mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
update
This commit is contained in:
parent
babcfd4b68
commit
6c8d1f9ef5
@ -17,16 +17,23 @@
|
||||
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
from icefall import NgramLm, NgramLmStateCost
|
||||
from icefall.decode import Nbest, one_best_decoding
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import add_eos, add_sos, get_texts
|
||||
from icefall.utils import (
|
||||
DecodingResults,
|
||||
add_eos,
|
||||
add_sos,
|
||||
get_texts,
|
||||
get_texts_with_timestamp,
|
||||
)
|
||||
|
||||
|
||||
def fast_beam_search_one_best(
|
||||
@ -38,7 +45,8 @@ def fast_beam_search_one_best(
|
||||
max_states: int,
|
||||
max_contexts: int,
|
||||
temperature: float = 1.0,
|
||||
) -> List[List[int]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[List[int]], DecodingResults]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
A lattice is first obtained using fast beam search, and then
|
||||
@ -62,8 +70,12 @@ def fast_beam_search_one_best(
|
||||
Max contexts pre stream per frame.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
@ -77,8 +89,11 @@ def fast_beam_search_one_best(
|
||||
)
|
||||
|
||||
best_path = one_best_decoding(lattice)
|
||||
hyps = get_texts(best_path)
|
||||
return hyps
|
||||
|
||||
if not return_timestamps:
|
||||
return get_texts(best_path)
|
||||
else:
|
||||
return get_texts_with_timestamp(best_path)
|
||||
|
||||
|
||||
def fast_beam_search_nbest_LG(
|
||||
@ -93,7 +108,8 @@ def fast_beam_search_nbest_LG(
|
||||
nbest_scale: float = 0.5,
|
||||
use_double_scores: bool = True,
|
||||
temperature: float = 1.0,
|
||||
) -> List[List[int]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[List[int]], DecodingResults]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
The process to get the results is:
|
||||
@ -130,8 +146,12 @@ def fast_beam_search_nbest_LG(
|
||||
single precision.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
@ -196,9 +216,10 @@ def fast_beam_search_nbest_LG(
|
||||
best_hyp_indexes = ragged_tot_scores.argmax()
|
||||
best_path = k2.index_fsa(nbest.fsa, best_hyp_indexes)
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
|
||||
return hyps
|
||||
if not return_timestamps:
|
||||
return get_texts(best_path)
|
||||
else:
|
||||
return get_texts_with_timestamp(best_path)
|
||||
|
||||
|
||||
def fast_beam_search_nbest(
|
||||
@ -213,7 +234,8 @@ def fast_beam_search_nbest(
|
||||
nbest_scale: float = 0.5,
|
||||
use_double_scores: bool = True,
|
||||
temperature: float = 1.0,
|
||||
) -> List[List[int]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[List[int]], DecodingResults]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
The process to get the results is:
|
||||
@ -250,8 +272,12 @@ def fast_beam_search_nbest(
|
||||
single precision.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
@ -280,9 +306,10 @@ def fast_beam_search_nbest(
|
||||
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
|
||||
return hyps
|
||||
if not return_timestamps:
|
||||
return get_texts(best_path)
|
||||
else:
|
||||
return get_texts_with_timestamp(best_path)
|
||||
|
||||
|
||||
def fast_beam_search_nbest_oracle(
|
||||
@ -298,7 +325,8 @@ def fast_beam_search_nbest_oracle(
|
||||
use_double_scores: bool = True,
|
||||
nbest_scale: float = 0.5,
|
||||
temperature: float = 1.0,
|
||||
) -> List[List[int]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[List[int]], DecodingResults]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
A lattice is first obtained using fast beam search, and then
|
||||
@ -339,8 +367,12 @@ def fast_beam_search_nbest_oracle(
|
||||
yields more unique paths.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
@ -379,8 +411,10 @@ def fast_beam_search_nbest_oracle(
|
||||
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
return hyps
|
||||
if not return_timestamps:
|
||||
return get_texts(best_path)
|
||||
else:
|
||||
return get_texts_with_timestamp(best_path)
|
||||
|
||||
|
||||
def fast_beam_search(
|
||||
@ -470,8 +504,11 @@ def fast_beam_search(
|
||||
|
||||
|
||||
def greedy_search(
|
||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||
) -> List[int]:
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
max_sym_per_frame: int,
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[int], DecodingResults]:
|
||||
"""Greedy search for a single utterance.
|
||||
Args:
|
||||
model:
|
||||
@ -481,8 +518,12 @@ def greedy_search(
|
||||
max_sym_per_frame:
|
||||
Maximum number of symbols per frame. If it is set to 0, the WER
|
||||
would be 100%.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
@ -508,6 +549,10 @@ def greedy_search(
|
||||
t = 0
|
||||
hyp = [blank_id] * context_size
|
||||
|
||||
# timestamp[i] is the frame index after subsampling
|
||||
# on which hyp[i] is decoded
|
||||
timestamp = []
|
||||
|
||||
# Maximum symbols per utterance.
|
||||
max_sym_per_utt = 1000
|
||||
|
||||
@ -534,6 +579,7 @@ def greedy_search(
|
||||
y = logits.argmax().item()
|
||||
if y not in (blank_id, unk_id):
|
||||
hyp.append(y)
|
||||
timestamp.append(t)
|
||||
decoder_input = torch.tensor(
|
||||
[hyp[-context_size:]], device=device
|
||||
).reshape(1, context_size)
|
||||
@ -548,14 +594,21 @@ def greedy_search(
|
||||
t += 1
|
||||
hyp = hyp[context_size:] # remove blanks
|
||||
|
||||
return hyp
|
||||
if not return_timestamps:
|
||||
return hyp
|
||||
else:
|
||||
return DecodingResults(
|
||||
tokens=[hyp],
|
||||
timestamps=[timestamp],
|
||||
)
|
||||
|
||||
|
||||
def greedy_search_batch(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
) -> List[List[int]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[List[int]], DecodingResults]:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
Args:
|
||||
model:
|
||||
@ -565,9 +618,12 @@ def greedy_search_batch(
|
||||
encoder_out_lens:
|
||||
A 1-D tensor of shape (N,), containing number of valid frames in
|
||||
encoder_out before padding.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return a list-of-list of token IDs containing the decoded results.
|
||||
len(ans) equals to encoder_out.size(0).
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
@ -592,6 +648,10 @@ def greedy_search_batch(
|
||||
|
||||
hyps = [[blank_id] * context_size for _ in range(N)]
|
||||
|
||||
# timestamp[n][i] is the frame index after subsampling
|
||||
# on which hyp[n][i] is decoded
|
||||
timestamps = [[] for _ in range(N)]
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
hyps,
|
||||
device=device,
|
||||
@ -605,7 +665,7 @@ def greedy_search_batch(
|
||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||
|
||||
offset = 0
|
||||
for batch_size in batch_size_list:
|
||||
for (t, batch_size) in enumerate(batch_size_list):
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end]
|
||||
@ -627,6 +687,7 @@ def greedy_search_batch(
|
||||
for i, v in enumerate(y):
|
||||
if v not in (blank_id, unk_id):
|
||||
hyps[i].append(v)
|
||||
timestamps[i].append(t)
|
||||
emitted = True
|
||||
if emitted:
|
||||
# update decoder output
|
||||
@ -641,11 +702,19 @@ def greedy_search_batch(
|
||||
|
||||
sorted_ans = [h[context_size:] for h in hyps]
|
||||
ans = []
|
||||
ans_timestamps = []
|
||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||
for i in range(N):
|
||||
ans.append(sorted_ans[unsorted_indices[i]])
|
||||
ans_timestamps.append(timestamps[unsorted_indices[i]])
|
||||
|
||||
return ans
|
||||
if not return_timestamps:
|
||||
return ans
|
||||
else:
|
||||
return DecodingResults(
|
||||
tokens=ans,
|
||||
timestamps=ans_timestamps,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -657,9 +726,12 @@ class Hypothesis:
|
||||
# The log prob of ys.
|
||||
# It contains only one entry.
|
||||
log_prob: torch.Tensor
|
||||
state: Optional=None
|
||||
|
||||
lm_score: Optional=None
|
||||
# timestamp[i] is the frame index after subsampling
|
||||
# on which ys[i] is decoded
|
||||
timestamp: List[int]
|
||||
|
||||
state_cost: Optional[NgramLmStateCost] = None
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
@ -808,7 +880,8 @@ def modified_beam_search(
|
||||
encoder_out_lens: torch.Tensor,
|
||||
beam: int = 4,
|
||||
temperature: float = 1.0,
|
||||
) -> List[List[int]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[List[int]], DecodingResults]:
|
||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||
|
||||
Args:
|
||||
@ -823,9 +896,12 @@ def modified_beam_search(
|
||||
Number of active paths during the beam search.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||
for the i-th utterance.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
@ -853,6 +929,7 @@ def modified_beam_search(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
timestamp=[],
|
||||
)
|
||||
)
|
||||
|
||||
@ -860,7 +937,7 @@ def modified_beam_search(
|
||||
|
||||
offset = 0
|
||||
finalized_B = []
|
||||
for batch_size in batch_size_list:
|
||||
for (t, batch_size) in enumerate(batch_size_list):
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end]
|
||||
@ -938,30 +1015,44 @@ def modified_beam_search(
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
new_timestamp = hyp.timestamp[:]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
new_ys.append(new_token)
|
||||
new_timestamp.append(t)
|
||||
|
||||
new_log_prob = topk_log_probs[k]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
new_hyp = Hypothesis(
|
||||
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
|
||||
)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
B = B + finalized_B
|
||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||
|
||||
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
||||
sorted_timestamps = [h.timestamp for h in best_hyps]
|
||||
ans = []
|
||||
ans_timestamps = []
|
||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||
for i in range(N):
|
||||
ans.append(sorted_ans[unsorted_indices[i]])
|
||||
ans_timestamps.append(sorted_timestamps[unsorted_indices[i]])
|
||||
|
||||
return ans
|
||||
if not return_timestamps:
|
||||
return ans
|
||||
else:
|
||||
return DecodingResults(
|
||||
tokens=ans,
|
||||
timestamps=ans_timestamps,
|
||||
)
|
||||
|
||||
|
||||
def _deprecated_modified_beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
) -> List[int]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[int], DecodingResults]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
It decodes only one utterance at a time. We keep it only for reference.
|
||||
@ -976,8 +1067,13 @@ def _deprecated_modified_beam_search(
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
beam:
|
||||
Beam size.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
|
||||
assert encoder_out.ndim == 3
|
||||
@ -997,6 +1093,7 @@ def _deprecated_modified_beam_search(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
timestamp=[],
|
||||
)
|
||||
)
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
@ -1055,17 +1152,24 @@ def _deprecated_modified_beam_search(
|
||||
for i in range(len(topk_hyp_indexes)):
|
||||
hyp = A[topk_hyp_indexes[i]]
|
||||
new_ys = hyp.ys[:]
|
||||
new_timestamp = hyp.timestamp[:]
|
||||
new_token = topk_token_indexes[i]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
new_ys.append(new_token)
|
||||
new_timestamp.append(t)
|
||||
new_log_prob = topk_log_probs[i]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
new_hyp = Hypothesis(
|
||||
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
|
||||
)
|
||||
B.add(new_hyp)
|
||||
|
||||
best_hyp = B.get_most_probable(length_norm=True)
|
||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||
|
||||
return ys
|
||||
if not return_timestamps:
|
||||
return ys
|
||||
else:
|
||||
return DecodingResults(tokens=[ys], timestamps=[best_hyp.timestamp])
|
||||
|
||||
|
||||
def beam_search(
|
||||
@ -1073,7 +1177,8 @@ def beam_search(
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
temperature: float = 1.0,
|
||||
) -> List[int]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[int], DecodingResults]:
|
||||
"""
|
||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||
|
||||
@ -1088,8 +1193,13 @@ def beam_search(
|
||||
Beam size.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
@ -1116,7 +1226,7 @@ def beam_search(
|
||||
t = 0
|
||||
|
||||
B = HypothesisList()
|
||||
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
|
||||
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0, timestamp=[]))
|
||||
|
||||
max_sym_per_utt = 20000
|
||||
|
||||
@ -1177,7 +1287,13 @@ def beam_search(
|
||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
||||
|
||||
# ys[:] returns a copy of ys
|
||||
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||
B.add(
|
||||
Hypothesis(
|
||||
ys=y_star.ys[:],
|
||||
log_prob=new_y_star_log_prob,
|
||||
timestamp=y_star.timestamp[:],
|
||||
)
|
||||
)
|
||||
|
||||
# Second, process other non-blank labels
|
||||
values, indices = log_prob.topk(beam + 1)
|
||||
@ -1186,7 +1302,14 @@ def beam_search(
|
||||
continue
|
||||
new_ys = y_star.ys + [i]
|
||||
new_log_prob = y_star.log_prob + v
|
||||
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
||||
new_timestamp = y_star.timestamp + [t]
|
||||
A.add(
|
||||
Hypothesis(
|
||||
ys=new_ys,
|
||||
log_prob=new_log_prob,
|
||||
timestamp=new_timestamp,
|
||||
)
|
||||
)
|
||||
|
||||
# Check whether B contains more than "beam" elements more probable
|
||||
# than the most probable in A
|
||||
@ -1202,7 +1325,11 @@ def beam_search(
|
||||
|
||||
best_hyp = B.get_most_probable(length_norm=True)
|
||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||
return ys
|
||||
|
||||
if not return_timestamps:
|
||||
return ys
|
||||
else:
|
||||
return DecodingResults(tokens=[ys], timestamps=[best_hyp.timestamp])
|
||||
|
||||
|
||||
def fast_beam_search_with_nbest_rescoring(
|
||||
@ -1222,7 +1349,8 @@ def fast_beam_search_with_nbest_rescoring(
|
||||
use_double_scores: bool = True,
|
||||
nbest_scale: float = 0.5,
|
||||
temperature: float = 1.0,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Dict[str, Union[List[List[int]], DecodingResults]]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
A lattice is first obtained using fast beam search, num_path are selected
|
||||
and rescored using a given language model. The shortest path within the
|
||||
@ -1264,10 +1392,13 @@ def fast_beam_search_with_nbest_rescoring(
|
||||
yields more unique paths.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return the decoded result in a dict, where the key has the form
|
||||
'ngram_lm_scale_xx' and the value is the decoded results. `xx` is the
|
||||
ngram LM scale value used during decoding, i.e., 0.1.
|
||||
'ngram_lm_scale_xx' and the value is the decoded results
|
||||
optionally with timestamps. `xx` is the ngram LM scale value
|
||||
used during decoding, i.e., 0.1.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
@ -1345,16 +1476,18 @@ def fast_beam_search_with_nbest_rescoring(
|
||||
log_semiring=False,
|
||||
)
|
||||
|
||||
ans: Dict[str, List[List[int]]] = {}
|
||||
ans: Dict[str, Union[List[List[int]], DecodingResults]] = {}
|
||||
for s in ngram_lm_scale_list:
|
||||
key = f"ngram_lm_scale_{s}"
|
||||
tot_scores = am_scores.values + s * ngram_lm_scores
|
||||
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
|
||||
max_indexes = ragged_tot_scores.argmax()
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
hyps = get_texts(best_path)
|
||||
|
||||
ans[key] = hyps
|
||||
if not return_timestamps:
|
||||
ans[key] = get_texts(best_path)
|
||||
else:
|
||||
ans[key] = get_texts_with_timestamp(best_path)
|
||||
|
||||
return ans
|
||||
|
||||
@ -1378,7 +1511,8 @@ def fast_beam_search_with_nbest_rnn_rescoring(
|
||||
use_double_scores: bool = True,
|
||||
nbest_scale: float = 0.5,
|
||||
temperature: float = 1.0,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
return_timestamps: bool = False,
|
||||
) -> Dict[str, Union[List[List[int]], DecodingResults]]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
A lattice is first obtained using fast beam search, num_path are selected
|
||||
and rescored using a given language model and a rnn-lm.
|
||||
@ -1424,10 +1558,13 @@ def fast_beam_search_with_nbest_rnn_rescoring(
|
||||
yields more unique paths.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
Return the decoded result in a dict, where the key has the form
|
||||
'ngram_lm_scale_xx' and the value is the decoded results. `xx` is the
|
||||
ngram LM scale value used during decoding, i.e., 0.1.
|
||||
'ngram_lm_scale_xx' and the value is the decoded results
|
||||
optionally with timestamps. `xx` is the ngram LM scale value
|
||||
used during decoding, i.e., 0.1.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
@ -1539,12 +1676,185 @@ def fast_beam_search_with_nbest_rnn_rescoring(
|
||||
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
|
||||
max_indexes = ragged_tot_scores.argmax()
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
hyps = get_texts(best_path)
|
||||
|
||||
ans[key] = hyps
|
||||
if not return_timestamps:
|
||||
ans[key] = get_texts(best_path)
|
||||
else:
|
||||
ans[key] = get_texts_with_timestamp(best_path)
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def modified_beam_search_ngram_rescoring(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
ngram_lm: NgramLm,
|
||||
ngram_lm_scale: float,
|
||||
beam: int = 4,
|
||||
temperature: float = 1.0,
|
||||
) -> List[List[int]]:
|
||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C).
|
||||
encoder_out_lens:
|
||||
A 1-D tensor of shape (N,), containing number of valid frames in
|
||||
encoder_out before padding.
|
||||
beam:
|
||||
Number of active paths during the beam search.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
Returns:
|
||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||
for the i-th utterance.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
|
||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||
input=encoder_out,
|
||||
lengths=encoder_out_lens.cpu(),
|
||||
batch_first=True,
|
||||
enforce_sorted=False,
|
||||
)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
lm_scale = ngram_lm_scale
|
||||
|
||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||
N = encoder_out.size(0)
|
||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||
assert N == batch_size_list[0], (N, batch_size_list)
|
||||
|
||||
B = [HypothesisList() for _ in range(N)]
|
||||
for i in range(N):
|
||||
B[i].add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
state_cost=NgramLmStateCost(ngram_lm),
|
||||
)
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||
|
||||
offset = 0
|
||||
finalized_B = []
|
||||
for batch_size in batch_size_list:
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end]
|
||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||
offset = end
|
||||
|
||||
finalized_B = B[batch_size:] + finalized_B
|
||||
B = B[:batch_size]
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.cat(
|
||||
[
|
||||
hyp.log_prob.reshape(1, 1) + hyp.state_cost.lm_score * lm_scale
|
||||
for hyps in A
|
||||
for hyp in hyps
|
||||
]
|
||||
) # (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
|
||||
|
||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||
# as index, so we use `to(torch.int64)` below.
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
project_input=False,
|
||||
) # (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs = (logits / temperature).log_softmax(
|
||||
dim=-1
|
||||
) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
vocab_size = log_probs.size(-1)
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(
|
||||
shape=log_probs_shape, value=log_probs
|
||||
)
|
||||
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
new_ys.append(new_token)
|
||||
state_cost = hyp.state_cost.forward_one_step(new_token)
|
||||
else:
|
||||
state_cost = hyp.state_cost
|
||||
|
||||
# We only keep AM scores in new_hyp.log_prob
|
||||
new_log_prob = (
|
||||
topk_log_probs[k] - hyp.state_cost.lm_score * lm_scale
|
||||
)
|
||||
|
||||
new_hyp = Hypothesis(
|
||||
ys=new_ys, log_prob=new_log_prob, state_cost=state_cost
|
||||
)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
B = B + finalized_B
|
||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||
|
||||
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
||||
ans = []
|
||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||
for i in range(N):
|
||||
ans.append(sorted_ans[unsorted_indices[i]])
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def modified_beam_search_rnnlm_shallow_fusion(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
@ -1592,7 +1902,6 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
sos_id = sp.piece_to_id("<sos/eos>")
|
||||
eos_id = sp.piece_to_id("<sos/eos>")
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
@ -1613,7 +1922,7 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
state=init_states,
|
||||
lm_score=init_score.reshape(-1)
|
||||
lm_score=init_score.reshape(-1),
|
||||
)
|
||||
)
|
||||
|
||||
@ -1625,7 +1934,7 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
for batch_size in batch_size_list:
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end] # get batch
|
||||
current_encoder_out = encoder_out.data[start:end] # get batch
|
||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||
offset = end
|
||||
@ -1665,9 +1974,7 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs = logits.log_softmax(
|
||||
dim=-1
|
||||
) # (num_hyps, vocab_size)
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
@ -1683,7 +1990,6 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
shape=log_probs_shape, value=log_probs
|
||||
)
|
||||
|
||||
|
||||
# for all hyps with a non-blank new token, score it
|
||||
token_list = []
|
||||
hs = []
|
||||
@ -1708,13 +2014,18 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
cs.append(hyp.state[1])
|
||||
# forward RNNLM to get new states and scores
|
||||
if len(token_list) != 0:
|
||||
tokens_to_score = torch.tensor(token_list).to(torch.int64).to(device).reshape(-1,1)
|
||||
tokens_to_score = (
|
||||
torch.tensor(token_list)
|
||||
.to(torch.int64)
|
||||
.to(device)
|
||||
.reshape(-1, 1)
|
||||
)
|
||||
|
||||
hs = torch.cat(hs, dim=1).to(device)
|
||||
cs = torch.cat(cs, dim=1).to(device)
|
||||
scores, lm_states = rnnlm.score_token(tokens_to_score, (hs,cs))
|
||||
scores, lm_states = rnnlm.score_token(tokens_to_score, (hs, cs))
|
||||
|
||||
count = 0 # index, used to locate score and lm states
|
||||
count = 0 # index, used to locate score and lm states
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
@ -1742,14 +2053,14 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
) # add the lm score
|
||||
|
||||
lm_score = scores[count]
|
||||
state = (lm_states[0][:, count, :].unsqueeze(1), lm_states[1][:, count, :].unsqueeze(1))
|
||||
state = (
|
||||
lm_states[0][:, count, :].unsqueeze(1),
|
||||
lm_states[1][:, count, :].unsqueeze(1),
|
||||
)
|
||||
count += 1
|
||||
|
||||
new_hyp = Hypothesis(
|
||||
ys=ys,
|
||||
log_prob=hyp_log_prob,
|
||||
state=state,
|
||||
lm_score=lm_score
|
||||
ys=ys, log_prob=hyp_log_prob, state=state, lm_score=lm_score
|
||||
)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user