Training scripts for ICMC

Signed-off-by: wd929 <dingwen929@gmail.com>
This commit is contained in:
wd929 2023-10-20 17:01:49 +08:00
parent 4a900c6cc7
commit 6a9cce407c
2 changed files with 49 additions and 73 deletions

View File

@ -1,5 +1,6 @@
# Copyright 2021 Piotr Żelasko
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
# Copyright 2023 NVIDIA Corporation (Author: Wen Ding)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -43,7 +44,6 @@ from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
@ -52,7 +52,7 @@ class _SeedWorkers:
fix_random_seed(self.seed + worker_id)
class LibriSpeechAsrDataModule:
class ICMCAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
@ -82,20 +82,19 @@ class LibriSpeechAsrDataModule:
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--full-libri",
"--ihm-only",
type=str2bool,
default=True,
help="""Used only when --mini-libri is False.When enabled,
use 960h LibriSpeech. Otherwise, use 100h subset.""",
help="True for only use ihm data for training",
)
group.add_argument(
"--mini-libri",
"--full-data",
type=str2bool,
default=False,
help="True for mini librispeech",
help="True for all data",
)
group.add_argument(
"--manifest-dir",
type=Path,
@ -402,74 +401,50 @@ class LibriSpeechAsrDataModule:
return test_dl
@lru_cache()
def train_clean_5_cuts(self) -> CutSet:
logging.info("mini_librispeech: About to get train-clean-5 cuts")
def train_ihm_cuts(self) -> CutSet:
logging.info("About to get train-ihm cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-clean-5.jsonl.gz"
self.args.manifest_dir / "cuts_train_ihm.jsonl.gz"
)
@lru_cache()
def train_clean_100_cuts(self) -> CutSet:
logging.info("About to get train-clean-100 cuts")
def train_ihm_rvb_cuts(self) -> CutSet:
logging.info("About to get train-ihm-rvb cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
self.args.manifest_dir / "cuts_train_ihm_rvb.jsonl.gz"
)
@lru_cache()
def train_clean_360_cuts(self) -> CutSet:
logging.info("About to get train-clean-360 cuts")
def train_shm_cuts(self) -> CutSet:
logging.info("About to get train-shm cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
self.args.manifest_dir / "cuts_train_sdm.jsonl.gz"
)
@lru_cache()
def train_other_500_cuts(self) -> CutSet:
logging.info("About to get train-other-500 cuts")
def dev_ihm_cuts(self) -> CutSet:
logging.info("About to get dev-ihm cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
self.args.manifest_dir / "cuts_dev_ihm.jsonl.gz"
)
@lru_cache()
def train_all_shuf_cuts(self) -> CutSet:
logging.info(
"About to get the shuffled train-clean-100, \
train-clean-360 and train-other-500 cuts"
)
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
)
@lru_cache()
def dev_clean_2_cuts(self) -> CutSet:
logging.info("mini_librispeech: About to get dev-clean-2 cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_dev-clean-2.jsonl.gz"
)
@lru_cache()
def dev_clean_cuts(self) -> CutSet:
logging.info("About to get dev-clean cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
)
@lru_cache()
def dev_other_cuts(self) -> CutSet:
def dev_shm_cuts(self) -> CutSet:
logging.info("About to get dev-other cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
self.args.manifest_dir / "cuts_dev_sdm.jsonl.gz"
)
@lru_cache()
def test_clean_cuts(self) -> CutSet:
logging.info("About to get test-clean cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
)
# @lru_cache()
# def test_clean_cuts(self) -> CutSet:
# logging.info("About to get test-clean cuts")
# return load_manifest_lazy(
# self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
# )
@lru_cache()
def test_other_cuts(self) -> CutSet:
logging.info("About to get test-other cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
)
# @lru_cache()
# def test_other_cuts(self) -> CutSet:
# logging.info("About to get test-other cuts")
# return load_manifest_lazy(
# self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
# )

View File

@ -25,13 +25,14 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
# For non-streaming model training:
./zipformer/train.py \
--world-size 4 \
--world-size 1 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--full-libri 1 \
--max-duration 1000
--manifest-dir '/mnt/samsung-t7/yuekai/asr/icefall-icmcasr/egs/icmcasr/ASR/data/manifests' \
--max-duration 1000 \
--bpe-model /raid/wend/asr/icmc/multi_zh/icefall-asr-multi-zh-hans-zipformer-2023-9-2/data/lang_bpe_2000/bpe.model
# For streaming model training:
./zipformer/train.py \
@ -65,7 +66,7 @@ import sentencepiece as spm
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from asr_datamodule import ICMCAsrDataModule
from decoder import Decoder
from joiner import Joiner
from lhotse.cut import Cut
@ -1172,12 +1173,12 @@ def run(rank, world_size, args):
if params.inf_check:
register_inf_check_hooks(model)
librispeech = LibriSpeechAsrDataModule(args)
icmc = ICMCAsrDataModule(args)
train_cuts = librispeech.train_clean_100_cuts()
if params.full_libri:
train_cuts += librispeech.train_clean_360_cuts()
train_cuts += librispeech.train_other_500_cuts()
train_cuts = icmc.train_ihm_cuts()
if params.full_data:
train_cuts += icmc.train_ihm_rvb_cuts()
train_cuts += icmc.train_shm_cuts()
def remove_short_and_long_utt(c: Cut):
# Keep only utterances with duration between 1 second and 20 seconds
@ -1225,13 +1226,13 @@ def run(rank, world_size, args):
else:
sampler_state_dict = None
train_dl = librispeech.train_dataloaders(
train_dl = icmc.train_dataloaders(
train_cuts, sampler_state_dict=sampler_state_dict
)
valid_cuts = librispeech.dev_clean_cuts()
valid_cuts += librispeech.dev_other_cuts()
valid_dl = librispeech.valid_dataloaders(valid_cuts)
valid_cuts = icmc.dev_ihm_cuts()
# valid_cuts += librispeech.dev_other_cuts()
valid_dl = icmc.valid_dataloaders(valid_cuts)
if not params.print_diagnostics:
scan_pessimistic_batches_for_oom(
@ -1370,7 +1371,7 @@ def scan_pessimistic_batches_for_oom(
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
ICMCAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)