D tensor of shape (N, T, C).
"""
# We assume the subsampling_factor is 4. If you change the
# subsampling_factor, you should also change the following
# list accordingly
#
# The value in frame_shifts is selected in such a way that
# "value % subsampling_factor" is not duplicated in frame_shifts.
frame_shifts = [-1, 0, 1, 2]
N = features.size(0)
# We don't support cut concatenation here
assert torch.all(
torch.eq(supervision_segments[:, 0], torch.arange(N))
), supervision_segments
ans = []
for i in range(N):
start = supervision_segments[i, 1]
end = start + supervision_segments[i, 2]
feat = features[i, start:end, :]
r = torch.randint(low=0, high=len(frame_shifts), size=(1,)).item()
frame_shift = frame_shifts[r]
# You can enable the following debug statement
# and run ./transducer_stateless/test_frame_shift.py to
# view the debug output.
# print("frame_shift", frame_shift)
feat = torch.roll(feat, shifts=frame_shift, dims=0)
ans.append(feat)
ans = torch.nn.utils.rnn.pad_sequence(
ans,
batch_first=True,
padding_value=LOG_EPSILON,
)
assert features.shape == ans.shape
return ans

View File

@ -79,7 +79,10 @@ class Transducer(nn.Module):
modified_transducer_prob:
The probability to use modified transducer loss.
Returns:
Return the transducer loss.
Return a tuple containing:
- the transducer loss, a tensor containing only one entry
- encoder_out, a tensor of shape (N, num_frames, encoder_out_dim)
- encoder_out_lens, a tensor of shape (N,)
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
@ -140,4 +143,8 @@ class Transducer(nn.Module):
from_log_softmax=False,
)
return loss
return (
loss,
encoder_out,
x_lens,
)

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer_stateless/test_frame_shift.py
"""
import torch
from frame_shift import apply_frame_shift
def test_apply_frame_shift():
features = torch.tensor(
[
[
[1, 2, 5],
[2, 6, 9],
[3, 0, 2],
[4, 11, 13],
[0, 0, 0],
[0, 0, 0],
],
[
[1, 3, 9],
[2, 5, 8],
[3, 3, 6],
[4, 0, 3],
[5, 1, 2],
[6, 6, 6],
],
]
)
supervision_segments = torch.tensor(
[
[0, 0, 4],
[1, 0, 6],
],
dtype=torch.int32,
)
shifted_features = apply_frame_shift(features, supervision_segments)
# You can enable the debug statement in frame_shift.py
# and check the resulting shifted_features. I've verified
# manually that it is correct.
print(shifted_features)
def main():
test_apply_frame_shift()
if __name__ == "__main__":
main()

View File

@ -46,6 +46,7 @@ import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from conformer import Conformer
from decoder import Decoder
from frame_shift import apply_frame_shift
from joiner import Joiner
from lhotse.cut import Cut
from lhotse.utils import fix_random_seed
@ -149,6 +150,21 @@ def get_parser():
""",
)
parser.add_argument(
"--apply-frame-shift",
type=str2bool,
default=False,
help="If enabled, apply random frame shift along the time axis",
)
parser.add_argument(
"--ctc-weight",
type=float,
default=0.25,
help="""If not zero, the total loss is:
(1 - ctc_weight) * transdcuder_loss + ctc_weight * ctc_loss
""",
)
return parser
@ -217,6 +233,13 @@ def get_params() -> AttributeDict:
"vgg_frontend": False,
# parameters for Noam
"warm_step": 80000, # For the 100h subset, use 8k
#
# parameters for ctc_loss, used only when ctc_weight > 0
"modified_ctc_topo": False,
"beam_size": 10,
"reduction": "sum",
"use_double_scores": True,
#
"env_info": get_env_info(),
}
)
@ -270,6 +293,17 @@ def get_transducer_model(params: AttributeDict) -> nn.Module:
return model
def get_ctc_model(params: AttributeDict):
if params.ctc_weight > 0:
return nn.Sequential(
nn.Dropout(p=0.1),
nn.Linear(params.encoder_out_dim, params.vocab_size),
nn.LogSoftmax(dim=-1),
)
else:
return None
def load_checkpoint_if_available(
params: AttributeDict,
model: nn.Module,
@ -390,16 +424,55 @@ def compute_loss(
feature_lens = supervisions["num_frames"].to(device)
texts = batch["supervisions"]["text"]
y = sp.encode(texts, out_type=int)
y = k2.RaggedTensor(y).to(device)
token_ids = sp.encode(texts, out_type=int)
y = k2.RaggedTensor(token_ids).to(device)
with torch.set_grad_enabled(is_training):
loss = model(
transducer_loss, encoder_out, encoder_out_lens = model(
x=feature,
x_lens=feature_lens,
y=y,
modified_transducer_prob=params.modified_transducer_prob,
)
loss = transducer_loss
if params.ctc_weight > 0:
ctc_model = (
model.module.ctc if hasattr(model, "module") else model.ctc
)
ctc_graph = k2.ctc_graph(
token_ids, modified=params.modified_ctc_topo, device=device
)
# Note: We assume `encoder_out_lens` is sorted in descending order.
# If not, it will throw in k2.ctc_loss().
supervision_segments = torch.stack(
[
torch.arange(encoder_out.size(0), dtype=torch.int32),
torch.zeros(encoder_out.size(0), dtype=torch.int32),
encoder_out_lens.cpu(),
],
dim=1,
).to(torch.int32)
nnet_out = ctc_model(encoder_out)
dense_fsa_vec = k2.DenseFsaVec(
nnet_out,
supervision_segments,
allow_truncate=0,
)
# Note: transducer_loss should use the same reduction as ctc_loss
ctc_loss = k2.ctc_loss(
decoding_graph=ctc_graph,
dense_fsa_vec=dense_fsa_vec,
output_beam=params.beam_size,
reduction=params.reduction,
use_double_scores=params.use_double_scores,
)
assert ctc_loss.requires_grad == is_training
loss = (
1 - params.ctc_weight
) * transducer_loss + params.ctc_weight * ctc_loss
assert loss.requires_grad == is_training
@ -408,6 +481,9 @@ def compute_loss(
# Note: We use reduction=sum while computing the loss.
info["loss"] = loss.detach().cpu().item()
info["transducer_loss"] = transducer_loss.detach().cpu().item()
if params.ctc_weight > 0:
info["ctc_loss"] = ctc_loss.detach().cpu().item()
return loss, info
@ -590,6 +666,11 @@ def run(rank, world_size, args):
logging.info("About to create model")
model = get_transducer_model(params)
model.ctc = get_ctc_model(params)
if model.ctc is not None:
logging.info(f"Enable CTC loss with weight: {params.ctc_weight}")
else:
logging.info("Disable CTC loss")
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
@ -636,7 +717,17 @@ def run(rank, world_size, args):
logging.info(f"After removing short and long utterances: {num_left}")
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
train_dl = librispeech.train_dataloaders(train_cuts)
if params.apply_frame_shift:
logging.info("Enable random frame shift")
extra_input_transforms = [apply_frame_shift]
else:
logging.info("Disable random frame shift")
extra_input_transforms = None
train_dl = librispeech.train_dataloaders(
train_cuts,
extra_input_transforms=extra_input_transforms,
)
valid_cuts = librispeech.dev_clean_cuts()
valid_cuts += librispeech.dev_other_cuts()