support whisper ft

This commit is contained in:
Yuekai Zhang 2023-09-26 10:46:35 +08:00
parent bb1c4466e3
commit 6c2cd5b4c3
9 changed files with 1894 additions and 0 deletions

View File

@ -0,0 +1,8 @@
#export CUDA_VISIBLE_DEVICES="1"
#pip install -r whisper/requirements.txt
#pip install k2==1.24.3.dev20230524+cuda11.8.torch2.0.1 -f https://k2-fsa.github.io/k2/cuda.html
export PYTHONPATH=$PYTHONPATH:/lustre/fsw/sa/yuekaiz/asr/icefall
#export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall/
python3 whisper/decode.py --exp-dir whisper/exp --max-duration 100

View File

@ -0,0 +1,125 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the aishell dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
import torch
from lhotse import CutSet, WhisperFbank, WhisperFbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
dataset_parts = (
"train",
#"dev",
#"test",
)
prefix = "aishell"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
extractor = WhisperFbank(WhisperFbankConfig(device='cuda'))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition and perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-mel-bins",
type=int,
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_aishell(
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
)

View File

@ -0,0 +1,109 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the musan dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import logging
import os
from pathlib import Path
import torch
from lhotse import CutSet, WhisperFbank, WhisperFbankConfig, LilcomChunkyWriter, MonoCut, combine
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def is_cut_long(c: MonoCut) -> bool:
return c.duration > 5
def compute_fbank_musan():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
num_mel_bins = 80
dataset_parts = (
"music",
"speech",
"noise",
)
prefix = "musan"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
musan_cuts_path = output_dir / "musan_cuts.jsonl.gz"
if musan_cuts_path.is_file():
logging.info(f"{musan_cuts_path} already exists - skipping")
return
logging.info("Extracting features for Musan")
extractor = WhisperFbank(WhisperFbankConfig(device='cuda'))
with get_executor() as ex: # Initialize the executor only once.
# create chunks of Musan with duration 5 - 10 seconds
musan_cuts = (
CutSet.from_manifests(
recordings=combine(part["recordings"] for part in manifests.values())
)
.cut_into_windows(10.0)
.filter(is_cut_long)
.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/musan_feats",
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
)
musan_cuts.to_file(musan_cuts_path)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_musan()

View File

@ -0,0 +1,7 @@
pip install -r whisper/requirements.txt
pip install k2==1.24.3.dev20230524+cuda11.8.torch2.0.1 -f https://k2-fsa.github.io/k2/cuda.html
export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall
torchrun --nproc-per-node 8 whisper/train.py --use-fp16 1 --max-duration 20 --base-lr 1e-5 --exp-dir whisper/exp_medimum --start-epoch 1

View File

@ -0,0 +1 @@
../tdnn_lstm_ctc/asr_datamodule.py

View File

@ -0,0 +1,428 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
# Fangjun Kuang,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import whisper
from whisper.normalizers import BasicTextNormalizer
import k2
import torch
import torch.nn as nn
from asr_datamodule import AishellAsrDataModule
#from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
from icefall.checkpoint import average_checkpoints, load_checkpoint, average_checkpoints_with_averaged_model
from icefall.decode import (
get_lattice,
nbest_decoding,
nbest_oracle,
one_best_decoding,
rescore_with_attention_decoder,
)
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
get_texts,
setup_logger,
store_transcripts,
write_error_stats,
)
from zhconv import convert
from tn.chinese.normalizer import Normalizer
import re
def remove_punctuation(text: str or List[str]):
# https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py
punctuation = '!,.;:?、!,。;:?'
if isinstance(text, str):
text = re.sub(r'[{}]+'.format(punctuation), '', text).strip()
return text
elif isinstance(text, list):
result_text = []
for t in text:
t = re.sub(r'[{}]+'.format(punctuation), '', t).strip()
result_text.append(t)
return result_text
else:
raise Exception(f'不支持该类型{type(text)}')
# 将繁体中文总成简体中文
def to_simple(text: str or List[str]):
if isinstance(text, str):
text = convert(text, 'zh-cn')
return text
elif isinstance(text, list):
result_text = []
for t in text:
t = convert(t, 'zh-cn')
result_text.append(t)
return result_text
else:
raise Exception(f'不支持该类型{type(text)}')
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=-1,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--method",
type=str,
default="beam-search",
help="""Decoding method.
Supported values are:
- (0) ctc-decoding. Use CTC decoding. It maps the tokens ids to
tokens using token symbol tabel directly.
- (1) 1best. Extract the best path from the decoding lattice as the
decoding result.
- (2) nbest. Extract n paths from the decoding lattice; the path
with the highest score is the decoding result.
- (3) attention-decoder. Extract n paths from the lattice,
the path with the highest score is the decoding result.
- (4) nbest-oracle. Its WER is the lower bound of any n-best
rescoring method can achieve. Useful for debugging n-best
rescoring method.
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="whisper/exp",
help="The experiment dir",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
# parameters for conformer
"subsampling_factor": 4,
"feature_dim": 80,
"nhead": 4,
"attention_dim": 512,
"num_encoder_layers": 12,
"num_decoder_layers": 6,
"vgg_frontend": False,
"use_feat_batchnorm": True,
# parameters for decoder
"search_beam": 20,
"output_beam": 7,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
"env_info": get_env_info(),
}
)
return params
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
batch: dict,
) -> Dict[str, List[List[int]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if decoding method is 1best, the key is the string `no_rescore`.
If attention rescoring is used, the key is the string
`ngram_lm_scale_xxx_attention_scale_xxx`, where `xxx` is the
value of `lm_scale` and `attention_scale`. An example key is
`ngram_lm_scale_0.7_attention_scale_0.5`
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
- params.method is "1best", it uses 1best decoding without LM rescoring.
- params.method is "nbest", it uses nbest decoding without LM rescoring.
- params.method is "attention-decoder", it uses attention rescoring.
model:
The neural model.
HLG:
The decoding graph. Used when params.method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.method is ctc-decoding.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
lexicon:
It contains the token symbol table and the word symbol table.
sos_id:
The token ID of the SOS.
eos_id:
The token ID of the EOS.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
dtype = torch.float16
device = torch.device("cuda")
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device, dtype=dtype).transpose(1, 2)
# pad feature to T = 3000
T = 3000
if feature.shape[2] < T:
feature = torch.cat([feature, torch.zeros(feature.shape[0], feature.shape[1], T - feature.shape[2]).to(device, dtype=dtype)], 2)
print(feature.shape,23333)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_len = supervisions["num_frames"]
feature_len = feature_len.to(device, dtype=dtype)
results = model.decode(feature, params.decoding_options)
hyps = [result.text for result in results]
hyps = remove_punctuation(hyps)
hyps = to_simple(hyps)
hyps = [params.normalizer.normalize(hyp) for hyp in hyps]
key = "beam-search"
return {key: hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
HLG:
The decoding graph. Used when params.method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.method is ctc-decoding.
lexicon:
It contains the token symbol table and the word symbol table.
sos_id:
The token ID for SOS.
eos_id:
The token ID for EOS.
Returns:
Return a dict, whose key may be "no-rescore" if the decoding method is
1best or it may be "ngram_lm_scale_0.7_attention_scale_0.5" if attention
rescoring is used. Its value is a list of tuples. Each tuple contains two
elements: The first is the reference transcript, and the second is the
predicted result.
"""
results = []
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
batch=batch,
)
for lm_scale, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[lm_scale].extend(this_batch)
num_cuts += len(batch["supervisions"]["text"])
if batch_idx % 100 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
enable_log = True
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
if enable_log:
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
# we compute CER for aishell dataset.
results_char = []
for res in results:
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
)
test_set_wers[key] = wer
if enable_log:
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
with open(errs_info, "w") as f:
print("settings\tCER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
AishellAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode-{params.suffix}")
#options = whisper.DecodingOptions(task="transcribe", language="zh", without_timestamps=True, beam_size=10)
options = whisper.DecodingOptions(task="transcribe", language="zh", without_timestamps=True, beam_size=None)
params.decoding_options = options
params.cleaner = BasicTextNormalizer()
params.normalizer = Normalizer()
logging.info("Decoding started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
logging.info(f"device: {device}")
model = whisper.load_model("medium")
# if params.epoch > 0:
# if params.avg > 1:
# start = params.epoch - params.avg
# assert start >= 1, start
# filename_start = f"{params.exp_dir}/epoch-{start}.pt"
# filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
# logging.info(
# f"Calculating the averaged model over epoch range from "
# f"{start} (excluded) to {params.epoch}"
# )
# model.to(device)
# model.load_state_dict(
# average_checkpoints_with_averaged_model(
# filename_start=filename_start,
# filename_end=filename_end,
# device=device,
# )
# )
# else:
# load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
aishell = AishellAsrDataModule(args)
test_cuts = aishell.test_cuts()
test_dl = aishell.test_dataloaders(test_cuts)
test_sets = ["test"]
test_dls = [test_dl]
for test_set, test_dl in zip(test_sets, test_dls):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
)
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
logging.info("Done!")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/conformer_ctc/label_smoothing.py

View File

@ -0,0 +1,8 @@
k2
kaldialign
lhotse
sentencepiece
tensorboard
librosa
openai-whisper
zhconv

File diff suppressed because it is too large Load Diff