init commit for the alignment attn module

This commit is contained in:
zr_jin 2023-07-23 18:07:32 +08:00
parent fb410cc46f
commit 706cbae5d0

View File

@ -0,0 +1,368 @@
import copy
import logging
import random
from typing import Optional, Tuple
import torch
from scaling import (
Balancer,
FloatLike,
Identity,
ScaledLinear,
ScheduledFloat,
Whiten,
penalize_abs_values_gt,
softmax,
)
from torch import Tensor, nn
from zipformer import CompactRelPositionalEncoding, SelfAttention, _whitening_schedule
class RelPositionMultiheadAttentionWeights(nn.Module):
r"""Module that computes multi-head attention weights with relative position encoding.
Various other modules consume the resulting attention weights: see, for example, the
SimpleAttention module which allows you to compute conventional attention.
This is a quite heavily modified from: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context",
we have to write up the differences.
Args:
embed_dim: number of channels at the input to this module, e.g. 256
pos_dim: dimension of the positional encoding vectors, e.g. 128.
num_heads: number of heads to compute weights for, e.g. 8
query_head_dim: dimension of the query (and key), per head. e.g. 24.
pos_head_dim: dimension of the projected positional encoding per head, e.g. 4.
dropout: dropout probability for attn_output_weights. Default: 0.0.
pos_emb_skip_rate: probability for skipping the pos_emb part of the scores on
any given call to forward(), in training time.
"""
def __init__(
self,
embed_dim: int = 512,
pos_dim: int = 192,
num_heads: int = 5,
query_head_dim: int = 32,
pos_head_dim: int = 4,
dropout: float = 0.0,
pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)),
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.query_head_dim = query_head_dim
self.pos_head_dim = pos_head_dim
self.dropout = dropout
self.pos_emb_skip_rate = copy.deepcopy(pos_emb_skip_rate)
self.name = None # will be overwritten in training code; for diagnostics.
key_head_dim = query_head_dim
in_lm_dim = (query_head_dim + pos_head_dim) * num_heads
in_am_dim = key_head_dim * num_heads
# the initial_scale is supposed to take over the "scaling" factor of
# head_dim ** -0.5 that has been used in previous forms of attention,
# dividing it between the query and key. Note: this module is intended
# to be used with the ScaledAdam optimizer; with most other optimizers,
# it would be necessary to apply the scaling factor in the forward function.
self.in_lm_proj = ScaledLinear(
embed_dim, in_lm_dim, bias=True, initial_scale=query_head_dim**-0.25
)
self.in_am_proj = ScaledLinear(
embed_dim, in_am_dim, bias=True, initial_scale=query_head_dim**-0.25
)
self.whiten_keys = Whiten(
num_groups=num_heads,
whitening_limit=_whitening_schedule(3.0),
prob=(0.025, 0.25),
grad_scale=0.025,
)
# add a balancer for the keys that runs with very small probability, and
# tries to enforce that all dimensions have mean around zero. The
# weights produced by this module are invariant to adding a constant to
# the keys, so the derivative of the bias is mathematically zero; but
# due to how Adam/ScaledAdam work, it can learn a fairly large nonzero
# bias because the small numerical roundoff tends to have a non-random
# sign. This module is intended to prevent that. Use a very small
# probability; that should be suffixient to fix the problem.
self.balance_keys = Balancer(
key_head_dim * num_heads,
channel_dim=-1,
min_positive=0.4,
max_positive=0.6,
min_abs=0.0,
max_abs=100.0,
prob=0.025,
)
# linear transformation for positional encoding.
self.linear_pos = ScaledLinear(
pos_dim, num_heads * pos_head_dim, bias=False, initial_scale=0.05
)
# the following are for diagnosics only, see --print-diagnostics option
self.copy_pos_query = Identity()
self.copy_query = Identity()
def forward(
self,
lm_pruned: Tensor,
am_pruned: Tensor,
pos_emb: Tensor,
key_padding_mask: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
) -> Tensor:
r"""
Args:
lm_pruned: input of shape (batch_size * prune_range, seq_len, decoder_embed_dim)
am_pruned: input of shape (batch_size * prune_range, seq_len, encoder_embed_dim)
pos_emb: Positional embedding tensor, of shape (1, 2 * batch_size * prune_range - 1, pos_dim)
key_padding_mask: a bool tensor of shape (seq_len, batch_size * prune_range). Positions that
are True in this mask will be ignored as sources in the attention weighting.
attn_mask: mask of shape (batch_size * prune_range, batch_size * prune_range)
or (seq_len, batch_size * prune_range, batch_size * prune_range),
interpreted as ([seq_len,] batch_size * prune_range, batch_size * prune_range)
saying which positions are allowed to attend to which other positions.
Returns:
a tensor of attention weights, of shape
(num_heads, seq_len, batch_size * prune_range, batch_size * prune_range)
"""
lm_pruned = self.in_lm_proj(lm_pruned) # lm_pruned as query
am_pruned = self.in_am_proj(am_pruned) # am_pruned as key
query_head_dim = self.query_head_dim
pos_head_dim = self.pos_head_dim
num_heads = self.num_heads
(
b_p_dim,
seq_len,
_,
) = lm_pruned.shape # actual dim: (batch * prune_range, seq_len, _)
query_dim = query_head_dim * num_heads
# self-attention
q = lm_pruned[..., 0:query_dim] # (batch * prune_range, seq_len, query_dim)
k = am_pruned # (batch * prune_range, seq_len, query_dim)
# p is the position-encoding query
p = lm_pruned[
..., query_dim:
] # (batch * prune_range, seq_len, pos_head_dim * num_heads)
assert p.shape[-1] == num_heads * pos_head_dim
q = self.copy_query(q) # for diagnostics only, does nothing.
k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass.
p = self.copy_pos_query(p) # for diagnostics only, does nothing.
q = q.reshape(b_p_dim, seq_len, num_heads, query_head_dim)
p = p.reshape(b_p_dim, seq_len, num_heads, pos_head_dim)
k = k.reshape(b_p_dim, seq_len, num_heads, query_head_dim)
# time1 refers to target, time2 refers to source.
q = q.permute(
2, 1, 0, 3
) # (head, seq_len, batch * prune_range, query_head_dim)
p = p.permute(2, 1, 0, 3) # (head, seq_len, batch * prune_range, pos_head_dim)
k = k.permute(2, 1, 3, 0) # (head, seq_len, d_k, batch * prune_range)
attn_scores = torch.matmul(q, k)
use_pos_scores = False
if torch.jit.is_scripting() or torch.jit.is_tracing():
# We can't put random.random() in the same line
use_pos_scores = True
elif not self.training or random.random() >= float(self.pos_emb_skip_rate):
use_pos_scores = True
if use_pos_scores:
pos_emb = self.linear_pos(pos_emb)
seq_len2 = 2 * b_p_dim - 1
pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute(
2, 0, 3, 1
)
# pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2)
# (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2)
# [where seq_len2 represents relative position.]
pos_scores = torch.matmul(p, pos_emb)
# the following .as_strided() expression converts the last axis of pos_scores from relative
# to absolute position. I don't know whether I might have got the time-offsets backwards or
# not, but let this code define which way round it is supposed to be.
if torch.jit.is_tracing():
(num_heads, seq_len, time1, n) = pos_scores.shape
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
cols = torch.arange(b_p_dim)
rows = rows.repeat(seq_len * num_heads).unsqueeze(-1)
indexes = rows + cols
pos_scores = pos_scores.reshape(-1, n)
pos_scores = torch.gather(pos_scores, dim=1, index=indexes)
pos_scores = pos_scores.reshape(num_heads, seq_len, time1, b_p_dim)
else:
pos_scores = pos_scores.as_strided(
(num_heads, seq_len, b_p_dim, b_p_dim),
(
pos_scores.stride(0),
pos_scores.stride(1),
pos_scores.stride(2) - pos_scores.stride(3),
pos_scores.stride(3),
),
storage_offset=pos_scores.stride(3) * (b_p_dim - 1),
)
attn_scores = attn_scores + pos_scores
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif self.training and random.random() < 0.1:
# This is a harder way of limiting the attention scores to not be
# too large. It incurs a penalty if any of them has an absolute
# value greater than 50.0. this should be outside the normal range
# of the attention scores. We use this mechanism instead of, say,
# something added to the loss function involving the entropy,
# because once the entropy gets very small gradients through the
# softmax can become very small, and we'd get zero derivatives. The
# choices of 1.0e-04 as the scale on the penalty makes this
# mechanism vulnerable to the absolute scale of the loss function,
# but we view this as a failsafe to avoid "implausible" parameter
# values rather than a regularization method that should be active
# under normal circumstances.
attn_scores = penalize_abs_values_gt(
attn_scores, limit=25.0, penalty=1.0e-04, name=self.name
)
assert attn_scores.shape == (num_heads, seq_len, b_p_dim, b_p_dim)
if attn_mask is not None:
assert attn_mask.dtype == torch.bool
# use -1000 to avoid nan's where attn_mask and key_padding_mask make
# all scores zero. It's important that this be large enough that exp(-1000)
# is exactly zero, for reasons related to const_attention_rate, it
# compares the final weights with zero.
attn_scores = attn_scores.masked_fill(attn_mask, -1000)
if key_padding_mask is not None:
assert key_padding_mask.shape == (
seq_len,
b_p_dim,
), key_padding_mask.shape
attn_scores = attn_scores.masked_fill(
key_padding_mask.unsqueeze(1),
-1000,
)
# We use our own version of softmax, defined in scaling.py, which should
# save a little of the memory used in backprop by, if we are in
# automatic mixed precision mode (amp / autocast), by only storing the
# half-precision output for backprop purposes.
attn_weights = softmax(attn_scores, dim=-1)
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif random.random() < 0.001 and not self.training:
self._print_attn_entropy(attn_weights)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
return attn_weights
def _print_attn_entropy(self, attn_weights: Tensor):
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
(num_heads, batch_size, seq_len, seq_len) = attn_weights.shape
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=False):
attn_weights = attn_weights.to(torch.float32)
attn_weights_entropy = (
-((attn_weights + 1.0e-20).log() * attn_weights)
.sum(dim=-1)
.mean(dim=(1, 2))
)
logging.info(
f"name={self.name}, attn_weights_entropy = {attn_weights_entropy}"
)
class AlignmentAttentionModule(nn.Module):
def __init__(
self,
embed_dim: int = 512,
pos_dim: int = 192,
num_heads: int = 5,
query_head_dim: int = 32,
value_head_dim: int = 12,
pos_head_dim: int = 4,
dropout: float = 0.0,
):
super().__init__()
self.cross_attn_weights = RelPositionMultiheadAttentionWeights(
embed_dim,
pos_dim=pos_dim,
num_heads=num_heads,
query_head_dim=query_head_dim,
pos_head_dim=pos_head_dim,
dropout=dropout,
)
self.cross_attn = SelfAttention(
embed_dim=embed_dim,
num_heads=num_heads,
value_head_dim=value_head_dim,
)
self.pos_encode = CompactRelPositionalEncoding(
embed_dim=pos_dim, dropout_rate=0.15
)
def forward(self, am_pruned: Tensor, lm_pruned: Tensor) -> Tensor:
# am_pruned : [B, T, prune_range, encoder_dim]
# lm_pruned : [B, T, prune_range, decoder_dim]
(batch_size, T, prune_range, encoder_dim) = am_pruned.shape
(batch_size, T, prune_range, decoder_dim) = lm_pruned.shape
# am_pruned : [B * prune_range, T, encoder_dim]
# lm_pruned : [B * prune_range, T, decoder_dim]
am_pruned = am_pruned.transpose(1, 0).reshape(
batch_size * prune_range, T, encoder_dim
)
lm_pruned = lm_pruned.transpose(1, 0).reshape(
batch_size * prune_range, T, decoder_dim
)
pos_emb = self.pos_encode(am_pruned)
attn_weights = self.cross_attn_weights(lm_pruned, am_pruned, pos_emb)
label_level_am_representation = self.cross_attn(am_pruned, attn_weights)
return label_level_am_representation
if __name__ == "__main__":
# am_pruned : [B, T, prune_range, encoder_dim]
# lm_pruned : [B, T, prune_range, decoder_dim]
# am_pruned = torch.rand(2, 100, 5, 512).transpose(1, 0).reshape(2 * 5, 100, 512)
# lm_pruned = torch.rand(2, 100, 5, 512).transpose(1, 0).reshape(2 * 5, 100, 512)
# # am_pruned : [B * prune_range, T, encoder_dim]
# # lm_pruned : [B * prune_range, T, decoder_dim]
# pos_emb = torch.rand(1, 19, 192)
# weights = RelPositionMultiheadAttentionWeights()
# attn = SelfAttention(512, 5, 12)
# attn_weights = weights(lm_pruned, am_pruned, pos_emb)
# print("weights(am_pruned, lm_pruned, pos_emb).shape", attn_weights.shape)
# res = attn(am_pruned, attn_weights)
# print("res", res.shape)
# am_pruned : [B, T, prune_range, encoder_dim]
# lm_pruned : [B, T, prune_range, decoder_dim]
am_pruned = torch.rand(2, 100, 5, 512)
lm_pruned = torch.rand(2, 100, 5, 512)
attn = AlignmentAttentionModule()
res = attn(am_pruned, lm_pruned)
print("res", res.shape)