diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index a90e44689..aaedea2d1 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 4f47dc1cf..ba225b775 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -490,9 +490,6 @@ class Data2VecAudioModel(BaseFairseqModel): ## for prompt tuning if prompt is not None: - print(features.size()) - print(padding_mask.size()) - print(padding_mask[0]) conv_feat_all = torch.tensor([]).to(features.device) for i in range(padding_mask.size()[0]): nonzero = padding_mask[i].nonzero() @@ -500,11 +497,7 @@ class Data2VecAudioModel(BaseFairseqModel): conv_feat_all = torch.cat([conv_feat_all, features[i][nonzero[0]]]) except: conv_feat_all = torch.cat([conv_feat_all, features]) - print(conv_feat_all.size()) - #print(padding_mask[i].nonzero()) - print(padding_mask.nonzero()) - print(padding_mask.nonzero().size()) - + print(conv_feat_all.size()) exit() prompt = prompt.expand((features.size()[0], prompt.size()[0], prompt.size()[1])) features = torch.cat([prompt, features], dim=1)