diff --git a/egs/speech_llm/SPEECH2SPEECH/web_demo.py b/egs/speech_llm/SPEECH2SPEECH/web_demo.py new file mode 100644 index 000000000..ba1aca157 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/web_demo.py @@ -0,0 +1,413 @@ +# Modified from https://github.com/QwenLM/Qwen2.5-Omni/blob/main/web_demo.py +import io +import os +import ffmpeg + +import numpy as np +import gradio as gr +import soundfile as sf + +#import modelscope_studio.components.base as ms +#import modelscope_studio.components.antd as antd +import gradio.processing_utils as processing_utils + +#from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor +from gradio_client import utils as client_utils +#from qwen_omni_utils import process_mm_info +from argparse import ArgumentParser + +def _load_model_processor(args): + if args.cpu_only: + device_map = 'cpu' + else: + device_map = 'auto' + + # Check if flash-attn2 flag is enabled and load model accordingly + if args.flash_attn2: + # model = Qwen2_5OmniForConditionalGeneration.from_pretrained(args.checkpoint_path, + # torch_dtype='auto', + # attn_implementation='flash_attention_2', + # device_map=device_map) + # else: + # model = Qwen2_5OmniForConditionalGeneration.from_pretrained(args.checkpoint_path, device_map=device_map, torch_dtype='auto') + + # processor = Qwen2_5OmniProcessor.from_pretrained(args.checkpoint_path) + return model, processor + +def _launch_demo(args, model, processor): + # Voice settings + VOICE_LIST = ['Chelsie', 'Ethan'] + DEFAULT_VOICE = 'Chelsie' + + default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.' + + language = args.ui_language + + # def get_text(text: str, cn_text: str): + # if language == 'en': + # return text + # if language == 'zh': + # return cn_text + # return text + + # def convert_webm_to_mp4(input_file, output_file): + # try: + # ( + # ffmpeg + # .input(input_file) + # .output(output_file, acodec='aac', ar='16000', audio_bitrate='192k') + # .run(quiet=True, overwrite_output=True) + # ) + # print(f"Conversion successful: {output_file}") + # except ffmpeg.Error as e: + # print("An error occurred during conversion.") + # print(e.stderr.decode('utf-8')) + + def format_history(history: list, system_prompt: str): + messages = [] + # messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) + for item in history: + if isinstance(item["content"], str): + messages.append({"role": item['role'], "content": item['content']}) + elif item["role"] == "user" and (isinstance(item["content"], list) or + isinstance(item["content"], tuple)): + file_path = item["content"][0] + + mime_type = client_utils.get_mimetype(file_path) + if mime_type.startswith("image"): + messages.append({ + "role": + item['role'], + "content": [{ + "type": "image", + "image": file_path + }] + }) + elif mime_type.startswith("video"): + messages.append({ + "role": + item['role'], + "content": [{ + "type": "video", + "video": file_path + }] + }) + elif mime_type.startswith("audio"): + messages.append({ + "role": + item['role'], + "content": [{ + "type": "audio", + "audio": file_path, + }] + }) + return messages + + def predict(messages, voice=DEFAULT_VOICE): + print('predict history: ', messages) + + text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) + + audios, images, videos = process_mm_info(messages, use_audio_in_video=True) + + inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True) + inputs = inputs.to(model.device).to(model.dtype) + + text_ids, audio = model.generate(**inputs, speaker=voice, use_audio_in_video=True) + + response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) + response = response[0].split("\n")[-1] + yield {"type": "text", "data": response} + + audio = np.array(audio * 32767).astype(np.int16) + wav_io = io.BytesIO() + sf.write(wav_io, audio, samplerate=24000, format="WAV") + wav_io.seek(0) + wav_bytes = wav_io.getvalue() + audio_path = processing_utils.save_bytes_to_cache( + wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE) + yield {"type": "audio", "data": audio_path} + + def media_predict(audio, video, history, system_prompt, voice_choice): + # First yield + yield ( + None, # microphone + None, # webcam + history, # media_chatbot + gr.update(visible=False), # submit_btn + gr.update(visible=True), # stop_btn + ) + + if video is not None: + convert_webm_to_mp4(video, video.replace('.webm', '.mp4')) + video = video.replace(".webm", ".mp4") + files = [audio, video] + + for f in files: + if f: + history.append({"role": "user", "content": (f, )}) + + formatted_history = format_history(history=history, + system_prompt=system_prompt,) + + + history.append({"role": "assistant", "content": ""}) + + for chunk in predict(formatted_history, voice_choice): + if chunk["type"] == "text": + history[-1]["content"] = chunk["data"] + yield ( + None, # microphone + None, # webcam + history, # media_chatbot + gr.update(visible=False), # submit_btn + gr.update(visible=True), # stop_btn + ) + if chunk["type"] == "audio": + history.append({ + "role": "assistant", + "content": gr.Audio(chunk["data"]) + }) + + # Final yield + yield ( + None, # microphone + None, # webcam + history, # media_chatbot + gr.update(visible=True), # submit_btn + gr.update(visible=False), # stop_btn + ) + + def chat_predict(text, audio, image, video, history, system_prompt, voice_choice): + # Process text input + if text: + history.append({"role": "user", "content": text}) + + # Process audio input + if audio: + history.append({"role": "user", "content": (audio, )}) + + # Process image input + if image: + history.append({"role": "user", "content": (image, )}) + + # Process video input + if video: + history.append({"role": "user", "content": (video, )}) + + formatted_history = format_history(history=history, + system_prompt=system_prompt) + + yield None, None, None, None, history + + history.append({"role": "assistant", "content": ""}) + for chunk in predict(formatted_history, voice_choice): + if chunk["type"] == "text": + history[-1]["content"] = chunk["data"] + yield gr.skip(), gr.skip(), gr.skip(), gr.skip( + ), history + if chunk["type"] == "audio": + history.append({ + "role": "assistant", + "content": gr.Audio(chunk["data"]) + }) + yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), history + + with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider(): + with gr.Sidebar(open=False): + system_prompt_textbox = gr.Textbox(label="System Prompt", + value=default_system_prompt) + with antd.Flex(gap="small", justify="center", align="center"): + with antd.Flex(vertical=True, gap="small", align="center"): + antd.Typography.Title("Qwen2.5-Omni Demo", + level=1, + elem_style=dict(margin=0, fontSize=28)) + with antd.Flex(vertical=True, gap="small"): + antd.Typography.Text(get_text("🎯 Instructions for use:", + "🎯 使用说明:"), + strong=True) + antd.Typography.Text( + get_text( + "1️⃣ Click the Audio Record button or the Camera Record button.", + "1️⃣ 点击音频录制按钮,或摄像头-录制按钮")) + antd.Typography.Text( + get_text("2️⃣ Input audio or video.", "2️⃣ 输入音频或者视频")) + antd.Typography.Text( + get_text( + "3️⃣ Click the submit button and wait for the model's response.", + "3️⃣ 点击提交并等待模型的回答")) + voice_choice = gr.Dropdown(label="Voice Choice", + choices=VOICE_LIST, + value=DEFAULT_VOICE) + with gr.Tabs(): + with gr.Tab("Online"): + with gr.Row(): + with gr.Column(scale=1): + microphone = gr.Audio(sources=['microphone'], + type="filepath") + webcam = gr.Video(sources=['webcam'], + height=400, + include_audio=True) + submit_btn = gr.Button(get_text("Submit", "提交"), + variant="primary") + stop_btn = gr.Button(get_text("Stop", "停止"), visible=False) + clear_btn = gr.Button(get_text("Clear History", "清除历史")) + with gr.Column(scale=2): + media_chatbot = gr.Chatbot(height=650, type="messages") + + def clear_history(): + return [], gr.update(value=None), gr.update(value=None) + + submit_event = submit_btn.click(fn=media_predict, + inputs=[ + microphone, webcam, + media_chatbot, + system_prompt_textbox, + voice_choice + ], + outputs=[ + microphone, webcam, + media_chatbot, submit_btn, + stop_btn + ]) + stop_btn.click( + fn=lambda: + (gr.update(visible=True), gr.update(visible=False)), + inputs=None, + outputs=[submit_btn, stop_btn], + cancels=[submit_event], + queue=False) + clear_btn.click(fn=clear_history, + inputs=None, + outputs=[media_chatbot, microphone, webcam]) + + with gr.Tab("Offline"): + chatbot = gr.Chatbot(type="messages", height=650) + + # Media upload section in one row + with gr.Row(equal_height=True): + audio_input = gr.Audio(sources=["upload"], + type="filepath", + label="Upload Audio", + elem_classes="media-upload", + scale=1) + image_input = gr.Image(sources=["upload"], + type="filepath", + label="Upload Image", + elem_classes="media-upload", + scale=1) + video_input = gr.Video(sources=["upload"], + label="Upload Video", + elem_classes="media-upload", + scale=1) + + # Text input section + text_input = gr.Textbox(show_label=False, + placeholder="Enter text here...") + + # Control buttons + with gr.Row(): + submit_btn = gr.Button(get_text("Submit", "提交"), + variant="primary", + size="lg") + stop_btn = gr.Button(get_text("Stop", "停止"), + visible=False, + size="lg") + clear_btn = gr.Button(get_text("Clear History", "清除历史"), + size="lg") + + def clear_chat_history(): + return [], gr.update(value=None), gr.update( + value=None), gr.update(value=None), gr.update(value=None) + + submit_event = gr.on( + triggers=[submit_btn.click, text_input.submit], + fn=chat_predict, + inputs=[ + text_input, audio_input, image_input, video_input, chatbot, + system_prompt_textbox, voice_choice + ], + outputs=[ + text_input, audio_input, image_input, video_input, chatbot + ]) + + stop_btn.click(fn=lambda: + (gr.update(visible=True), gr.update(visible=False)), + inputs=None, + outputs=[submit_btn, stop_btn], + cancels=[submit_event], + queue=False) + + clear_btn.click(fn=clear_chat_history, + inputs=None, + outputs=[ + chatbot, text_input, audio_input, image_input, + video_input + ]) + + # Add some custom CSS to improve the layout + gr.HTML(""" + + """) + + demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100, + ssr_mode=False, + share=args.share, + inbrowser=args.inbrowser, + server_port=args.server_port, + server_name=args.server_name,) + + +DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-Omni-7B" +def _get_args(): + parser = ArgumentParser() + + parser.add_argument('-c', + '--checkpoint-path', + type=str, + default=DEFAULT_CKPT_PATH, + help='Checkpoint name or path, default to %(default)r') + parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only') + + parser.add_argument('--flash-attn2', + action='store_true', + default=False, + help='Enable flash_attention_2 when loading the model.') + parser.add_argument('--share', + action='store_true', + default=False, + help='Create a publicly shareable link for the interface.') + parser.add_argument('--inbrowser', + action='store_true', + default=False, + help='Automatically launch the interface in a new tab on the default browser.') + parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.') + parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.') + parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.') + + args = parser.parse_args() + return args + +if __name__ == "__main__": + args = _get_args() + model, processor = _load_model_processor(args) + _launch_demo(args, model, processor) \ No newline at end of file