mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Support pure ctc decoding requiring neither a lexicon nor an n-gram LM (#58)
* Rename lattice_score_scale to nbest_scale. * Support pure CTC decoding requiring neither a lexicion nor an n-gram LM. * Fix style issues. * Fix a typo. * Minor fixes.
This commit is contained in:
parent
455693aede
commit
707d7017a7
@ -299,9 +299,9 @@ The commonly used options are:
|
|||||||
.. code-block::
|
.. code-block::
|
||||||
|
|
||||||
$ cd egs/librispeech/ASR
|
$ cd egs/librispeech/ASR
|
||||||
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5
|
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --nbest-scale 0.5
|
||||||
|
|
||||||
- ``--lattice-score-scale``
|
- ``--nbest-scale``
|
||||||
|
|
||||||
It is used to scale down lattice scores so that there are more unique
|
It is used to scale down lattice scores so that there are more unique
|
||||||
paths for rescoring.
|
paths for rescoring.
|
||||||
@ -577,7 +577,7 @@ The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
|
|||||||
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||||
--ngram-lm-scale 1.3 \
|
--ngram-lm-scale 1.3 \
|
||||||
--attention-decoder-scale 1.2 \
|
--attention-decoder-scale 1.2 \
|
||||||
--lattice-score-scale 0.5 \
|
--nbest-scale 0.5 \
|
||||||
--num-paths 100 \
|
--num-paths 100 \
|
||||||
--sos-id 1 \
|
--sos-id 1 \
|
||||||
--eos-id 1 \
|
--eos-id 1 \
|
||||||
|
@ -40,7 +40,7 @@ python conformer_ctc/train.py --bucketing-sampler True \
|
|||||||
--full-libri True \
|
--full-libri True \
|
||||||
--world-size 4
|
--world-size 4
|
||||||
|
|
||||||
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
|
python conformer_ctc/decode.py --nbest-scale 0.5 \
|
||||||
--epoch 34 \
|
--epoch 34 \
|
||||||
--avg 20 \
|
--avg 20 \
|
||||||
--method attention-decoder \
|
--method attention-decoder \
|
||||||
|
@ -23,6 +23,7 @@ from pathlib import Path
|
|||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
@ -77,6 +78,9 @@ def get_parser():
|
|||||||
default="attention-decoder",
|
default="attention-decoder",
|
||||||
help="""Decoding method.
|
help="""Decoding method.
|
||||||
Supported values are:
|
Supported values are:
|
||||||
|
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||||
|
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||||
|
It needs neither a lexicon nor an n-gram LM.
|
||||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
decoding result.
|
decoding result.
|
||||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
@ -106,7 +110,7 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lattice-score-scale",
|
"--nbest-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="""The scale to be applied to `lattice.scores`.
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
@ -128,14 +132,26 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="conformer_ctc/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe",
|
||||||
|
help="The lang dir",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
def get_params() -> AttributeDict:
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"exp_dir": Path("conformer_ctc/exp"),
|
|
||||||
"lang_dir": Path("data/lang_bpe"),
|
|
||||||
"lm_dir": Path("data/lm"),
|
"lm_dir": Path("data/lm"),
|
||||||
# parameters for conformer
|
# parameters for conformer
|
||||||
"subsampling_factor": 4,
|
"subsampling_factor": 4,
|
||||||
@ -159,13 +175,15 @@ def get_params() -> AttributeDict:
|
|||||||
def decode_one_batch(
|
def decode_one_batch(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
HLG: k2.Fsa,
|
HLG: Optional[k2.Fsa],
|
||||||
|
H: Optional[k2.Fsa],
|
||||||
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||||
batch: dict,
|
batch: dict,
|
||||||
word_table: k2.SymbolTable,
|
word_table: k2.SymbolTable,
|
||||||
sos_id: int,
|
sos_id: int,
|
||||||
eos_id: int,
|
eos_id: int,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[List[int]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
|
|
||||||
@ -190,7 +208,11 @@ def decode_one_batch(
|
|||||||
model:
|
model:
|
||||||
The neural model.
|
The neural model.
|
||||||
HLG:
|
HLG:
|
||||||
The decoding graph.
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
bpe_model:
|
||||||
|
The BPE model. Used only when params.method is ctc-decoding.
|
||||||
batch:
|
batch:
|
||||||
It is the return value from iterating
|
It is the return value from iterating
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
@ -209,7 +231,10 @@ def decode_one_batch(
|
|||||||
Return the decoding result. See above description for the format of
|
Return the decoding result. See above description for the format of
|
||||||
the returned dict.
|
the returned dict.
|
||||||
"""
|
"""
|
||||||
device = HLG.device
|
if HLG is not None:
|
||||||
|
device = HLG.device
|
||||||
|
else:
|
||||||
|
device = H.device
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
@ -229,9 +254,17 @@ def decode_one_batch(
|
|||||||
1,
|
1,
|
||||||
).to(torch.int32)
|
).to(torch.int32)
|
||||||
|
|
||||||
|
if H is None:
|
||||||
|
assert HLG is not None
|
||||||
|
decoding_graph = HLG
|
||||||
|
else:
|
||||||
|
assert HLG is None
|
||||||
|
assert bpe_model is not None
|
||||||
|
decoding_graph = H
|
||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
HLG=HLG,
|
decoding_graph=decoding_graph,
|
||||||
supervision_segments=supervision_segments,
|
supervision_segments=supervision_segments,
|
||||||
search_beam=params.search_beam,
|
search_beam=params.search_beam,
|
||||||
output_beam=params.output_beam,
|
output_beam=params.output_beam,
|
||||||
@ -240,6 +273,24 @@ def decode_one_batch(
|
|||||||
subsampling_factor=params.subsampling_factor,
|
subsampling_factor=params.subsampling_factor,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||||
|
# since we are using H, not HLG here.
|
||||||
|
#
|
||||||
|
# token_ids is a lit-of-list of IDs
|
||||||
|
token_ids = get_texts(best_path)
|
||||||
|
|
||||||
|
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
|
||||||
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
key = "ctc-decoding"
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
if params.method == "nbest-oracle":
|
if params.method == "nbest-oracle":
|
||||||
# Note: You can also pass rescored lattices to it.
|
# Note: You can also pass rescored lattices to it.
|
||||||
# We choose the HLG decoded lattice for speed reasons
|
# We choose the HLG decoded lattice for speed reasons
|
||||||
@ -250,12 +301,12 @@ def decode_one_batch(
|
|||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
ref_texts=supervisions["text"],
|
ref_texts=supervisions["text"],
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
lattice_score_scale=params.lattice_score_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
oov="<UNK>",
|
oov="<UNK>",
|
||||||
)
|
)
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
key = f"oracle_{params.num_paths}_lattice_score_scale_{params.lattice_score_scale}" # noqa
|
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||||
return {key: hyps}
|
return {key: hyps}
|
||||||
|
|
||||||
if params.method in ["1best", "nbest"]:
|
if params.method in ["1best", "nbest"]:
|
||||||
@ -269,9 +320,9 @@ def decode_one_batch(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
use_double_scores=params.use_double_scores,
|
use_double_scores=params.use_double_scores,
|
||||||
lattice_score_scale=params.lattice_score_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
)
|
)
|
||||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
@ -293,7 +344,7 @@ def decode_one_batch(
|
|||||||
G=G,
|
G=G,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
lm_scale_list=lm_scale_list,
|
lm_scale_list=lm_scale_list,
|
||||||
lattice_score_scale=params.lattice_score_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
)
|
)
|
||||||
elif params.method == "whole-lattice-rescoring":
|
elif params.method == "whole-lattice-rescoring":
|
||||||
best_path_dict = rescore_with_whole_lattice(
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
@ -319,7 +370,7 @@ def decode_one_batch(
|
|||||||
memory_key_padding_mask=memory_key_padding_mask,
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
sos_id=sos_id,
|
sos_id=sos_id,
|
||||||
eos_id=eos_id,
|
eos_id=eos_id,
|
||||||
lattice_score_scale=params.lattice_score_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
assert False, f"Unsupported decoding method: {params.method}"
|
assert False, f"Unsupported decoding method: {params.method}"
|
||||||
@ -340,12 +391,14 @@ def decode_dataset(
|
|||||||
dl: torch.utils.data.DataLoader,
|
dl: torch.utils.data.DataLoader,
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
HLG: k2.Fsa,
|
HLG: Optional[k2.Fsa],
|
||||||
|
H: Optional[k2.Fsa],
|
||||||
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||||
word_table: k2.SymbolTable,
|
word_table: k2.SymbolTable,
|
||||||
sos_id: int,
|
sos_id: int,
|
||||||
eos_id: int,
|
eos_id: int,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -356,7 +409,11 @@ def decode_dataset(
|
|||||||
model:
|
model:
|
||||||
The neural model.
|
The neural model.
|
||||||
HLG:
|
HLG:
|
||||||
The decoding graph.
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
bpe_model:
|
||||||
|
The BPE model. Used only when params.method is ctc-decoding.
|
||||||
word_table:
|
word_table:
|
||||||
It is the word symbol table.
|
It is the word symbol table.
|
||||||
sos_id:
|
sos_id:
|
||||||
@ -391,6 +448,8 @@ def decode_dataset(
|
|||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
HLG=HLG,
|
HLG=HLG,
|
||||||
|
H=H,
|
||||||
|
bpe_model=bpe_model,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
G=G,
|
G=G,
|
||||||
@ -469,6 +528,8 @@ def main():
|
|||||||
parser = get_parser()
|
parser = get_parser()
|
||||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
args.lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
params = get_params()
|
params = get_params()
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
@ -496,14 +557,26 @@ def main():
|
|||||||
sos_id = graph_compiler.sos_id
|
sos_id = graph_compiler.sos_id
|
||||||
eos_id = graph_compiler.eos_id
|
eos_id = graph_compiler.eos_id
|
||||||
|
|
||||||
HLG = k2.Fsa.from_dict(
|
if params.method == "ctc-decoding":
|
||||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
HLG = None
|
||||||
)
|
H = k2.ctc_topo(
|
||||||
HLG = HLG.to(device)
|
max_token=max_token_id,
|
||||||
assert HLG.requires_grad is False
|
modified=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
bpe_model = spm.SentencePieceProcessor()
|
||||||
|
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||||
|
else:
|
||||||
|
H = None
|
||||||
|
bpe_model = None
|
||||||
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||||
|
)
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
if not hasattr(HLG, "lm_scores"):
|
if not hasattr(HLG, "lm_scores"):
|
||||||
HLG.lm_scores = HLG.scores.clone()
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
if params.method in (
|
if params.method in (
|
||||||
"nbest-rescoring",
|
"nbest-rescoring",
|
||||||
@ -593,6 +666,8 @@ def main():
|
|||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
HLG=HLG,
|
HLG=HLG,
|
||||||
|
H=H,
|
||||||
|
bpe_model=bpe_model,
|
||||||
word_table=lexicon.word_table,
|
word_table=lexicon.word_table,
|
||||||
G=G,
|
G=G,
|
||||||
sos_id=sos_id,
|
sos_id=sos_id,
|
||||||
|
@ -125,7 +125,7 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lattice-score-scale",
|
"--nbest-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="""
|
help="""
|
||||||
@ -301,7 +301,7 @@ def main():
|
|||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
HLG=HLG,
|
decoding_graph=HLG,
|
||||||
supervision_segments=supervision_segments,
|
supervision_segments=supervision_segments,
|
||||||
search_beam=params.search_beam,
|
search_beam=params.search_beam,
|
||||||
output_beam=params.output_beam,
|
output_beam=params.output_beam,
|
||||||
@ -336,7 +336,7 @@ def main():
|
|||||||
memory_key_padding_mask=memory_key_padding_mask,
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
sos_id=params.sos_id,
|
sos_id=params.sos_id,
|
||||||
eos_id=params.eos_id,
|
eos_id=params.eos_id,
|
||||||
lattice_score_scale=params.lattice_score_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
ngram_lm_scale=params.ngram_lm_scale,
|
ngram_lm_scale=params.ngram_lm_scale,
|
||||||
attention_scale=params.attention_decoder_scale,
|
attention_scale=params.attention_decoder_scale,
|
||||||
)
|
)
|
||||||
|
@ -97,7 +97,7 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lattice-score-scale",
|
"--nbest-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="""The scale to be applied to `lattice.scores`.
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
@ -146,7 +146,7 @@ def decode_one_batch(
|
|||||||
batch: dict,
|
batch: dict,
|
||||||
lexicon: Lexicon,
|
lexicon: Lexicon,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[List[int]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
|
|
||||||
@ -210,7 +210,7 @@ def decode_one_batch(
|
|||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
HLG=HLG,
|
decoding_graph=HLG,
|
||||||
supervision_segments=supervision_segments,
|
supervision_segments=supervision_segments,
|
||||||
search_beam=params.search_beam,
|
search_beam=params.search_beam,
|
||||||
output_beam=params.output_beam,
|
output_beam=params.output_beam,
|
||||||
@ -229,7 +229,7 @@ def decode_one_batch(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
use_double_scores=params.use_double_scores,
|
use_double_scores=params.use_double_scores,
|
||||||
lattice_score_scale=params.lattice_score_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
)
|
)
|
||||||
key = f"no_rescore-{params.num_paths}"
|
key = f"no_rescore-{params.num_paths}"
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
@ -248,7 +248,7 @@ def decode_one_batch(
|
|||||||
G=G,
|
G=G,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
lm_scale_list=lm_scale_list,
|
lm_scale_list=lm_scale_list,
|
||||||
lattice_score_scale=params.lattice_score_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
best_path_dict = rescore_with_whole_lattice(
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
@ -272,7 +272,7 @@ def decode_dataset(
|
|||||||
HLG: k2.Fsa,
|
HLG: k2.Fsa,
|
||||||
lexicon: Lexicon,
|
lexicon: Lexicon,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -232,7 +232,7 @@ def main():
|
|||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
HLG=HLG,
|
decoding_graph=HLG,
|
||||||
supervision_segments=supervision_segments,
|
supervision_segments=supervision_segments,
|
||||||
search_beam=params.search_beam,
|
search_beam=params.search_beam,
|
||||||
output_beam=params.output_beam,
|
output_beam=params.output_beam,
|
||||||
|
@ -124,7 +124,7 @@ def decode_one_batch(
|
|||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
HLG=HLG,
|
decoding_graph=HLG,
|
||||||
supervision_segments=supervision_segments,
|
supervision_segments=supervision_segments,
|
||||||
search_beam=params.search_beam,
|
search_beam=params.search_beam,
|
||||||
output_beam=params.output_beam,
|
output_beam=params.output_beam,
|
||||||
|
@ -175,7 +175,7 @@ def main():
|
|||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
HLG=HLG,
|
decoding_graph=HLG,
|
||||||
supervision_segments=supervision_segments,
|
supervision_segments=supervision_segments,
|
||||||
search_beam=params.search_beam,
|
search_beam=params.search_beam,
|
||||||
output_beam=params.output_beam,
|
output_beam=params.output_beam,
|
||||||
|
@ -66,7 +66,7 @@ def _intersect_device(
|
|||||||
|
|
||||||
def get_lattice(
|
def get_lattice(
|
||||||
nnet_output: torch.Tensor,
|
nnet_output: torch.Tensor,
|
||||||
HLG: k2.Fsa,
|
decoding_graph: k2.Fsa,
|
||||||
supervision_segments: torch.Tensor,
|
supervision_segments: torch.Tensor,
|
||||||
search_beam: float,
|
search_beam: float,
|
||||||
output_beam: float,
|
output_beam: float,
|
||||||
@ -79,8 +79,9 @@ def get_lattice(
|
|||||||
Args:
|
Args:
|
||||||
nnet_output:
|
nnet_output:
|
||||||
It is the output of a neural model of shape `(N, T, C)`.
|
It is the output of a neural model of shape `(N, T, C)`.
|
||||||
HLG:
|
decoding_graph:
|
||||||
An Fsa, the decoding graph. See also `compile_HLG.py`.
|
An Fsa, the decoding graph. It can be either an HLG
|
||||||
|
(see `compile_HLG.py`) or an H (see `k2.ctc_topo`).
|
||||||
supervision_segments:
|
supervision_segments:
|
||||||
A 2-D **CPU** tensor of dtype `torch.int32` with 3 columns.
|
A 2-D **CPU** tensor of dtype `torch.int32` with 3 columns.
|
||||||
Each row contains information for a supervision segment. Column 0
|
Each row contains information for a supervision segment. Column 0
|
||||||
@ -117,7 +118,7 @@ def get_lattice(
|
|||||||
)
|
)
|
||||||
|
|
||||||
lattice = k2.intersect_dense_pruned(
|
lattice = k2.intersect_dense_pruned(
|
||||||
HLG,
|
decoding_graph,
|
||||||
dense_fsa_vec,
|
dense_fsa_vec,
|
||||||
search_beam=search_beam,
|
search_beam=search_beam,
|
||||||
output_beam=output_beam,
|
output_beam=output_beam,
|
||||||
@ -180,7 +181,7 @@ class Nbest(object):
|
|||||||
lattice: k2.Fsa,
|
lattice: k2.Fsa,
|
||||||
num_paths: int,
|
num_paths: int,
|
||||||
use_double_scores: bool = True,
|
use_double_scores: bool = True,
|
||||||
lattice_score_scale: float = 0.5,
|
nbest_scale: float = 0.5,
|
||||||
) -> "Nbest":
|
) -> "Nbest":
|
||||||
"""Construct an Nbest object by **sampling** `num_paths` from a lattice.
|
"""Construct an Nbest object by **sampling** `num_paths` from a lattice.
|
||||||
|
|
||||||
@ -206,7 +207,7 @@ class Nbest(object):
|
|||||||
Return an Nbest instance.
|
Return an Nbest instance.
|
||||||
"""
|
"""
|
||||||
saved_scores = lattice.scores.clone()
|
saved_scores = lattice.scores.clone()
|
||||||
lattice.scores *= lattice_score_scale
|
lattice.scores *= nbest_scale
|
||||||
# path is a ragged tensor with dtype torch.int32.
|
# path is a ragged tensor with dtype torch.int32.
|
||||||
# It has three axes [utt][path][arc_pos]
|
# It has three axes [utt][path][arc_pos]
|
||||||
path = k2.random_paths(
|
path = k2.random_paths(
|
||||||
@ -446,7 +447,7 @@ def nbest_decoding(
|
|||||||
lattice: k2.Fsa,
|
lattice: k2.Fsa,
|
||||||
num_paths: int,
|
num_paths: int,
|
||||||
use_double_scores: bool = True,
|
use_double_scores: bool = True,
|
||||||
lattice_score_scale: float = 1.0,
|
nbest_scale: float = 1.0,
|
||||||
) -> k2.Fsa:
|
) -> k2.Fsa:
|
||||||
"""It implements something like CTC prefix beam search using n-best lists.
|
"""It implements something like CTC prefix beam search using n-best lists.
|
||||||
|
|
||||||
@ -474,7 +475,7 @@ def nbest_decoding(
|
|||||||
use_double_scores:
|
use_double_scores:
|
||||||
True to use double precision floating point in the computation.
|
True to use double precision floating point in the computation.
|
||||||
False to use single precision.
|
False to use single precision.
|
||||||
lattice_score_scale:
|
nbest_scale:
|
||||||
It's the scale applied to the `lattice.scores`. A smaller value
|
It's the scale applied to the `lattice.scores`. A smaller value
|
||||||
leads to more unique paths at the risk of missing the correct path.
|
leads to more unique paths at the risk of missing the correct path.
|
||||||
Returns:
|
Returns:
|
||||||
@ -484,7 +485,7 @@ def nbest_decoding(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=num_paths,
|
num_paths=num_paths,
|
||||||
use_double_scores=use_double_scores,
|
use_double_scores=use_double_scores,
|
||||||
lattice_score_scale=lattice_score_scale,
|
nbest_scale=nbest_scale,
|
||||||
)
|
)
|
||||||
# nbest.fsa.scores contains 0s
|
# nbest.fsa.scores contains 0s
|
||||||
|
|
||||||
@ -505,7 +506,7 @@ def nbest_oracle(
|
|||||||
ref_texts: List[str],
|
ref_texts: List[str],
|
||||||
word_table: k2.SymbolTable,
|
word_table: k2.SymbolTable,
|
||||||
use_double_scores: bool = True,
|
use_double_scores: bool = True,
|
||||||
lattice_score_scale: float = 0.5,
|
nbest_scale: float = 0.5,
|
||||||
oov: str = "<UNK>",
|
oov: str = "<UNK>",
|
||||||
) -> Dict[str, List[List[int]]]:
|
) -> Dict[str, List[List[int]]]:
|
||||||
"""Select the best hypothesis given a lattice and a reference transcript.
|
"""Select the best hypothesis given a lattice and a reference transcript.
|
||||||
@ -517,7 +518,7 @@ def nbest_oracle(
|
|||||||
The decoding result returned from this function is the best result that
|
The decoding result returned from this function is the best result that
|
||||||
we can obtain using n-best decoding with all kinds of rescoring techniques.
|
we can obtain using n-best decoding with all kinds of rescoring techniques.
|
||||||
|
|
||||||
This function is useful to tune the value of `lattice_score_scale`.
|
This function is useful to tune the value of `nbest_scale`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
lattice:
|
lattice:
|
||||||
@ -533,7 +534,7 @@ def nbest_oracle(
|
|||||||
use_double_scores:
|
use_double_scores:
|
||||||
True to use double precision for computation. False to use
|
True to use double precision for computation. False to use
|
||||||
single precision.
|
single precision.
|
||||||
lattice_score_scale:
|
nbest_scale:
|
||||||
It's the scale applied to the lattice.scores. A smaller value
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
yields more unique paths.
|
yields more unique paths.
|
||||||
oov:
|
oov:
|
||||||
@ -549,7 +550,7 @@ def nbest_oracle(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=num_paths,
|
num_paths=num_paths,
|
||||||
use_double_scores=use_double_scores,
|
use_double_scores=use_double_scores,
|
||||||
lattice_score_scale=lattice_score_scale,
|
nbest_scale=nbest_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
hyps = nbest.build_levenshtein_graphs()
|
hyps = nbest.build_levenshtein_graphs()
|
||||||
@ -590,7 +591,7 @@ def rescore_with_n_best_list(
|
|||||||
G: k2.Fsa,
|
G: k2.Fsa,
|
||||||
num_paths: int,
|
num_paths: int,
|
||||||
lm_scale_list: List[float],
|
lm_scale_list: List[float],
|
||||||
lattice_score_scale: float = 1.0,
|
nbest_scale: float = 1.0,
|
||||||
use_double_scores: bool = True,
|
use_double_scores: bool = True,
|
||||||
) -> Dict[str, k2.Fsa]:
|
) -> Dict[str, k2.Fsa]:
|
||||||
"""Rescore an n-best list with an n-gram LM.
|
"""Rescore an n-best list with an n-gram LM.
|
||||||
@ -607,7 +608,7 @@ def rescore_with_n_best_list(
|
|||||||
Size of nbest list.
|
Size of nbest list.
|
||||||
lm_scale_list:
|
lm_scale_list:
|
||||||
A list of float representing LM score scales.
|
A list of float representing LM score scales.
|
||||||
lattice_score_scale:
|
nbest_scale:
|
||||||
Scale to be applied to ``lattice.score`` when sampling paths
|
Scale to be applied to ``lattice.score`` when sampling paths
|
||||||
using ``k2.random_paths``.
|
using ``k2.random_paths``.
|
||||||
use_double_scores:
|
use_double_scores:
|
||||||
@ -631,7 +632,7 @@ def rescore_with_n_best_list(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=num_paths,
|
num_paths=num_paths,
|
||||||
use_double_scores=use_double_scores,
|
use_double_scores=use_double_scores,
|
||||||
lattice_score_scale=lattice_score_scale,
|
nbest_scale=nbest_scale,
|
||||||
)
|
)
|
||||||
# nbest.fsa.scores are all 0s at this point
|
# nbest.fsa.scores are all 0s at this point
|
||||||
|
|
||||||
@ -769,7 +770,7 @@ def rescore_with_attention_decoder(
|
|||||||
memory_key_padding_mask: Optional[torch.Tensor],
|
memory_key_padding_mask: Optional[torch.Tensor],
|
||||||
sos_id: int,
|
sos_id: int,
|
||||||
eos_id: int,
|
eos_id: int,
|
||||||
lattice_score_scale: float = 1.0,
|
nbest_scale: float = 1.0,
|
||||||
ngram_lm_scale: Optional[float] = None,
|
ngram_lm_scale: Optional[float] = None,
|
||||||
attention_scale: Optional[float] = None,
|
attention_scale: Optional[float] = None,
|
||||||
use_double_scores: bool = True,
|
use_double_scores: bool = True,
|
||||||
@ -796,7 +797,7 @@ def rescore_with_attention_decoder(
|
|||||||
The token ID for SOS.
|
The token ID for SOS.
|
||||||
eos_id:
|
eos_id:
|
||||||
The token ID for EOS.
|
The token ID for EOS.
|
||||||
lattice_score_scale:
|
nbest_scale:
|
||||||
It's the scale applied to `lattice.scores`. A smaller value
|
It's the scale applied to `lattice.scores`. A smaller value
|
||||||
leads to more unique paths at the risk of missing the correct path.
|
leads to more unique paths at the risk of missing the correct path.
|
||||||
ngram_lm_scale:
|
ngram_lm_scale:
|
||||||
@ -812,7 +813,7 @@ def rescore_with_attention_decoder(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=num_paths,
|
num_paths=num_paths,
|
||||||
use_double_scores=use_double_scores,
|
use_double_scores=use_double_scores,
|
||||||
lattice_score_scale=lattice_score_scale,
|
nbest_scale=nbest_scale,
|
||||||
)
|
)
|
||||||
# nbest.fsa.scores are all 0s at this point
|
# nbest.fsa.scores are all 0s at this point
|
||||||
|
|
||||||
|
@ -43,7 +43,7 @@ def test_nbest_from_lattice():
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=10,
|
num_paths=10,
|
||||||
use_double_scores=True,
|
use_double_scores=True,
|
||||||
lattice_score_scale=0.5,
|
nbest_scale=0.5,
|
||||||
)
|
)
|
||||||
# each lattice has only 4 distinct paths that have different word sequences:
|
# each lattice has only 4 distinct paths that have different word sequences:
|
||||||
# 10->30
|
# 10->30
|
||||||
|
Loading…
x
Reference in New Issue
Block a user