From 68be92565c35e0d42bb658da889b1a34c7f36a62 Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Wed, 26 Apr 2023 12:17:21 +0900 Subject: [PATCH] from local --- .../.data2vec_audio.py.swp | Bin 40960 -> 40960 bytes .../data2vec_audio.py | 9 +-------- 2 files changed, 1 insertion(+), 8 deletions(-) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index a90e44689c98b8a9121ae3b9ee21eab6148ea4d0..aaedea2d15b14fc5a575eecdb2901826378734b0 100644 GIT binary patch delta 192 zcmZoTz|?SnNi@kI%+puFQqO<^2m}}yCQbK9@!2R^Ex>5Md7?nEKCcfO149ZsMACk; zpu>I3Ya9#=i-0%}h$DfR5r|&`RV)DFav%n&_6K5BApQ*0eHw^Y0CD4HO~*vm$?0y& zlQ*ccfN2nUh)!PNZnU}5-I8&$ IyywF(0AhxDJR5H)}d3vQCzF zXA3MyOi9ViOOMY@EY8-;%g?JyEy~x>)GN-cO4ZQRWKci?1x1;8B^uZ@AXHA4jFaY# z&WuGEHo4SYbMnI$(aEA7Mw_3xTQVkt48=4p+8`ET40a`W+?AG^SW;S)S`1aPS=94& F7yvmsT>$_9 diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 4f47dc1cf..ba225b775 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -490,9 +490,6 @@ class Data2VecAudioModel(BaseFairseqModel): ## for prompt tuning if prompt is not None: - print(features.size()) - print(padding_mask.size()) - print(padding_mask[0]) conv_feat_all = torch.tensor([]).to(features.device) for i in range(padding_mask.size()[0]): nonzero = padding_mask[i].nonzero() @@ -500,11 +497,7 @@ class Data2VecAudioModel(BaseFairseqModel): conv_feat_all = torch.cat([conv_feat_all, features[i][nonzero[0]]]) except: conv_feat_all = torch.cat([conv_feat_all, features]) - print(conv_feat_all.size()) - #print(padding_mask[i].nonzero()) - print(padding_mask.nonzero()) - print(padding_mask.nonzero().size()) - + print(conv_feat_all.size()) exit() prompt = prompt.expand((features.size()[0], prompt.size()[0], prompt.size()[1])) features = torch.cat([prompt, features], dim=1)