mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-08 08:34:19 +00:00
do some changes
This commit is contained in:
parent
b33b2e5192
commit
6c8c8b5faa
@ -220,8 +220,7 @@ and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned R
|
|||||||
|
|
||||||
### Aidatatang_200zh
|
### Aidatatang_200zh
|
||||||
|
|
||||||
We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][Aidatatang_200zh
|
We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][Aidatatang_200zh_pruned_transducer_stateless2].
|
||||||
_pruned_transducer_stateless2].
|
|
||||||
|
|
||||||
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss
|
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss
|
||||||
|
|
||||||
|
@ -1,5 +1,4 @@
|
|||||||
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/355
|
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/375
|
||||||
And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604.
|
|
||||||
# Pre-trained Transducer-Stateless2 models for the Aidatatang_200zh dataset with icefall.
|
# Pre-trained Transducer-Stateless2 models for the Aidatatang_200zh dataset with icefall.
|
||||||
The model was trained on full [Aidatatang_200zh](https://www.openslr.org/62) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2.
|
The model was trained on full [Aidatatang_200zh](https://www.openslr.org/62) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2.
|
||||||
## Training procedure
|
## Training procedure
|
||||||
@ -35,5 +34,5 @@ The WERs are
|
|||||||
| | dev | test | comment |
|
| | dev | test | comment |
|
||||||
|------------------------------------|------------|------------|------------------------------------------|
|
|------------------------------------|------------|------------|------------------------------------------|
|
||||||
| greedy search | 5.53 | 6.59 | --epoch 29, --avg 19, --max-duration 100 |
|
| greedy search | 5.53 | 6.59 | --epoch 29, --avg 19, --max-duration 100 |
|
||||||
| modified beam search (beam size 4) | 5.28 | 6.32 | --epoch 29, --avg 19, --max-duration 100 |
|
| modified beam search (beam size 4) | 5.27 | 6.33 | --epoch 29, --avg 19, --max-duration 100 |
|
||||||
| fast beam search (set as default) | 5.29 | 6.33 | --epoch 29, --avg 19, --max-duration 1500|
|
| fast beam search (set as default) | 5.30 | 6.34 | --epoch 29, --avg 19, --max-duration 1500|
|
||||||
|
@ -4,7 +4,7 @@
|
|||||||
|
|
||||||
#### 2022-05-16
|
#### 2022-05-16
|
||||||
|
|
||||||
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/355.
|
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/375.
|
||||||
|
|
||||||
The WERs are
|
The WERs are
|
||||||
|
|
||||||
|
@ -17,7 +17,7 @@
|
|||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
This file computes fbank features of the aishell dataset.
|
This file computes fbank features of the aidatatang_200zh dataset.
|
||||||
It looks for manifests in the directory data/manifests.
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
The generated fbank features are saved in data/fbank.
|
||||||
@ -42,7 +42,7 @@ torch.set_num_threads(1)
|
|||||||
torch.set_num_interop_threads(1)
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank_aishell(num_mel_bins: int = 80):
|
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
|
||||||
src_dir = Path("data/manifests/aidatatang_200zh")
|
src_dir = Path("data/manifests/aidatatang_200zh")
|
||||||
output_dir = Path("data/fbank")
|
output_dir = Path("data/fbank")
|
||||||
num_jobs = min(15, os.cpu_count())
|
num_jobs = min(15, os.cpu_count())
|
||||||
@ -106,4 +106,4 @@ if __name__ == "__main__":
|
|||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
args = get_args()
|
args = get_args()
|
||||||
compute_fbank_aishell(num_mel_bins=args.num_mel_bins)
|
compute_fbank_aidatatang_200zh(num_mel_bins=args.num_mel_bins)
|
||||||
|
@ -354,8 +354,6 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
valid_sampler = DynamicBucketingSampler(
|
valid_sampler = DynamicBucketingSampler(
|
||||||
cuts_valid,
|
cuts_valid,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
rank=0,
|
|
||||||
world_size=1,
|
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
)
|
)
|
||||||
logging.info("About to create dev dataloader")
|
logging.info("About to create dev dataloader")
|
||||||
@ -386,8 +384,6 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
sampler = DynamicBucketingSampler(
|
sampler = DynamicBucketingSampler(
|
||||||
cuts,
|
cuts,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
rank=0,
|
|
||||||
world_size=1,
|
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.iterable_dataset import IterableDatasetWrapper
|
from lhotse.dataset.iterable_dataset import IterableDatasetWrapper
|
||||||
|
@ -1,955 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import warnings
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import Dict, List, Optional
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
from model import Transducer
|
|
||||||
|
|
||||||
from icefall.decode import Nbest, one_best_decoding
|
|
||||||
from icefall.utils import get_texts
|
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search_one_best(
|
|
||||||
model: Transducer,
|
|
||||||
decoding_graph: k2.Fsa,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: float,
|
|
||||||
max_states: int,
|
|
||||||
max_contexts: int,
|
|
||||||
) -> List[List[int]]:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
A lattice is first obtained using modified beam search, and then
|
|
||||||
the shortest path within the lattice is used as the final output.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder.
|
|
||||||
encoder_out_lens:
|
|
||||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
||||||
before padding.
|
|
||||||
beam:
|
|
||||||
Beam value, similar to the beam used in Kaldi..
|
|
||||||
max_states:
|
|
||||||
Max states per stream per frame.
|
|
||||||
max_contexts:
|
|
||||||
Max contexts pre stream per frame.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
lattice = fast_beam_search(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=beam,
|
|
||||||
max_states=max_states,
|
|
||||||
max_contexts=max_contexts,
|
|
||||||
)
|
|
||||||
|
|
||||||
best_path = one_best_decoding(lattice)
|
|
||||||
hyps = get_texts(best_path)
|
|
||||||
return hyps
|
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search_nbest_oracle(
|
|
||||||
model: Transducer,
|
|
||||||
decoding_graph: k2.Fsa,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: float,
|
|
||||||
max_states: int,
|
|
||||||
max_contexts: int,
|
|
||||||
num_paths: int,
|
|
||||||
ref_texts: List[List[int]],
|
|
||||||
use_double_scores: bool = True,
|
|
||||||
nbest_scale: float = 0.5,
|
|
||||||
) -> List[List[int]]:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
A lattice is first obtained using modified beam search, and then
|
|
||||||
we select `num_paths` linear paths from the lattice. The path
|
|
||||||
that has the minimum edit distance with the given reference transcript
|
|
||||||
is used as the output.
|
|
||||||
This is the best result we can achieve for any nbest based rescoring
|
|
||||||
methods.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder.
|
|
||||||
encoder_out_lens:
|
|
||||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
||||||
before padding.
|
|
||||||
beam:
|
|
||||||
Beam value, similar to the beam used in Kaldi..
|
|
||||||
max_states:
|
|
||||||
Max states per stream per frame.
|
|
||||||
max_contexts:
|
|
||||||
Max contexts pre stream per frame.
|
|
||||||
num_paths:
|
|
||||||
Number of paths to extract from the decoded lattice.
|
|
||||||
ref_texts:
|
|
||||||
A list-of-list of integers containing the reference transcripts.
|
|
||||||
If the decoding_graph is a trivial_graph, the integer ID is the
|
|
||||||
BPE token ID.
|
|
||||||
use_double_scores:
|
|
||||||
True to use double precision for computation. False to use
|
|
||||||
single precision.
|
|
||||||
nbest_scale:
|
|
||||||
It's the scale applied to the lattice.scores. A smaller value
|
|
||||||
yields more unique paths.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
lattice = fast_beam_search(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=beam,
|
|
||||||
max_states=max_states,
|
|
||||||
max_contexts=max_contexts,
|
|
||||||
)
|
|
||||||
|
|
||||||
nbest = Nbest.from_lattice(
|
|
||||||
lattice=lattice,
|
|
||||||
num_paths=num_paths,
|
|
||||||
use_double_scores=use_double_scores,
|
|
||||||
nbest_scale=nbest_scale,
|
|
||||||
)
|
|
||||||
|
|
||||||
hyps = nbest.build_levenshtein_graphs()
|
|
||||||
refs = k2.levenshtein_graph(ref_texts, device=hyps.device)
|
|
||||||
|
|
||||||
levenshtein_alignment = k2.levenshtein_alignment(
|
|
||||||
refs=refs,
|
|
||||||
hyps=hyps,
|
|
||||||
hyp_to_ref_map=nbest.shape.row_ids(1),
|
|
||||||
sorted_match_ref=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
tot_scores = levenshtein_alignment.get_tot_scores(
|
|
||||||
use_double_scores=False, log_semiring=False
|
|
||||||
)
|
|
||||||
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
|
|
||||||
|
|
||||||
max_indexes = ragged_tot_scores.argmax()
|
|
||||||
|
|
||||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
|
||||||
|
|
||||||
hyps = get_texts(best_path)
|
|
||||||
return hyps
|
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
decoding_graph: k2.Fsa,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: float,
|
|
||||||
max_states: int,
|
|
||||||
max_contexts: int,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder.
|
|
||||||
encoder_out_lens:
|
|
||||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
||||||
before padding.
|
|
||||||
beam:
|
|
||||||
Beam value, similar to the beam used in Kaldi..
|
|
||||||
max_states:
|
|
||||||
Max states per stream per frame.
|
|
||||||
max_contexts:
|
|
||||||
Max contexts pre stream per frame.
|
|
||||||
Returns:
|
|
||||||
Return an FsaVec with axes [utt][state][arc] containing the decoded
|
|
||||||
lattice. Note: When the input graph is a TrivialGraph, the returned
|
|
||||||
lattice is actually an acceptor.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
vocab_size = model.decoder.vocab_size
|
|
||||||
|
|
||||||
B, T, C = encoder_out.shape
|
|
||||||
|
|
||||||
config = k2.RnntDecodingConfig(
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
decoder_history_len=context_size,
|
|
||||||
beam=beam,
|
|
||||||
max_contexts=max_contexts,
|
|
||||||
max_states=max_states,
|
|
||||||
)
|
|
||||||
individual_streams = []
|
|
||||||
for i in range(B):
|
|
||||||
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
|
||||||
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
# shape is a RaggedShape of shape (B, context)
|
|
||||||
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
|
||||||
shape, contexts = decoding_streams.get_contexts()
|
|
||||||
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
|
||||||
contexts = contexts.to(torch.int64)
|
|
||||||
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
|
||||||
decoder_out = model.decoder(contexts, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# current_encoder_out is of shape
|
|
||||||
# (shape.NumElements(), 1, joiner_dim)
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
|
||||||
)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out.unsqueeze(2),
|
|
||||||
decoder_out.unsqueeze(1),
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
log_probs = logits.log_softmax(dim=-1)
|
|
||||||
decoding_streams.advance(log_probs)
|
|
||||||
decoding_streams.terminate_and_flush_to_streams()
|
|
||||||
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
|
||||||
|
|
||||||
return lattice
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
|
||||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
|
||||||
) -> List[int]:
|
|
||||||
"""Greedy search for a single utterance.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
max_sym_per_frame:
|
|
||||||
Maximum number of symbols per frame. If it is set to 0, the WER
|
|
||||||
would be 100%.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[blank_id] * context_size, device=device, dtype=torch.int64
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
t = 0
|
|
||||||
hyp = [blank_id] * context_size
|
|
||||||
|
|
||||||
# Maximum symbols per utterance.
|
|
||||||
max_sym_per_utt = 1000
|
|
||||||
|
|
||||||
# symbols per frame
|
|
||||||
sym_per_frame = 0
|
|
||||||
|
|
||||||
# symbols per utterance decoded so far
|
|
||||||
sym_per_utt = 0
|
|
||||||
|
|
||||||
while t < T and sym_per_utt < max_sym_per_utt:
|
|
||||||
if sym_per_frame >= max_sym_per_frame:
|
|
||||||
sym_per_frame = 0
|
|
||||||
t += 1
|
|
||||||
continue
|
|
||||||
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
|
||||||
)
|
|
||||||
# logits is (1, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
y = logits.argmax().item()
|
|
||||||
if y not in (blank_id, unk_id):
|
|
||||||
hyp.append(y)
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp[-context_size:]], device=device
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
sym_per_utt += 1
|
|
||||||
sym_per_frame += 1
|
|
||||||
else:
|
|
||||||
sym_per_frame = 0
|
|
||||||
t += 1
|
|
||||||
hyp = hyp[context_size:] # remove blanks
|
|
||||||
|
|
||||||
return hyp
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search_batch(
|
|
||||||
model: Transducer,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
) -> List[List[int]]:
|
|
||||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The transducer model.
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
|
||||||
encoder_out_lens:
|
|
||||||
A 1-D tensor of shape (N,), containing number of valid frames in
|
|
||||||
encoder_out before padding.
|
|
||||||
Returns:
|
|
||||||
Return a list-of-list of token IDs containing the decoded results.
|
|
||||||
len(ans) equals to encoder_out.size(0).
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
||||||
|
|
||||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
|
||||||
input=encoder_out,
|
|
||||||
lengths=encoder_out_lens.cpu(),
|
|
||||||
batch_first=True,
|
|
||||||
enforce_sorted=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
|
||||||
N = encoder_out.size(0)
|
|
||||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
||||||
assert N == batch_size_list[0], (N, batch_size_list)
|
|
||||||
|
|
||||||
hyps = [[blank_id] * context_size for _ in range(N)]
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
hyps,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
) # (N, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# decoder_out: (N, 1, decoder_out_dim)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
|
||||||
|
|
||||||
offset = 0
|
|
||||||
for batch_size in batch_size_list:
|
|
||||||
start = offset
|
|
||||||
end = offset + batch_size
|
|
||||||
current_encoder_out = encoder_out.data[start:end]
|
|
||||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
|
||||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
|
||||||
offset = end
|
|
||||||
|
|
||||||
decoder_out = decoder_out[:batch_size]
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
|
||||||
)
|
|
||||||
# logits'shape (batch_size, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
|
||||||
assert logits.ndim == 2, logits.shape
|
|
||||||
y = logits.argmax(dim=1).tolist()
|
|
||||||
emitted = False
|
|
||||||
for i, v in enumerate(y):
|
|
||||||
if v not in (blank_id, unk_id):
|
|
||||||
hyps[i].append(v)
|
|
||||||
emitted = True
|
|
||||||
if emitted:
|
|
||||||
# update decoder output
|
|
||||||
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
decoder_input,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
)
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
sorted_ans = [h[context_size:] for h in hyps]
|
|
||||||
ans = []
|
|
||||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
|
||||||
for i in range(N):
|
|
||||||
ans.append(sorted_ans[unsorted_indices[i]])
|
|
||||||
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Hypothesis:
|
|
||||||
# The predicted tokens so far.
|
|
||||||
# Newly predicted tokens are appended to `ys`.
|
|
||||||
ys: List[int]
|
|
||||||
|
|
||||||
# The log prob of ys.
|
|
||||||
# It contains only one entry.
|
|
||||||
log_prob: torch.Tensor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def key(self) -> str:
|
|
||||||
"""Return a string representation of self.ys"""
|
|
||||||
return "_".join(map(str, self.ys))
|
|
||||||
|
|
||||||
|
|
||||||
class HypothesisList(object):
|
|
||||||
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
data:
|
|
||||||
A dict of Hypotheses. Its key is its `value.key`.
|
|
||||||
"""
|
|
||||||
if data is None:
|
|
||||||
self._data = {}
|
|
||||||
else:
|
|
||||||
self._data = data
|
|
||||||
|
|
||||||
@property
|
|
||||||
def data(self) -> Dict[str, Hypothesis]:
|
|
||||||
return self._data
|
|
||||||
|
|
||||||
def add(self, hyp: Hypothesis) -> None:
|
|
||||||
"""Add a Hypothesis to `self`.
|
|
||||||
If `hyp` already exists in `self`, its probability is updated using
|
|
||||||
`log-sum-exp` with the existed one.
|
|
||||||
Args:
|
|
||||||
hyp:
|
|
||||||
The hypothesis to be added.
|
|
||||||
"""
|
|
||||||
key = hyp.key
|
|
||||||
if key in self:
|
|
||||||
old_hyp = self._data[key] # shallow copy
|
|
||||||
torch.logaddexp(
|
|
||||||
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
self._data[key] = hyp
|
|
||||||
|
|
||||||
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
|
||||||
"""Get the most probable hypothesis, i.e., the one with
|
|
||||||
the largest `log_prob`.
|
|
||||||
Args:
|
|
||||||
length_norm:
|
|
||||||
If True, the `log_prob` of a hypothesis is normalized by the
|
|
||||||
number of tokens in it.
|
|
||||||
Returns:
|
|
||||||
Return the hypothesis that has the largest `log_prob`.
|
|
||||||
"""
|
|
||||||
if length_norm:
|
|
||||||
return max(
|
|
||||||
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
|
||||||
|
|
||||||
def remove(self, hyp: Hypothesis) -> None:
|
|
||||||
"""Remove a given hypothesis.
|
|
||||||
Caution:
|
|
||||||
`self` is modified **in-place**.
|
|
||||||
Args:
|
|
||||||
hyp:
|
|
||||||
The hypothesis to be removed from `self`.
|
|
||||||
Note: It must be contained in `self`. Otherwise,
|
|
||||||
an exception is raised.
|
|
||||||
"""
|
|
||||||
key = hyp.key
|
|
||||||
assert key in self, f"{key} does not exist"
|
|
||||||
del self._data[key]
|
|
||||||
|
|
||||||
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
|
||||||
"""Remove all Hypotheses whose log_prob is less than threshold.
|
|
||||||
Caution:
|
|
||||||
`self` is not modified. Instead, a new HypothesisList is returned.
|
|
||||||
Returns:
|
|
||||||
Return a new HypothesisList containing all hypotheses from `self`
|
|
||||||
with `log_prob` being greater than the given `threshold`.
|
|
||||||
"""
|
|
||||||
ans = HypothesisList()
|
|
||||||
for _, hyp in self._data.items():
|
|
||||||
if hyp.log_prob > threshold:
|
|
||||||
ans.add(hyp) # shallow copy
|
|
||||||
return ans
|
|
||||||
|
|
||||||
def topk(self, k: int) -> "HypothesisList":
|
|
||||||
"""Return the top-k hypothesis."""
|
|
||||||
hyps = list(self._data.items())
|
|
||||||
|
|
||||||
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
|
||||||
|
|
||||||
ans = HypothesisList(dict(hyps))
|
|
||||||
return ans
|
|
||||||
|
|
||||||
def __contains__(self, key: str):
|
|
||||||
return key in self._data
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return iter(self._data.values())
|
|
||||||
|
|
||||||
def __len__(self) -> int:
|
|
||||||
return len(self._data)
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
s = []
|
|
||||||
for key in self:
|
|
||||||
s.append(key)
|
|
||||||
return ", ".join(s)
|
|
||||||
|
|
||||||
|
|
||||||
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
|
||||||
"""Return a ragged shape with axes [utt][num_hyps].
|
|
||||||
Args:
|
|
||||||
hyps:
|
|
||||||
len(hyps) == batch_size. It contains the current hypothesis for
|
|
||||||
each utterance in the batch.
|
|
||||||
Returns:
|
|
||||||
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
|
||||||
the shape is on CPU.
|
|
||||||
"""
|
|
||||||
num_hyps = [len(h) for h in hyps]
|
|
||||||
|
|
||||||
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
|
||||||
# to get exclusive sum later.
|
|
||||||
num_hyps.insert(0, 0)
|
|
||||||
|
|
||||||
num_hyps = torch.tensor(num_hyps)
|
|
||||||
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
|
||||||
ans = k2.ragged.create_ragged_shape2(
|
|
||||||
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
|
||||||
)
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def modified_beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
) -> List[List[int]]:
|
|
||||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The transducer model.
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, C).
|
|
||||||
encoder_out_lens:
|
|
||||||
A 1-D tensor of shape (N,), containing number of valid frames in
|
|
||||||
encoder_out before padding.
|
|
||||||
beam:
|
|
||||||
Number of active paths during the beam search.
|
|
||||||
Returns:
|
|
||||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
|
||||||
for the i-th utterance.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3, encoder_out.shape
|
|
||||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
||||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
|
||||||
input=encoder_out,
|
|
||||||
lengths=encoder_out_lens.cpu(),
|
|
||||||
batch_first=True,
|
|
||||||
enforce_sorted=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
|
||||||
N = encoder_out.size(0)
|
|
||||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
||||||
assert N == batch_size_list[0], (N, batch_size_list)
|
|
||||||
|
|
||||||
B = [HypothesisList() for _ in range(N)]
|
|
||||||
for i in range(N):
|
|
||||||
B[i].add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=[blank_id] * context_size,
|
|
||||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
|
||||||
|
|
||||||
offset = 0
|
|
||||||
finalized_B = []
|
|
||||||
for batch_size in batch_size_list:
|
|
||||||
start = offset
|
|
||||||
end = offset + batch_size
|
|
||||||
current_encoder_out = encoder_out.data[start:end]
|
|
||||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
|
||||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
|
||||||
offset = end
|
|
||||||
|
|
||||||
finalized_B = B[batch_size:] + finalized_B
|
|
||||||
B = B[:batch_size]
|
|
||||||
|
|
||||||
hyps_shape = _get_hyps_shape(B).to(device)
|
|
||||||
|
|
||||||
A = [list(b) for b in B]
|
|
||||||
B = [HypothesisList() for _ in range(batch_size)]
|
|
||||||
|
|
||||||
ys_log_probs = torch.cat(
|
|
||||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
|
||||||
) # (num_hyps, 1)
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
) # (num_hyps, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
|
|
||||||
|
|
||||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
|
||||||
# as index, so we use `to(torch.int64)` below.
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
current_encoder_out,
|
|
||||||
dim=0,
|
|
||||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
|
||||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out,
|
|
||||||
decoder_out,
|
|
||||||
project_input=False,
|
|
||||||
) # (num_hyps, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
|
||||||
|
|
||||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
|
||||||
|
|
||||||
log_probs.add_(ys_log_probs)
|
|
||||||
|
|
||||||
vocab_size = log_probs.size(-1)
|
|
||||||
|
|
||||||
log_probs = log_probs.reshape(-1)
|
|
||||||
|
|
||||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
|
||||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
|
||||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
|
||||||
)
|
|
||||||
ragged_log_probs = k2.RaggedTensor(
|
|
||||||
shape=log_probs_shape, value=log_probs
|
|
||||||
)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
|
||||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.simplefilter("ignore")
|
|
||||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
|
||||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
|
||||||
|
|
||||||
for k in range(len(topk_hyp_indexes)):
|
|
||||||
hyp_idx = topk_hyp_indexes[k]
|
|
||||||
hyp = A[i][hyp_idx]
|
|
||||||
|
|
||||||
new_ys = hyp.ys[:]
|
|
||||||
new_token = topk_token_indexes[k]
|
|
||||||
if new_token not in (blank_id, unk_id):
|
|
||||||
new_ys.append(new_token)
|
|
||||||
|
|
||||||
new_log_prob = topk_log_probs[k]
|
|
||||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
||||||
B[i].add(new_hyp)
|
|
||||||
|
|
||||||
B = B + finalized_B
|
|
||||||
best_hyps = [b.get_most_probable(length_norm=False) for b in B]
|
|
||||||
|
|
||||||
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
|
||||||
ans = []
|
|
||||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
|
||||||
for i in range(N):
|
|
||||||
ans.append(sorted_ans[unsorted_indices[i]])
|
|
||||||
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def _deprecated_modified_beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
) -> List[int]:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
It decodes only one utterance at a time. We keep it only for reference.
|
|
||||||
The function :func:`modified_beam_search` should be preferred as it
|
|
||||||
supports batch decoding.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
beam:
|
|
||||||
Beam size.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
|
|
||||||
B = HypothesisList()
|
|
||||||
B.add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=[blank_id] * context_size,
|
|
||||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# current_encoder_out is of shape (1, 1, 1, encoder_out_dim)
|
|
||||||
# fmt: on
|
|
||||||
A = list(B)
|
|
||||||
B = HypothesisList()
|
|
||||||
|
|
||||||
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
|
||||||
# ys_log_probs is of shape (num_hyps, 1)
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp.ys[-context_size:] for hyp in A],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
)
|
|
||||||
# decoder_input is of shape (num_hyps, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# decoder_output is of shape (num_hyps, 1, 1, joiner_dim)
|
|
||||||
|
|
||||||
current_encoder_out = current_encoder_out.expand(
|
|
||||||
decoder_out.size(0), 1, 1, -1
|
|
||||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out,
|
|
||||||
decoder_out,
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
|
|
||||||
# now logits is of shape (num_hyps, vocab_size)
|
|
||||||
log_probs = logits.log_softmax(dim=-1)
|
|
||||||
|
|
||||||
log_probs.add_(ys_log_probs)
|
|
||||||
|
|
||||||
log_probs = log_probs.reshape(-1)
|
|
||||||
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
|
||||||
|
|
||||||
# topk_hyp_indexes are indexes into `A`
|
|
||||||
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
|
||||||
topk_token_indexes = topk_indexes % logits.size(-1)
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.simplefilter("ignore")
|
|
||||||
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
|
||||||
topk_token_indexes = topk_token_indexes.tolist()
|
|
||||||
|
|
||||||
for i in range(len(topk_hyp_indexes)):
|
|
||||||
hyp = A[topk_hyp_indexes[i]]
|
|
||||||
new_ys = hyp.ys[:]
|
|
||||||
new_token = topk_token_indexes[i]
|
|
||||||
if new_token not in (blank_id, unk_id):
|
|
||||||
new_ys.append(new_token)
|
|
||||||
new_log_prob = topk_log_probs[i]
|
|
||||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
||||||
B.add(new_hyp)
|
|
||||||
|
|
||||||
best_hyp = B.get_most_probable(length_norm=True)
|
|
||||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
|
||||||
|
|
||||||
return ys
|
|
||||||
|
|
||||||
|
|
||||||
def beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
) -> List[int]:
|
|
||||||
"""
|
|
||||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
|
||||||
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
beam:
|
|
||||||
Beam size.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[blank_id] * context_size,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
t = 0
|
|
||||||
|
|
||||||
B = HypothesisList()
|
|
||||||
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
|
|
||||||
|
|
||||||
max_sym_per_utt = 20000
|
|
||||||
|
|
||||||
sym_per_utt = 0
|
|
||||||
|
|
||||||
decoder_cache: Dict[str, torch.Tensor] = {}
|
|
||||||
|
|
||||||
while t < T and sym_per_utt < max_sym_per_utt:
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# fmt: on
|
|
||||||
A = B
|
|
||||||
B = HypothesisList()
|
|
||||||
|
|
||||||
joint_cache: Dict[str, torch.Tensor] = {}
|
|
||||||
|
|
||||||
# TODO(fangjun): Implement prefix search to update the `log_prob`
|
|
||||||
# of hypotheses in A
|
|
||||||
|
|
||||||
while True:
|
|
||||||
y_star = A.get_most_probable()
|
|
||||||
A.remove(y_star)
|
|
||||||
|
|
||||||
cached_key = y_star.key
|
|
||||||
|
|
||||||
if cached_key not in decoder_cache:
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[y_star.ys[-context_size:]],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
decoder_cache[cached_key] = decoder_out
|
|
||||||
else:
|
|
||||||
decoder_out = decoder_cache[cached_key]
|
|
||||||
|
|
||||||
cached_key += f"-t-{t}"
|
|
||||||
if cached_key not in joint_cache:
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out,
|
|
||||||
decoder_out.unsqueeze(1),
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO(fangjun): Scale the blank posterior
|
|
||||||
log_prob = logits.log_softmax(dim=-1)
|
|
||||||
# log_prob is (1, 1, 1, vocab_size)
|
|
||||||
log_prob = log_prob.squeeze()
|
|
||||||
# Now log_prob is (vocab_size,)
|
|
||||||
joint_cache[cached_key] = log_prob
|
|
||||||
else:
|
|
||||||
log_prob = joint_cache[cached_key]
|
|
||||||
|
|
||||||
# First, process the blank symbol
|
|
||||||
skip_log_prob = log_prob[blank_id]
|
|
||||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
|
||||||
|
|
||||||
# ys[:] returns a copy of ys
|
|
||||||
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
|
||||||
|
|
||||||
# Second, process other non-blank labels
|
|
||||||
values, indices = log_prob.topk(beam + 1)
|
|
||||||
for i, v in zip(indices.tolist(), values.tolist()):
|
|
||||||
if i in (blank_id, unk_id):
|
|
||||||
continue
|
|
||||||
new_ys = y_star.ys + [i]
|
|
||||||
new_log_prob = y_star.log_prob + v
|
|
||||||
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
|
||||||
|
|
||||||
# Check whether B contains more than "beam" elements more probable
|
|
||||||
# than the most probable in A
|
|
||||||
A_most_probable = A.get_most_probable()
|
|
||||||
|
|
||||||
kept_B = B.filter(A_most_probable.log_prob)
|
|
||||||
|
|
||||||
if len(kept_B) >= beam:
|
|
||||||
B = kept_B.topk(beam)
|
|
||||||
break
|
|
||||||
|
|
||||||
t += 1
|
|
||||||
|
|
||||||
best_hyp = B.get_most_probable(length_norm=True)
|
|
||||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
|
||||||
return ys
|
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
Loading…
x
Reference in New Issue
Block a user