mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 06:34:20 +00:00
Add force alignment for stateless transducer.
This commit is contained in:
parent
2f0fbf430c
commit
6bcfa6225f
@ -180,14 +180,14 @@ class LibriSpeechAsrDataModule:
|
||||
)
|
||||
|
||||
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(
|
||||
self.args.manifest_dir / "cuts_musan.json.gz"
|
||||
)
|
||||
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(
|
||||
self.args.manifest_dir / "cuts_musan.json.gz"
|
||||
)
|
||||
transforms.append(
|
||||
CutMix(
|
||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
|
187
egs/librispeech/ASR/transducer_stateless/alignment.py
Normal file
187
egs/librispeech/ASR/transducer_stateless/alignment.py
Normal file
@ -0,0 +1,187 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
# TODO(fangjun): Add more documentation
|
||||
|
||||
# The force alignment problem can be formulated as find
|
||||
# a path in a rectangular lattice, where the path starts
|
||||
# from the lower left corner and ends at the upper right
|
||||
# corner. The horizontal axis of the lattice is `t`
|
||||
# and the vertical axis is `u`.
|
||||
#
|
||||
# AlignItem is a node in the lattice, where its
|
||||
# len(ys) equals to `t` and pos_u is the u coordinate
|
||||
# in the lattice.
|
||||
@dataclass
|
||||
class AlignItem:
|
||||
log_prob: float
|
||||
ys: List[int]
|
||||
pos_u: int
|
||||
|
||||
|
||||
class AlignItemList:
|
||||
def __init__(self, items: Optional[List[AlignItem]] = None):
|
||||
if items is None:
|
||||
items = []
|
||||
self.data = items
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.data)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, i: int) -> AlignItem:
|
||||
return self.data[i]
|
||||
|
||||
def append(self, item: AlignItem) -> None:
|
||||
self.data.append(item)
|
||||
|
||||
def get_active_items(self, T: int, U: int) -> "AlignItemList":
|
||||
ans = []
|
||||
for item in self:
|
||||
t = len(item.ys)
|
||||
if U - item.pos_u > T - t:
|
||||
continue
|
||||
ans.append(item)
|
||||
|
||||
return AlignItemList(ans)
|
||||
|
||||
def get_decoder_input(
|
||||
self,
|
||||
ys: List[int],
|
||||
context_size: int,
|
||||
blank_id: int,
|
||||
) -> List[List[int]]:
|
||||
ans: List[List[int]] = []
|
||||
buf = [blank_id] * context_size + ys
|
||||
for item in self:
|
||||
# fmt: off
|
||||
ans.append(buf[item.pos_u:(item.pos_u + context_size)])
|
||||
# fmt: on
|
||||
return ans
|
||||
|
||||
def topk(self, k: int) -> "AlignItemList":
|
||||
items = list(self)
|
||||
items = sorted(items, key=lambda i: i.log_prob, reverse=True)
|
||||
return AlignItemList(items[:k])
|
||||
|
||||
|
||||
def force_alignment(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
ys: List[int],
|
||||
beam_size: int = 4,
|
||||
) -> List[int]:
|
||||
"""
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C). Support only for N==1 now.
|
||||
ys:
|
||||
A list of token IDs. We require that len(ys) <= T.
|
||||
beam:
|
||||
Size of the beam used in beam search.
|
||||
Returns:
|
||||
Return a list of int such that
|
||||
- len(ans) == T
|
||||
- After removing blanks from ans, we have ans == ys.
|
||||
"""
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
assert encoder_out.ndim == 3, encoder_out.ndim
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
assert 0 < len(ys) <= encoder_out.size(1), (len(ys), encoder_out.size(1))
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
T = encoder_out.size(1)
|
||||
U = len(ys)
|
||||
|
||||
encoder_out_len = torch.tensor([1])
|
||||
decoder_out_len = encoder_out_len
|
||||
|
||||
start = AlignItem(log_prob=0.0, ys=[], pos_u=0)
|
||||
B = AlignItemList([start])
|
||||
|
||||
for t in range(T):
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||
# current_encoder_out is of shape (1, 1, encoder_out_dim)
|
||||
# fmt: on
|
||||
|
||||
# A = B.get_active_items()
|
||||
A = B # shallow copy
|
||||
B = AlignItemList()
|
||||
|
||||
decoder_input = A.get_decoder_input(
|
||||
ys=ys, context_size=context_size, blank_id=blank_id
|
||||
)
|
||||
decoder_input = torch.tensor(decoder_input, device=device)
|
||||
# decoder_input is of shape (num_active_items, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
# decoder_output is of shape (num_active_items, 1, decoder_output_dim)
|
||||
|
||||
current_encoder_out = current_encoder_out.expand(
|
||||
decoder_out.size(0), 1, -1
|
||||
)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
encoder_out_len.expand(decoder_out.size(0)),
|
||||
decoder_out_len.expand(decoder_out.size(0)),
|
||||
)
|
||||
|
||||
# logits is of shape (num_active_items, vocab_size)
|
||||
log_probs = logits.log_softmax(dim=-1).tolist()
|
||||
|
||||
for i, item in enumerate(A):
|
||||
if (T - 1 - t) >= (U - item.pos_u):
|
||||
# horizontal transition
|
||||
new_item = AlignItem(
|
||||
log_prob=item.log_prob + log_probs[i][blank_id],
|
||||
ys=item.ys + [blank_id],
|
||||
pos_u=item.pos_u,
|
||||
)
|
||||
B.append(new_item)
|
||||
|
||||
if item.pos_u < U:
|
||||
# diagonal transition
|
||||
u = ys[item.pos_u]
|
||||
new_item = AlignItem(
|
||||
log_prob=item.log_prob + log_probs[i][u],
|
||||
ys=item.ys + [u],
|
||||
pos_u=item.pos_u + 1,
|
||||
)
|
||||
B.append(new_item)
|
||||
if len(B) > beam_size:
|
||||
B = B.topk(beam_size)
|
||||
|
||||
return B.topk(1)[0].ys
|
322
egs/librispeech/ASR/transducer_stateless/compute_ali.py
Executable file
322
egs/librispeech/ASR/transducer_stateless/compute_ali.py
Executable file
@ -0,0 +1,322 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./transducer_stateless/compute_ali.py \
|
||||
--exp-dir ./transducer_stateless/exp \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10 \
|
||||
--max-duration 300 \
|
||||
--dataset train-clean-100 \
|
||||
--out-dir data/ali
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from alignment import force_alignment
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from lhotse import CutSet
|
||||
from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.utils import AttributeDict, setup_logger
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--out-dir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Output directory.
|
||||
It contains 3 generated files:
|
||||
|
||||
- labels_xxx.h5
|
||||
- aux_labels_xxx.h5
|
||||
- cuts_xxx.json.gz
|
||||
|
||||
where xxx is the value of `--dataset`. For instance, if
|
||||
`--dataset` is `train-clean-100`, it will contain 3 files:
|
||||
|
||||
- `labels_train-clean-100.h5`
|
||||
- `aux_labels_train-clean-100.h5`
|
||||
- `cuts_train-clean-100.json.gz`
|
||||
|
||||
Note: Both labels_xxx.h5 and aux_labels_xxx.h5 contain framewise
|
||||
alignment. The difference is that labels_xxx.h5 contains repeats.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""The name of the dataset to compute alignments for.
|
||||
Possible values are:
|
||||
- test-clean.
|
||||
- test-other
|
||||
- train-clean-100
|
||||
- train-clean-360
|
||||
- train-other-500
|
||||
- dev-clean
|
||||
- dev-other
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_word_begin_time(ali: List[int], sp: spm.SentencePieceProcessor):
|
||||
underscore = b"\xe2\x96\x81".decode() # '_'
|
||||
ans = []
|
||||
for i in range(len(ali)):
|
||||
print(sp.id_to_piece(ali[i]))
|
||||
if sp.id_to_piece(ali[i]).startswith(underscore):
|
||||
print("yes")
|
||||
ans.append(i * 0.04)
|
||||
return ans
|
||||
|
||||
|
||||
def compute_alignments(
|
||||
model: torch.nn.Module,
|
||||
dl: torch.utils.data,
|
||||
params: AttributeDict,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
):
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
num_cuts = 0
|
||||
|
||||
device = model.device
|
||||
cuts = []
|
||||
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
feature = batch["inputs"]
|
||||
|
||||
# at entry, feature is [N, T, C]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
cut_list = supervisions["cut"]
|
||||
for cut in cut_list:
|
||||
assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
|
||||
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
texts = supervisions["text"]
|
||||
|
||||
ys_list: List[List[int]] = sp.encode(texts, out_type=int)
|
||||
|
||||
ali_list = []
|
||||
word_begin_time_list = []
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
|
||||
ali = force_alignment(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
ys=ys_list[i],
|
||||
beam_size=params.beam_size,
|
||||
)
|
||||
ali_list.append(ali)
|
||||
word_begin_time_list.append(get_word_begin_time(ali, sp))
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.enable_spec_aug = False
|
||||
args.enable_musan = False
|
||||
args.return_cuts = True
|
||||
args.concatenate_cuts = False
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-ali")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(f"Computing alignments for {params.dataset} - started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
out_dir = Path(params.out_dir)
|
||||
out_dir.mkdir(exist_ok=True)
|
||||
|
||||
out_labels_ali_filename = out_dir / f"labels_{params.dataset}.h5"
|
||||
out_aux_labels_ali_filename = out_dir / f"aux_labels_{params.dataset}.h5"
|
||||
out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
|
||||
|
||||
for f in (
|
||||
out_labels_ali_filename,
|
||||
out_aux_labels_ali_filename,
|
||||
out_manifest_filename,
|
||||
):
|
||||
if f.exists():
|
||||
logging.info(f"{f} exists - skipping")
|
||||
return
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
if params.dataset == "test-clean":
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
elif params.dataset == "test-other":
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
elif params.dataset == "train-clean-100":
|
||||
train_clean_100_cuts = librispeech.train_clean_100_cuts()
|
||||
dl = librispeech.train_dataloaders(train_clean_100_cuts)
|
||||
elif params.dataset == "train-clean-360":
|
||||
train_clean_360_cuts = librispeech.train_clean_360_cuts()
|
||||
dl = librispeech.train_dataloaders(train_clean_360_cuts)
|
||||
elif params.dataset == "train-other-500":
|
||||
train_other_500_cuts = librispeech.train_other_500_cuts()
|
||||
dl = librispeech.train_dataloaders(train_other_500_cuts)
|
||||
elif params.dataset == "dev-clean":
|
||||
dev_clean_cuts = librispeech.dev_clean_cuts()
|
||||
dl = librispeech.valid_dataloaders(dev_clean_cuts)
|
||||
else:
|
||||
assert params.dataset == "dev-other", f"{params.dataset}"
|
||||
dev_other_cuts = librispeech.dev_other_cuts()
|
||||
dl = librispeech.valid_dataloaders(dev_other_cuts)
|
||||
|
||||
logging.info(f"Processing {params.dataset}")
|
||||
|
||||
cut_set = compute_alignments(
|
||||
model=model,
|
||||
dl=dl,
|
||||
# labels_writer=labels_writer,
|
||||
# aux_labels_writer=aux_labels_writer,
|
||||
params=params,
|
||||
sp=sp,
|
||||
)
|
||||
|
||||
|
||||
# torch.set_num_interop_threads(1)
|
||||
# torch.set_num_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user