mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-05 15:14:18 +00:00
support whisper ft
This commit is contained in:
parent
bb1c4466e3
commit
6c2cd5b4c3
8
egs/aishell/ASR/decode_whisper.sh
Normal file
8
egs/aishell/ASR/decode_whisper.sh
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
|
||||||
|
#export CUDA_VISIBLE_DEVICES="1"
|
||||||
|
#pip install -r whisper/requirements.txt
|
||||||
|
#pip install k2==1.24.3.dev20230524+cuda11.8.torch2.0.1 -f https://k2-fsa.github.io/k2/cuda.html
|
||||||
|
export PYTHONPATH=$PYTHONPATH:/lustre/fsw/sa/yuekaiz/asr/icefall
|
||||||
|
#export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall/
|
||||||
|
|
||||||
|
python3 whisper/decode.py --exp-dir whisper/exp --max-duration 100
|
125
egs/aishell/ASR/local/compute_whisper_fbank_aishell.py
Normal file
125
egs/aishell/ASR/local/compute_whisper_fbank_aishell.py
Normal file
@ -0,0 +1,125 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the aishell dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, WhisperFbank, WhisperFbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor, str2bool
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"train",
|
||||||
|
#"dev",
|
||||||
|
#"test",
|
||||||
|
)
|
||||||
|
prefix = "aishell"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
extractor = WhisperFbank(WhisperFbankConfig(device='cuda'))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
if "train" in partition and perturb_speed:
|
||||||
|
logging.info(f"Doing speed perturb")
|
||||||
|
cut_set = (
|
||||||
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--perturb-speed",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
args = get_args()
|
||||||
|
compute_fbank_aishell(
|
||||||
|
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
|
||||||
|
)
|
109
egs/aishell/ASR/local/compute_whisper_fbank_musan.py
Normal file
109
egs/aishell/ASR/local/compute_whisper_fbank_musan.py
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the musan dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, WhisperFbank, WhisperFbankConfig, LilcomChunkyWriter, MonoCut, combine
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def is_cut_long(c: MonoCut) -> bool:
|
||||||
|
return c.duration > 5
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_musan():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
num_mel_bins = 80
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"music",
|
||||||
|
"speech",
|
||||||
|
"noise",
|
||||||
|
)
|
||||||
|
prefix = "musan"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
musan_cuts_path = output_dir / "musan_cuts.jsonl.gz"
|
||||||
|
|
||||||
|
if musan_cuts_path.is_file():
|
||||||
|
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info("Extracting features for Musan")
|
||||||
|
|
||||||
|
extractor = WhisperFbank(WhisperFbankConfig(device='cuda'))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
# create chunks of Musan with duration 5 - 10 seconds
|
||||||
|
musan_cuts = (
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=combine(part["recordings"] for part in manifests.values())
|
||||||
|
)
|
||||||
|
.cut_into_windows(10.0)
|
||||||
|
.filter(is_cut_long)
|
||||||
|
.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/musan_feats",
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
musan_cuts.to_file(musan_cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
compute_fbank_musan()
|
7
egs/aishell/ASR/run_whisper.sh
Normal file
7
egs/aishell/ASR/run_whisper.sh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
|
pip install -r whisper/requirements.txt
|
||||||
|
pip install k2==1.24.3.dev20230524+cuda11.8.torch2.0.1 -f https://k2-fsa.github.io/k2/cuda.html
|
||||||
|
export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall
|
||||||
|
|
||||||
|
torchrun --nproc-per-node 8 whisper/train.py --use-fp16 1 --max-duration 20 --base-lr 1e-5 --exp-dir whisper/exp_medimum --start-epoch 1
|
1
egs/aishell/ASR/whisper/asr_datamodule.py
Symbolic link
1
egs/aishell/ASR/whisper/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../tdnn_lstm_ctc/asr_datamodule.py
|
428
egs/aishell/ASR/whisper/decode.py
Normal file
428
egs/aishell/ASR/whisper/decode.py
Normal file
@ -0,0 +1,428 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||||
|
# Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import whisper
|
||||||
|
from whisper.normalizers import BasicTextNormalizer
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
|
||||||
|
#from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint, average_checkpoints_with_averaged_model
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
nbest_oracle,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
)
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
from zhconv import convert
|
||||||
|
from tn.chinese.normalizer import Normalizer
|
||||||
|
import re
|
||||||
|
|
||||||
|
def remove_punctuation(text: str or List[str]):
|
||||||
|
# https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py
|
||||||
|
punctuation = '!,.;:?、!,。;:?'
|
||||||
|
if isinstance(text, str):
|
||||||
|
text = re.sub(r'[{}]+'.format(punctuation), '', text).strip()
|
||||||
|
return text
|
||||||
|
elif isinstance(text, list):
|
||||||
|
result_text = []
|
||||||
|
for t in text:
|
||||||
|
t = re.sub(r'[{}]+'.format(punctuation), '', t).strip()
|
||||||
|
result_text.append(t)
|
||||||
|
return result_text
|
||||||
|
else:
|
||||||
|
raise Exception(f'不支持该类型{type(text)}')
|
||||||
|
|
||||||
|
|
||||||
|
# 将繁体中文总成简体中文
|
||||||
|
def to_simple(text: str or List[str]):
|
||||||
|
if isinstance(text, str):
|
||||||
|
text = convert(text, 'zh-cn')
|
||||||
|
return text
|
||||||
|
elif isinstance(text, list):
|
||||||
|
result_text = []
|
||||||
|
for t in text:
|
||||||
|
t = convert(t, 'zh-cn')
|
||||||
|
result_text.append(t)
|
||||||
|
return result_text
|
||||||
|
else:
|
||||||
|
raise Exception(f'不支持该类型{type(text)}')
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=-1,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="beam-search",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- (0) ctc-decoding. Use CTC decoding. It maps the tokens ids to
|
||||||
|
tokens using token symbol tabel directly.
|
||||||
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
|
decoding result.
|
||||||
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
with the highest score is the decoding result.
|
||||||
|
- (3) attention-decoder. Extract n paths from the lattice,
|
||||||
|
the path with the highest score is the decoding result.
|
||||||
|
- (4) nbest-oracle. Its WER is the lower bound of any n-best
|
||||||
|
rescoring method can achieve. Useful for debugging n-best
|
||||||
|
rescoring method.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="whisper/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
# parameters for conformer
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"feature_dim": 80,
|
||||||
|
"nhead": 4,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
# parameters for decoder
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 7,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if decoding method is 1best, the key is the string `no_rescore`.
|
||||||
|
If attention rescoring is used, the key is the string
|
||||||
|
`ngram_lm_scale_xxx_attention_scale_xxx`, where `xxx` is the
|
||||||
|
value of `lm_scale` and `attention_scale`. An example key is
|
||||||
|
`ngram_lm_scale_0.7_attention_scale_0.5`
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||||
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||||
|
- params.method is "attention-decoder", it uses attention rescoring.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph. Used when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
lexicon:
|
||||||
|
It contains the token symbol table and the word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID of the SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID of the EOS.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
dtype = torch.float16
|
||||||
|
device = torch.device("cuda")
|
||||||
|
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||||
|
# pad feature to T = 3000
|
||||||
|
T = 3000
|
||||||
|
if feature.shape[2] < T:
|
||||||
|
feature = torch.cat([feature, torch.zeros(feature.shape[0], feature.shape[1], T - feature.shape[2]).to(device, dtype=dtype)], 2)
|
||||||
|
print(feature.shape,23333)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_len = supervisions["num_frames"]
|
||||||
|
feature_len = feature_len.to(device, dtype=dtype)
|
||||||
|
results = model.decode(feature, params.decoding_options)
|
||||||
|
hyps = [result.text for result in results]
|
||||||
|
|
||||||
|
hyps = remove_punctuation(hyps)
|
||||||
|
hyps = to_simple(hyps)
|
||||||
|
|
||||||
|
hyps = [params.normalizer.normalize(hyp) for hyp in hyps]
|
||||||
|
|
||||||
|
key = "beam-search"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph. Used when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
lexicon:
|
||||||
|
It contains the token symbol table and the word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if the decoding method is
|
||||||
|
1best or it may be "ngram_lm_scale_0.7_attention_scale_0.5" if attention
|
||||||
|
rescoring is used. Its value is a list of tuples. Each tuple contains two
|
||||||
|
elements: The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
|
||||||
|
enable_log = True
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
if enable_log:
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
# we compute CER for aishell dataset.
|
||||||
|
results_char = []
|
||||||
|
for res in results:
|
||||||
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
if enable_log:
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tCER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode-{params.suffix}")
|
||||||
|
|
||||||
|
#options = whisper.DecodingOptions(task="transcribe", language="zh", without_timestamps=True, beam_size=10)
|
||||||
|
options = whisper.DecodingOptions(task="transcribe", language="zh", without_timestamps=True, beam_size=None)
|
||||||
|
params.decoding_options = options
|
||||||
|
params.cleaner = BasicTextNormalizer()
|
||||||
|
params.normalizer = Normalizer()
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
model = whisper.load_model("medium")
|
||||||
|
# if params.epoch > 0:
|
||||||
|
# if params.avg > 1:
|
||||||
|
# start = params.epoch - params.avg
|
||||||
|
# assert start >= 1, start
|
||||||
|
# filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
# filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
# logging.info(
|
||||||
|
# f"Calculating the averaged model over epoch range from "
|
||||||
|
# f"{start} (excluded) to {params.epoch}"
|
||||||
|
# )
|
||||||
|
# model.to(device)
|
||||||
|
# model.load_state_dict(
|
||||||
|
# average_checkpoints_with_averaged_model(
|
||||||
|
# filename_start=filename_start,
|
||||||
|
# filename_end=filename_end,
|
||||||
|
# device=device,
|
||||||
|
# )
|
||||||
|
# )
|
||||||
|
# else:
|
||||||
|
# load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
test_cuts = aishell.test_cuts()
|
||||||
|
test_dl = aishell.test_dataloaders(test_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test"]
|
||||||
|
test_dls = [test_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/aishell/ASR/whisper/label_smoothing.py
Symbolic link
1
egs/aishell/ASR/whisper/label_smoothing.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/conformer_ctc/label_smoothing.py
|
8
egs/aishell/ASR/whisper/requirements.txt
Normal file
8
egs/aishell/ASR/whisper/requirements.txt
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
k2
|
||||||
|
kaldialign
|
||||||
|
lhotse
|
||||||
|
sentencepiece
|
||||||
|
tensorboard
|
||||||
|
librosa
|
||||||
|
openai-whisper
|
||||||
|
zhconv
|
1207
egs/aishell/ASR/whisper/train.py
Normal file
1207
egs/aishell/ASR/whisper/train.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user