diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/asr_datamodule.py new file mode 120000 index 000000000..b4e5427e0 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/blank_predictor.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/blank_predictor.py new file mode 100644 index 000000000..03f82700b --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/blank_predictor.py @@ -0,0 +1,65 @@ +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn + +from icefall.utils import make_pad_mask + + +class BlankPredictor(nn.Module): + def __init__(self, encoder_out_dim: int): + """ + Args: + Output dimension of the encoder network. + """ + super().__init__() + self.linear = nn.Linear(in_features=encoder_out_dim, out_features=1) + + self.loss_func = nn.BCEWithLogitsLoss(reduction="none") + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + soft_target: torch.Tensor, + ) -> torch.Tensor: + """ + Args: + x: + A 3-D tensor of shape (N, T, encoder_out_dim) from the output of + the encoder network. + x_lens: + A 1-D tensor of shape (N,) containing the number of valid frames + for each element in `x`. + soft_target: + A 2-D tensor of shape (N, T) containing the soft label of each frame + in `x`. + """ + assert x.ndim == 3, x.shape + assert soft_target.ndim == 2, soft_target.shape + + assert x.shape[:2] == soft_target.shape[:2], ( + x.shape, + soft_target.shape, + ) + logits = self.linear(x).squeeze(-1) + mask = make_pad_mask(x_lens) + + loss = self.loss_func(logits, soft_target) + loss.masked_fill_(mask, 0) + + return loss.sum() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/conformer.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/conformer.py new file mode 120000 index 000000000..9bbfa5da0 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/conformer.py @@ -0,0 +1 @@ +../pruned_transducer_stateless/conformer.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/decoder.py new file mode 120000 index 000000000..0d5f10dc0 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/decoder.py @@ -0,0 +1 @@ +../pruned_transducer_stateless/decoder.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/encoder_interface.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/encoder_interface.py new file mode 120000 index 000000000..a478f2351 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/encoder_interface.py @@ -0,0 +1 @@ +../pruned_transducer_stateless/encoder_interface.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/joiner.py new file mode 120000 index 000000000..81ad47c55 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/joiner.py @@ -0,0 +1 @@ +../pruned_transducer_stateless/joiner.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/model.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/model.py new file mode 100644 index 000000000..f0c08feb6 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/model.py @@ -0,0 +1,193 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Tuple + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface + +from icefall.utils import add_sos + + +class Transducer(nn.Module): + """It implements https://arxiv.org/pdf/1211.3711.pdf + "Sequence Transduction with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + decoder: nn.Module, + joiner: nn.Module, + blank_predictor: nn.Module, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, C) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, C) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, C). It should contain + one attribute: `blank_id`. + joiner: + It has two inputs with shapes: (N, T, C) and (N, U, C). Its + output shape is (N, T, U, C). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + blank_predictor: + The model to predict blanks from the encoder output. See also + `./blank_predictor.py`. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + assert hasattr(decoder, "blank_id") + + self.encoder = encoder + self.decoder = decoder + self.joiner = joiner + self.blank_predictor = blank_predictor + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + Returns: + Return a tuple containing: + + - The loss for the "trivial" joiner + - The loss for the non-linear joiner + - The loss for predicting the blank token + + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0 + + encoder_out, encoder_out_lens = self.encoder(x, x_lens) + assert torch.all(encoder_out_lens > 0) + + # Now for the decoder, i.e., the prediction network + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + blank_id = self.decoder.blank_id + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, C] + decoder_out = self.decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros( + (x.size(0), 4), dtype=torch.int64, device=x.device + ) + boundary[:, 2] = y_lens + boundary[:, 3] = encoder_out_lens + + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=decoder_out, + am=encoder_out, + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + # + # px_grad shape: (B, y_lens.max(), T+1) + # Note: In the paper, we use y'(t, u) + # + non_blank_occuptation = px_grad[:, :, :-1].sum(dim=1) + non_blank_occuptation = torch.clamp(non_blank_occuptation, min=0, max=1) + blank_occupation = 1 - non_blank_occuptation + + blank_prediction_loss = self.blank_predictor( + encoder_out, + encoder_out_lens, + blank_occupation, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, C] + # lm_pruned : [B, T, prune_range, C] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=encoder_out, lm=decoder_out, ranges=ranges + ) + + # logits : [B, T, prune_range, C] + logits = self.joiner(am_pruned, lm_pruned) + + pruned_loss = k2.rnnt_loss_pruned( + logits=logits, + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return (simple_loss, pruned_loss, blank_prediction_loss) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/subsampling.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/subsampling.py new file mode 120000 index 000000000..cf233e2a7 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/subsampling.py @@ -0,0 +1 @@ +../pruned_transducer_stateless/subsampling.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/test_blank_predictor.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/test_blank_predictor.py new file mode 100755 index 000000000..93393e3a0 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/test_blank_predictor.py @@ -0,0 +1,43 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +To run this file, do: + + cd icefall/egs/librispeech/ASR + python ./pruned_transducer_stateless_2/test_blank_predictor.py +""" +import torch +from blank_predictor import BlankPredictor + + +def test_blank_predictor(): + dim = 10 + predictor = BlankPredictor(encoder_out_dim=dim) + x = torch.rand(4, 3, dim) + x_lens = torch.tensor([1, 3, 2, 3], dtype=torch.int32) + y = torch.rand(4, 3) + loss = predictor(x, x_lens, y) + print(loss) + + +def main(): + test_blank_predictor() + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/train.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/train.py new file mode 100755 index 000000000..d46330bb8 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/train.py @@ -0,0 +1,959 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless-2/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 0 \ + --exp-dir pruned_transducer_stateless-2/exp \ + --full-libri 1 \ + --max-duration 300 +""" + + +import argparse +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from blank_predictor import BlankPredictor +from conformer import Conformer +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from torch import Tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.nn.utils import clip_grad_norm_ +from torch.utils.tensorboard import SummaryWriter +from transformer import Noam + +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import save_checkpoint_with_global_batch_idx +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.utils import ( + AttributeDict, + MetricsTracker, + measure_gradient_norms, + measure_weight_norms, + optim_step_and_measure_param_change, + setup_logger, + str2bool, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + transducer_stateless/exp/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless-2/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lr-factor", + type=float, + default=5.0, + help="The lr_factor for Noam optimizer", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " + "2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network)" + "part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--blank-prediction-scale", + type=float, + default=0.1, + help="Scale to use for the blank prediction loss", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=8000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=20, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - attention_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warm_step for Noam optimizer. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + "log_diagnostics": False, + # parameters for conformer + "feature_dim": 80, + "subsampling_factor": 4, + "attention_dim": 512, + "nhead": 8, + "dim_feedforward": 2048, + "num_encoder_layers": 12, + "vgg_frontend": False, + # parameters for decoder + "embedding_dim": 512, + # parameters for Noam + "warm_step": 80000, # For the 100h subset, use 30000 + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Conformer and Transformer + encoder = Conformer( + num_features=params.feature_dim, + output_dim=params.vocab_size, + subsampling_factor=params.subsampling_factor, + d_model=params.attention_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + vgg_frontend=params.vgg_frontend, + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + embedding_dim=params.embedding_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + input_dim=params.vocab_size, + inner_dim=params.embedding_dim, + output_dim=params.vocab_size, + ) + return joiner + + +def get_blank_prediction_model(params: AttributeDict) -> nn.Module: + blank_predictor = BlankPredictor(encoder_out_dim=params.vocab_size) + return blank_predictor + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + blank_predictor = get_blank_prediction_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + blank_predictor=blank_predictor, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 0: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + sampler: Optional[CutSampler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + sampler=sampler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Conformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = model.device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss, blank_prediction_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + loss = ( + params.simple_loss_scale * simple_loss + + pruned_loss + + params.blank_prediction_scale * blank_prediction_loss + ) + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = ( + (feature_lens // params.subsampling_factor).sum().item() + ) + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + info["blank_prediction_loss"] = blank_prediction_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + def maybe_log_gradients(tag: str): + if ( + params.log_diagnostics + and tb_writer is not None + and params.batch_idx_train % (params.log_interval * 5) == 0 + ): + tb_writer.add_scalars( + tag, + measure_gradient_norms(model, norm="l2"), + global_step=params.batch_idx_train, + ) + + def maybe_log_weights(tag: str): + if ( + params.log_diagnostics + and tb_writer is not None + and params.batch_idx_train % (params.log_interval * 5) == 0 + ): + tb_writer.add_scalars( + tag, + measure_weight_norms(model, norm="l2"), + global_step=params.batch_idx_train, + ) + + def maybe_log_param_relative_changes(): + if ( + params.log_diagnostics + and tb_writer is not None + and params.batch_idx_train % (params.log_interval * 5) == 0 + ): + deltas = optim_step_and_measure_param_change(model, optimizer) + tb_writer.add_scalars( + "train/relative_param_change_per_minibatch", + deltas, + global_step=params.batch_idx_train, + ) + else: + optimizer.step() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + + loss.backward() + + maybe_log_weights("train/param_norms") + maybe_log_gradients("train/grad_norms") + maybe_log_param_relative_changes() + + optimizer.zero_grad() + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + params=params, + optimizer=optimizer, + sampler=train_dl.sampler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % params.log_interval == 0: + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}" + ) + + if tb_writer is not None: + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary( + tb_writer, "train/tot_", params.batch_idx_train + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 800 + params.warm_step = 30000 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank]) + model.device = device + + optimizer = Noam( + model.parameters(), + model_size=params.attention_dim, + factor=params.lr_factor, + warm_step=params.warm_step, + ) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + librispeech = LibriSpeechAsrDataModule(args) + + train_cuts = librispeech.train_clean_100_cuts() + if params.full_libri: + train_cuts += librispeech.train_clean_360_cuts() + train_cuts += librispeech.train_other_500_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + return 1.0 <= c.duration <= 20.0 + + num_in_total = len(train_cuts) + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + num_left = len(train_cuts) + num_removed = num_in_total - num_left + removed_percent = num_removed / num_in_total * 100 + + logging.info(f"Before removing short and long utterances: {num_in_total}") + logging.info(f"After removing short and long utterances: {num_left}") + logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)") + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + for epoch in range(params.start_epoch, params.num_epochs): + fix_random_seed(params.seed + epoch) + train_dl.sampler.set_epoch(epoch) + + cur_lr = optimizer._rate + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + if rank == 0: + logging.info("epoch {}, learning rate {}".format(epoch, cur_lr)) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + sampler=train_dl.sampler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def scan_pessimistic_batches_for_oom( + model: nn.Module, + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 0 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + optimizer.zero_grad() + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + except RuntimeError as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + raise + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless-2/transformer.py b/egs/librispeech/ASR/pruned_transducer_stateless-2/transformer.py new file mode 120000 index 000000000..e9c3968ff --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless-2/transformer.py @@ -0,0 +1 @@ +../pruned_transducer_stateless/transformer.py \ No newline at end of file