mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
change files to symlink
This commit is contained in:
parent
3ef33f2126
commit
6b57261433
@ -1,413 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
|
||||||
consisting of words and tokens (i.e., phones) and does the following:
|
|
||||||
|
|
||||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
|
||||||
|
|
||||||
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
|
||||||
|
|
||||||
3. Generate words.txt, the word table mapping a word to a unique integer.
|
|
||||||
|
|
||||||
4. Generate L.pt, in k2 format. It can be loaded by
|
|
||||||
|
|
||||||
d = torch.load("L.pt")
|
|
||||||
lexicon = k2.Fsa.from_dict(d)
|
|
||||||
|
|
||||||
5. Generate L_disambig.pt, in k2 format.
|
|
||||||
"""
|
|
||||||
import argparse
|
|
||||||
import math
|
|
||||||
from collections import defaultdict
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Dict, List, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from icefall.lexicon import read_lexicon, write_lexicon
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
Lexicon = List[Tuple[str, List[str]]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain a file lexicon.txt.
|
|
||||||
Generated files by this script are saved into this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--debug",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True for debugging, which will generate
|
|
||||||
a visualization of the lexicon FST.
|
|
||||||
|
|
||||||
Caution: If your lexicon contains hundreds of thousands
|
|
||||||
of lines, please set it to False!
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
|
||||||
"""Write a symbol to ID mapping to a file.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
No need to implement `read_mapping` as it can be done
|
|
||||||
through :func:`k2.SymbolTable.from_file`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename:
|
|
||||||
Filename to save the mapping.
|
|
||||||
sym2id:
|
|
||||||
A dict mapping symbols to IDs.
|
|
||||||
Returns:
|
|
||||||
Return None.
|
|
||||||
"""
|
|
||||||
with open(filename, "w", encoding="utf-8") as f:
|
|
||||||
for sym, i in sym2id.items():
|
|
||||||
f.write(f"{sym} {i}\n")
|
|
||||||
|
|
||||||
|
|
||||||
def get_tokens(lexicon: Lexicon) -> List[str]:
|
|
||||||
"""Get tokens from a lexicon.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is the return value of :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a list of unique tokens.
|
|
||||||
"""
|
|
||||||
ans = set()
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
ans.update(tokens)
|
|
||||||
sorted_ans = sorted(list(ans))
|
|
||||||
return sorted_ans
|
|
||||||
|
|
||||||
|
|
||||||
def get_words(lexicon: Lexicon) -> List[str]:
|
|
||||||
"""Get words from a lexicon.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is the return value of :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a list of unique words.
|
|
||||||
"""
|
|
||||||
ans = set()
|
|
||||||
for word, _ in lexicon:
|
|
||||||
ans.add(word)
|
|
||||||
sorted_ans = sorted(list(ans))
|
|
||||||
return sorted_ans
|
|
||||||
|
|
||||||
|
|
||||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
|
||||||
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
|
||||||
at the ends of tokens to ensure that all pronunciations are different,
|
|
||||||
and that none is a prefix of another.
|
|
||||||
|
|
||||||
See also add_lex_disambig.pl from kaldi.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is returned by :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a tuple with two elements:
|
|
||||||
|
|
||||||
- The output lexicon with disambiguation symbols
|
|
||||||
- The ID of the max disambiguation symbol that appears
|
|
||||||
in the lexicon
|
|
||||||
"""
|
|
||||||
|
|
||||||
# (1) Work out the count of each token-sequence in the
|
|
||||||
# lexicon.
|
|
||||||
count = defaultdict(int)
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
count[" ".join(tokens)] += 1
|
|
||||||
|
|
||||||
# (2) For each left sub-sequence of each token-sequence, note down
|
|
||||||
# that it exists (for identifying prefixes of longer strings).
|
|
||||||
issubseq = defaultdict(int)
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
tokens = tokens.copy()
|
|
||||||
tokens.pop()
|
|
||||||
while tokens:
|
|
||||||
issubseq[" ".join(tokens)] = 1
|
|
||||||
tokens.pop()
|
|
||||||
|
|
||||||
# (3) For each entry in the lexicon:
|
|
||||||
# if the token sequence is unique and is not a
|
|
||||||
# prefix of another word, no disambig symbol.
|
|
||||||
# Else output #1, or #2, #3, ... if the same token-seq
|
|
||||||
# has already been assigned a disambig symbol.
|
|
||||||
ans = []
|
|
||||||
|
|
||||||
# We start with #1 since #0 has its own purpose
|
|
||||||
first_allowed_disambig = 1
|
|
||||||
max_disambig = first_allowed_disambig - 1
|
|
||||||
last_used_disambig_symbol_of = defaultdict(int)
|
|
||||||
|
|
||||||
for word, tokens in lexicon:
|
|
||||||
tokenseq = " ".join(tokens)
|
|
||||||
assert tokenseq != ""
|
|
||||||
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
|
||||||
ans.append((word, tokens))
|
|
||||||
continue
|
|
||||||
|
|
||||||
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
|
||||||
if cur_disambig == 0:
|
|
||||||
cur_disambig = first_allowed_disambig
|
|
||||||
else:
|
|
||||||
cur_disambig += 1
|
|
||||||
|
|
||||||
if cur_disambig > max_disambig:
|
|
||||||
max_disambig = cur_disambig
|
|
||||||
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
|
||||||
tokenseq += f" #{cur_disambig}"
|
|
||||||
ans.append((word, tokenseq.split()))
|
|
||||||
return ans, max_disambig
|
|
||||||
|
|
||||||
|
|
||||||
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
|
||||||
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
symbols:
|
|
||||||
A list of unique symbols.
|
|
||||||
Returns:
|
|
||||||
A dict containing the mapping between symbols and IDs.
|
|
||||||
"""
|
|
||||||
return {sym: i for i, sym in enumerate(symbols)}
|
|
||||||
|
|
||||||
|
|
||||||
def add_self_loops(
|
|
||||||
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
|
||||||
) -> List[List[Any]]:
|
|
||||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
|
||||||
through it. They are added on each state with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state.
|
|
||||||
|
|
||||||
See also fstaddselfloops.pl from Kaldi. One difference is that
|
|
||||||
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
|
||||||
This function uses k2 style FSTs and it does not need to add self-loops
|
|
||||||
to the final state.
|
|
||||||
|
|
||||||
The input label of a self-loop is `disambig_token`, while the output
|
|
||||||
label is `disambig_word`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
arcs:
|
|
||||||
A list-of-list. The sublist contains
|
|
||||||
`[src_state, dest_state, label, aux_label, score]`
|
|
||||||
disambig_token:
|
|
||||||
It is the token ID of the symbol `#0`.
|
|
||||||
disambig_word:
|
|
||||||
It is the word ID of the symbol `#0`.
|
|
||||||
|
|
||||||
Return:
|
|
||||||
Return new `arcs` containing self-loops.
|
|
||||||
"""
|
|
||||||
states_needs_self_loops = set()
|
|
||||||
for arc in arcs:
|
|
||||||
src, dst, ilabel, olabel, score = arc
|
|
||||||
if olabel != 0:
|
|
||||||
states_needs_self_loops.add(src)
|
|
||||||
|
|
||||||
ans = []
|
|
||||||
for s in states_needs_self_loops:
|
|
||||||
ans.append([s, s, disambig_token, disambig_word, 0])
|
|
||||||
|
|
||||||
return arcs + ans
|
|
||||||
|
|
||||||
|
|
||||||
def lexicon_to_fst(
|
|
||||||
lexicon: Lexicon,
|
|
||||||
token2id: Dict[str, int],
|
|
||||||
word2id: Dict[str, int],
|
|
||||||
sil_token: str = "SIL",
|
|
||||||
sil_prob: float = 0.5,
|
|
||||||
need_self_loops: bool = False,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
|
||||||
the beginning and end of each word.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
The input lexicon. See also :func:`read_lexicon`
|
|
||||||
token2id:
|
|
||||||
A dict mapping tokens to IDs.
|
|
||||||
word2id:
|
|
||||||
A dict mapping words to IDs.
|
|
||||||
sil_token:
|
|
||||||
The silence token.
|
|
||||||
sil_prob:
|
|
||||||
The probability for adding a silence at the beginning and end
|
|
||||||
of the word.
|
|
||||||
need_self_loops:
|
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state. The input label for this
|
|
||||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
|
||||||
Returns:
|
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
|
||||||
"""
|
|
||||||
assert sil_prob > 0.0 and sil_prob < 1.0
|
|
||||||
# CAUTION: we use score, i.e, negative cost.
|
|
||||||
sil_score = math.log(sil_prob)
|
|
||||||
no_sil_score = math.log(1.0 - sil_prob)
|
|
||||||
|
|
||||||
start_state = 0
|
|
||||||
loop_state = 1 # words enter and leave from here
|
|
||||||
sil_state = 2 # words terminate here when followed by silence; this state
|
|
||||||
# has a silence transition to loop_state.
|
|
||||||
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
|
||||||
arcs = []
|
|
||||||
|
|
||||||
assert token2id["<eps>"] == 0
|
|
||||||
assert word2id["<eps>"] == 0
|
|
||||||
|
|
||||||
eps = 0
|
|
||||||
|
|
||||||
sil_token = token2id[sil_token]
|
|
||||||
|
|
||||||
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
|
||||||
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
|
||||||
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
|
||||||
|
|
||||||
for word, tokens in lexicon:
|
|
||||||
assert len(tokens) > 0, f"{word} has no pronunciations"
|
|
||||||
cur_state = loop_state
|
|
||||||
|
|
||||||
word = word2id[word]
|
|
||||||
tokens = [token2id[i] for i in tokens]
|
|
||||||
|
|
||||||
for i in range(len(tokens) - 1):
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
|
||||||
next_state += 1
|
|
||||||
|
|
||||||
# now for the last token of this word
|
|
||||||
# It has two out-going arcs, one to the loop state,
|
|
||||||
# the other one to the sil_state.
|
|
||||||
i = len(tokens) - 1
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
|
||||||
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
|
||||||
|
|
||||||
if need_self_loops:
|
|
||||||
disambig_token = token2id["#0"]
|
|
||||||
disambig_word = word2id["#0"]
|
|
||||||
arcs = add_self_loops(
|
|
||||||
arcs,
|
|
||||||
disambig_token=disambig_token,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
|
||||||
|
|
||||||
final_state = next_state
|
|
||||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
|
||||||
arcs.append([final_state])
|
|
||||||
|
|
||||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
|
||||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
|
||||||
arcs = [" ".join(arc) for arc in arcs]
|
|
||||||
arcs = "\n".join(arcs)
|
|
||||||
|
|
||||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
|
||||||
return fsa
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
lexicon_filename = lang_dir / "lexicon.txt"
|
|
||||||
sil_token = "SIL"
|
|
||||||
sil_prob = 0.5
|
|
||||||
|
|
||||||
lexicon = read_lexicon(lexicon_filename)
|
|
||||||
tokens = get_tokens(lexicon)
|
|
||||||
words = get_words(lexicon)
|
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
|
||||||
|
|
||||||
for i in range(max_disambig + 1):
|
|
||||||
disambig = f"#{i}"
|
|
||||||
assert disambig not in tokens
|
|
||||||
tokens.append(f"#{i}")
|
|
||||||
|
|
||||||
assert "<eps>" not in tokens
|
|
||||||
tokens = ["<eps>"] + tokens
|
|
||||||
|
|
||||||
assert "<eps>" not in words
|
|
||||||
assert "#0" not in words
|
|
||||||
assert "<s>" not in words
|
|
||||||
assert "</s>" not in words
|
|
||||||
|
|
||||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
|
||||||
|
|
||||||
token2id = generate_id_map(tokens)
|
|
||||||
word2id = generate_id_map(words)
|
|
||||||
|
|
||||||
write_mapping(lang_dir / "tokens.txt", token2id)
|
|
||||||
write_mapping(lang_dir / "words.txt", word2id)
|
|
||||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
|
||||||
|
|
||||||
L = lexicon_to_fst(
|
|
||||||
lexicon,
|
|
||||||
token2id=token2id,
|
|
||||||
word2id=word2id,
|
|
||||||
sil_token=sil_token,
|
|
||||||
sil_prob=sil_prob,
|
|
||||||
)
|
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst(
|
|
||||||
lexicon_disambig,
|
|
||||||
token2id=token2id,
|
|
||||||
word2id=word2id,
|
|
||||||
sil_token=sil_token,
|
|
||||||
sil_prob=sil_prob,
|
|
||||||
need_self_loops=True,
|
|
||||||
)
|
|
||||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
|
||||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
|
||||||
|
|
||||||
if args.debug:
|
|
||||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
|
||||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
L.labels_sym = labels_sym
|
|
||||||
L.aux_labels_sym = aux_labels_sym
|
|
||||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
|
||||||
|
|
||||||
L_disambig.labels_sym = labels_sym
|
|
||||||
L_disambig.aux_labels_sym = aux_labels_sym
|
|
||||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
@ -1,266 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
This script takes as input `lang_dir`, which should contain::
|
|
||||||
|
|
||||||
- lang_dir/bpe.model,
|
|
||||||
- lang_dir/words.txt
|
|
||||||
|
|
||||||
and generates the following files in the directory `lang_dir`:
|
|
||||||
|
|
||||||
- lexicon.txt
|
|
||||||
- lexicon_disambig.txt
|
|
||||||
- L.pt
|
|
||||||
- L_disambig.pt
|
|
||||||
- tokens.txt
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
from prepare_lang import (
|
|
||||||
Lexicon,
|
|
||||||
add_disambig_symbols,
|
|
||||||
add_self_loops,
|
|
||||||
write_lexicon,
|
|
||||||
write_mapping,
|
|
||||||
)
|
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def lexicon_to_fst_no_sil(
|
|
||||||
lexicon: Lexicon,
|
|
||||||
token2id: Dict[str, int],
|
|
||||||
word2id: Dict[str, int],
|
|
||||||
need_self_loops: bool = False,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""Convert a lexicon to an FST (in k2 format).
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
The input lexicon. See also :func:`read_lexicon`
|
|
||||||
token2id:
|
|
||||||
A dict mapping tokens to IDs.
|
|
||||||
word2id:
|
|
||||||
A dict mapping words to IDs.
|
|
||||||
need_self_loops:
|
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state. The input label for this
|
|
||||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
|
||||||
Returns:
|
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
|
||||||
"""
|
|
||||||
loop_state = 0 # words enter and leave from here
|
|
||||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
|
||||||
|
|
||||||
arcs = []
|
|
||||||
|
|
||||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
|
||||||
assert token2id["<blk>"] == 0
|
|
||||||
assert word2id["<eps>"] == 0
|
|
||||||
|
|
||||||
eps = 0
|
|
||||||
|
|
||||||
for word, pieces in lexicon:
|
|
||||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
|
||||||
cur_state = loop_state
|
|
||||||
|
|
||||||
word = word2id[word]
|
|
||||||
pieces = [token2id[i] for i in pieces]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
|
||||||
next_state += 1
|
|
||||||
|
|
||||||
# now for the last piece of this word
|
|
||||||
i = len(pieces) - 1
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
|
||||||
|
|
||||||
if need_self_loops:
|
|
||||||
disambig_token = token2id["#0"]
|
|
||||||
disambig_word = word2id["#0"]
|
|
||||||
arcs = add_self_loops(
|
|
||||||
arcs,
|
|
||||||
disambig_token=disambig_token,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
|
||||||
|
|
||||||
final_state = next_state
|
|
||||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
|
||||||
arcs.append([final_state])
|
|
||||||
|
|
||||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
|
||||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
|
||||||
arcs = [" ".join(arc) for arc in arcs]
|
|
||||||
arcs = "\n".join(arcs)
|
|
||||||
|
|
||||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
|
||||||
return fsa
|
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
|
||||||
model_file: str, words: List[str], oov: str
|
|
||||||
) -> Tuple[Lexicon, Dict[str, int]]:
|
|
||||||
"""Generate a lexicon from a BPE model.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model_file:
|
|
||||||
Path to a sentencepiece model.
|
|
||||||
words:
|
|
||||||
A list of strings representing words.
|
|
||||||
oov:
|
|
||||||
The out of vocabulary word in lexicon.
|
|
||||||
Returns:
|
|
||||||
Return a tuple with two elements:
|
|
||||||
- A dict whose keys are words and values are the corresponding
|
|
||||||
word pieces.
|
|
||||||
- A dict representing the token symbol, mapping from tokens to IDs.
|
|
||||||
"""
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(model_file))
|
|
||||||
|
|
||||||
# Convert word to word piece IDs instead of word piece strings
|
|
||||||
# to avoid OOV tokens.
|
|
||||||
words_pieces_ids: List[List[int]] = sp.encode(words, out_type=int)
|
|
||||||
|
|
||||||
# Now convert word piece IDs back to word piece strings.
|
|
||||||
words_pieces: List[List[str]] = [sp.id_to_piece(ids) for ids in words_pieces_ids]
|
|
||||||
|
|
||||||
lexicon = []
|
|
||||||
for word, pieces in zip(words, words_pieces):
|
|
||||||
lexicon.append((word, pieces))
|
|
||||||
|
|
||||||
lexicon.append((oov, ["▁", sp.id_to_piece(sp.unk_id())]))
|
|
||||||
|
|
||||||
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
|
||||||
|
|
||||||
return lexicon, token2id
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain the bpe.model and words.txt
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--oov",
|
|
||||||
type=str,
|
|
||||||
default="<UNK>",
|
|
||||||
help="The out of vocabulary word in lexicon.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--debug",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True for debugging, which will generate
|
|
||||||
a visualization of the lexicon FST.
|
|
||||||
|
|
||||||
Caution: If your lexicon contains hundreds of thousands
|
|
||||||
of lines, please set it to False!
|
|
||||||
|
|
||||||
See "test/test_bpe_lexicon.py" for usage.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
model_file = lang_dir / "bpe.model"
|
|
||||||
|
|
||||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
words = word_sym_table.symbols
|
|
||||||
|
|
||||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", args.oov, "#0", "<s>", "</s>"]
|
|
||||||
|
|
||||||
for w in excluded:
|
|
||||||
if w in words:
|
|
||||||
words.remove(w)
|
|
||||||
|
|
||||||
lexicon, token_sym_table = generate_lexicon(model_file, words, args.oov)
|
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
|
||||||
|
|
||||||
next_token_id = max(token_sym_table.values()) + 1
|
|
||||||
for i in range(max_disambig + 1):
|
|
||||||
disambig = f"#{i}"
|
|
||||||
assert disambig not in token_sym_table
|
|
||||||
token_sym_table[disambig] = next_token_id
|
|
||||||
next_token_id += 1
|
|
||||||
|
|
||||||
word_sym_table.add("#0")
|
|
||||||
word_sym_table.add("<s>")
|
|
||||||
word_sym_table.add("</s>")
|
|
||||||
|
|
||||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
|
||||||
|
|
||||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
|
||||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
|
||||||
|
|
||||||
L = lexicon_to_fst_no_sil(
|
|
||||||
lexicon,
|
|
||||||
token2id=token_sym_table,
|
|
||||||
word2id=word_sym_table,
|
|
||||||
)
|
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst_no_sil(
|
|
||||||
lexicon_disambig,
|
|
||||||
token2id=token_sym_table,
|
|
||||||
word2id=word_sym_table,
|
|
||||||
need_self_loops=True,
|
|
||||||
)
|
|
||||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
|
||||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
|
||||||
|
|
||||||
if args.debug:
|
|
||||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
|
||||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
L.labels_sym = labels_sym
|
|
||||||
L.aux_labels_sym = aux_labels_sym
|
|
||||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
|
||||||
|
|
||||||
L_disambig.labels_sym = labels_sym
|
|
||||||
L_disambig.aux_labels_sym = aux_labels_sym
|
|
||||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/ami/SURT/local/prepare_lang_bpe.py
Symbolic link
1
egs/ami/SURT/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
@ -1,100 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# You can install sentencepiece via:
|
|
||||||
#
|
|
||||||
# pip install sentencepiece
|
|
||||||
#
|
|
||||||
# Due to an issue reported in
|
|
||||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
||||||
#
|
|
||||||
# Please install a version >=0.1.96
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
The generated bpe.model is saved to this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--transcript",
|
|
||||||
type=str,
|
|
||||||
help="Training transcript.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--vocab-size",
|
|
||||||
type=int,
|
|
||||||
help="Vocabulary size for BPE training",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
vocab_size = args.vocab_size
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
|
|
||||||
model_type = "unigram"
|
|
||||||
|
|
||||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
|
||||||
train_text = args.transcript
|
|
||||||
character_coverage = 1.0
|
|
||||||
input_sentence_size = 100000000
|
|
||||||
|
|
||||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
||||||
unk_id = len(user_defined_symbols)
|
|
||||||
# Note: unk_id is fixed to 2.
|
|
||||||
# If you change it, you should also change other
|
|
||||||
# places that are using it.
|
|
||||||
|
|
||||||
model_file = Path(model_prefix + ".model")
|
|
||||||
if not model_file.is_file():
|
|
||||||
spm.SentencePieceTrainer.train(
|
|
||||||
input=train_text,
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
model_type=model_type,
|
|
||||||
model_prefix=model_prefix,
|
|
||||||
input_sentence_size=input_sentence_size,
|
|
||||||
character_coverage=character_coverage,
|
|
||||||
user_defined_symbols=user_defined_symbols,
|
|
||||||
unk_id=unk_id,
|
|
||||||
bos_id=-1,
|
|
||||||
eos_id=-1,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
print(f"{model_file} exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/ami/SURT/local/train_bpe_model.py
Symbolic link
1
egs/ami/SURT/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/train_bpe_model.py
|
Loading…
x
Reference in New Issue
Block a user