mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
update for the pruned_transducer_stateless7
for aishell and librispeech
This commit is contained in:
parent
aede8a8ed1
commit
67acaf9431
@ -1,321 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
#
|
|
||||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
# This script converts several saved checkpoints
|
|
||||||
# to a single one using model averaging.
|
|
||||||
"""
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
|
|
||||||
(1) Export to torchscript model using torch.jit.script()
|
|
||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
|
||||||
--lang-dir data/lang_char \
|
|
||||||
--epoch 30 \
|
|
||||||
--avg 9 \
|
|
||||||
--jit 1
|
|
||||||
|
|
||||||
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
|
|
||||||
load it by `torch.jit.load("cpu_jit.pt")`.
|
|
||||||
|
|
||||||
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
|
|
||||||
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
|
|
||||||
|
|
||||||
Check
|
|
||||||
https://github.com/k2-fsa/sherpa
|
|
||||||
for how to use the exported models outside of icefall.
|
|
||||||
|
|
||||||
(2) Export `model.state_dict()`
|
|
||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
|
||||||
--lang-dir data/lang_char \
|
|
||||||
--epoch 20 \
|
|
||||||
--avg 10
|
|
||||||
|
|
||||||
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
|
||||||
load it by `icefall.checkpoint.load_checkpoint()`.
|
|
||||||
|
|
||||||
To use the generated file with `pruned_transducer_stateless7/decode.py`,
|
|
||||||
you can do:
|
|
||||||
|
|
||||||
cd /path/to/exp_dir
|
|
||||||
ln -s pretrained.pt epoch-9999.pt
|
|
||||||
|
|
||||||
cd /path/to/egs/librispeech/ASR
|
|
||||||
./pruned_transducer_stateless7/decode.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
|
||||||
--epoch 9999 \
|
|
||||||
--avg 1 \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method greedy_search \
|
|
||||||
--lang-dir data/lang_char
|
|
||||||
|
|
||||||
Check ./pretrained.py for its usage.
|
|
||||||
|
|
||||||
Note: If you don't want to train a model from scratch, we have
|
|
||||||
provided one for you. You can get it at
|
|
||||||
|
|
||||||
https://huggingface.co/marcoyang/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21
|
|
||||||
|
|
||||||
with the following commands:
|
|
||||||
|
|
||||||
sudo apt-get install git-lfs
|
|
||||||
git lfs install
|
|
||||||
git clone https://huggingface.co/marcoyang/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21
|
|
||||||
# You will find the pre-trained model in icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21exp
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from scaling_converter import convert_scaled_to_non_scaled
|
|
||||||
from train2 import add_model_arguments, get_params, get_transducer_model
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
|
||||||
average_checkpoints,
|
|
||||||
average_checkpoints_with_averaged_model,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.lexicon import Lexicon
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 1.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--iter",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch is ignored and it
|
|
||||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=9,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch' and '--iter'",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-averaged-model",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
|
||||||
"`epoch` are loaded for averaging. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="pruned_transducer_stateless7/exp",
|
|
||||||
help="""It specifies the directory where all training related
|
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_char",
|
|
||||||
help="""The lang dir
|
|
||||||
It contains language related input files such as
|
|
||||||
"lexicon.txt"
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--jit",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True to save a model after applying torch.jit.script.
|
|
||||||
It will generate a file named cpu_jit.pt
|
|
||||||
|
|
||||||
Check ./jit_pretrained.py for how to use it.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
args = get_parser().parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
lexicon = Lexicon(params.lang_dir)
|
|
||||||
params.blank_id = 0
|
|
||||||
params.vocab_size = max(lexicon.tokens) + 1
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
elif params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if i >= 1:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
else:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg + 1
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg + 1:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
filename_start = filenames[-1]
|
|
||||||
filename_end = filenames[0]
|
|
||||||
logging.info(
|
|
||||||
"Calculating the averaged model over iteration checkpoints"
|
|
||||||
f" from {filename_start} (excluded) to {filename_end}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert params.avg > 0, params.avg
|
|
||||||
start = params.epoch - params.avg
|
|
||||||
assert start >= 1, start
|
|
||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
||||||
logging.info(
|
|
||||||
f"Calculating the averaged model over epoch range from "
|
|
||||||
f"{start} (excluded) to {params.epoch}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to("cpu")
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
if params.jit is True:
|
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
|
||||||
# We won't use the forward() method of the model in C++, so just ignore
|
|
||||||
# it here.
|
|
||||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
|
||||||
# torch scriptabe.
|
|
||||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
|
||||||
logging.info("Using torch.jit.script")
|
|
||||||
model = torch.jit.script(model)
|
|
||||||
filename = params.exp_dir / "cpu_jit.pt"
|
|
||||||
model.save(str(filename))
|
|
||||||
logging.info(f"Saved to {filename}")
|
|
||||||
else:
|
|
||||||
logging.info("Not using torchscript. Export model.state_dict()")
|
|
||||||
# Save it using a format so that it can be loaded
|
|
||||||
# by :func:`load_checkpoint`
|
|
||||||
filename = params.exp_dir / "pretrained.pt"
|
|
||||||
torch.save({"model": model.state_dict()}, str(filename))
|
|
||||||
logging.info(f"Saved to {filename}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
1
egs/aishell/ASR/pruned_transducer_stateless7/export.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7/export.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/export.py
|
7
egs/librispeech/ASR/pruned_transducer_stateless7/export_unified.py → egs/aishell/ASR/pruned_transducer_stateless7/export2.py
Executable file → Normal file
7
egs/librispeech/ASR/pruned_transducer_stateless7/export_unified.py → egs/aishell/ASR/pruned_transducer_stateless7/export2.py
Executable file → Normal file
@ -46,7 +46,7 @@ for how to use the exported models outside of icefall.
|
|||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
./pruned_transducer_stateless7/export.py \
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
--tokens data/lang_bpe_500/tokens.txt \
|
--tokens data/lang_char/tokens.txt \
|
||||||
--epoch 20 \
|
--epoch 20 \
|
||||||
--avg 10
|
--avg 10
|
||||||
|
|
||||||
@ -66,7 +66,7 @@ you can do:
|
|||||||
--avg 1 \
|
--avg 1 \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method greedy_search \
|
--decoding-method greedy_search \
|
||||||
--tokens data/lang_bpe_500/tokens.txt \
|
--tokens data/lang_char/tokens.txt
|
||||||
|
|
||||||
Check ./pretrained.py for its usage.
|
Check ./pretrained.py for its usage.
|
||||||
|
|
||||||
@ -89,11 +89,10 @@ from pathlib import Path
|
|||||||
import re
|
import re
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from scaling_converter import convert_scaled_to_non_scaled
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train2 import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import (
|
||||||
average_checkpoints,
|
average_checkpoints,
|
@ -1,348 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script loads a checkpoint and uses it to decode waves.
|
|
||||||
You can generate the checkpoint with the following command:
|
|
||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
|
||||||
--lang-dir data/lang_char \
|
|
||||||
--epoch 20 \
|
|
||||||
--avg 10
|
|
||||||
|
|
||||||
Usage of this script:
|
|
||||||
|
|
||||||
(1) greedy search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--lang-dir ./data/lang_char \
|
|
||||||
--method greedy_search \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(2) beam search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--lang-dir ./data/lang_char \
|
|
||||||
--method beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(3) modified beam search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--lang-dir ./data/lang_char \
|
|
||||||
--method modified_beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(4) fast beam search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--lang-dir ./data/lang_char \
|
|
||||||
--method fast_beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
You can also use `./pruned_transducer_stateless7/exp/epoch-xx.pt`.
|
|
||||||
|
|
||||||
Note: ./pruned_transducer_stateless7/exp/pretrained.pt is generated by
|
|
||||||
./pruned_transducer_stateless7/export.py
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import kaldifeat
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
from beam_search import (
|
|
||||||
beam_search,
|
|
||||||
fast_beam_search_one_best,
|
|
||||||
greedy_search,
|
|
||||||
greedy_search_batch,
|
|
||||||
modified_beam_search,
|
|
||||||
)
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
|
||||||
|
|
||||||
from icefall.lexicon import Lexicon
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--checkpoint",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to the checkpoint. "
|
|
||||||
"The checkpoint is assumed to be saved by "
|
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""The lang dir
|
|
||||||
It contains language related input files such as
|
|
||||||
"lexicon.txt"
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Possible values are:
|
|
||||||
- greedy_search
|
|
||||||
- beam_search
|
|
||||||
- modified_beam_search
|
|
||||||
- fast_beam_search
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"sound_files",
|
|
||||||
type=str,
|
|
||||||
nargs="+",
|
|
||||||
help="The input sound file(s) to transcribe. "
|
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
|
||||||
"For example, wav and flac are supported. "
|
|
||||||
"The sample rate has to be 16kHz.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--sample-rate",
|
|
||||||
type=int,
|
|
||||||
default=16000,
|
|
||||||
help="The sample rate of the input sound file",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam-size",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An integer indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --method is beam_search or
|
|
||||||
modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=4,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=8,
|
|
||||||
help="""Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-sym-per-frame",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
|
||||||
--method is greedy_search.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
|
||||||
filenames: List[str], expected_sample_rate: float
|
|
||||||
) -> List[torch.Tensor]:
|
|
||||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
||||||
Args:
|
|
||||||
filenames:
|
|
||||||
A list of sound filenames.
|
|
||||||
expected_sample_rate:
|
|
||||||
The expected sample rate of the sound files.
|
|
||||||
Returns:
|
|
||||||
Return a list of 1-D float32 torch tensors.
|
|
||||||
"""
|
|
||||||
ans = []
|
|
||||||
for f in filenames:
|
|
||||||
wave, sample_rate = torchaudio.load(f)
|
|
||||||
assert (
|
|
||||||
sample_rate == expected_sample_rate
|
|
||||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
||||||
# We use only the first channel
|
|
||||||
ans.append(wave[0])
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
lexicon = Lexicon(params.lang_dir)
|
|
||||||
params.blank_id = 0
|
|
||||||
params.vocab_size = max(lexicon.tokens) + 1
|
|
||||||
token_table = lexicon.token_table
|
|
||||||
|
|
||||||
logging.info(f"{params}")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
logging.info("Creating model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
||||||
model.load_state_dict(checkpoint["model"], strict=False)
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
|
||||||
opts = kaldifeat.FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = params.sample_rate
|
|
||||||
opts.mel_opts.num_bins = params.feature_dim
|
|
||||||
|
|
||||||
fbank = kaldifeat.Fbank(opts)
|
|
||||||
|
|
||||||
logging.info(f"Reading sound files: {params.sound_files}")
|
|
||||||
waves = read_sound_files(
|
|
||||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
||||||
)
|
|
||||||
waves = [w.to(device) for w in waves]
|
|
||||||
|
|
||||||
logging.info("Decoding started")
|
|
||||||
features = fbank(waves)
|
|
||||||
feature_lengths = [f.size(0) for f in features]
|
|
||||||
|
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
|
||||||
hyps = []
|
|
||||||
msg = f"Using {params.method}"
|
|
||||||
if params.method == "beam_search":
|
|
||||||
msg += f" with beam size {params.beam_size}"
|
|
||||||
logging.info(msg)
|
|
||||||
|
|
||||||
if params.method == "fast_beam_search":
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam,
|
|
||||||
max_contexts=params.max_contexts,
|
|
||||||
max_states=params.max_states,
|
|
||||||
)
|
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp_tokens = modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
|
||||||
hyp_tokens = greedy_search_batch(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
for i in range(num_waves):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.method == "greedy_search":
|
|
||||||
hyp_tokens = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.method == "beam_search":
|
|
||||||
hyp_tokens = beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
|
||||||
|
|
||||||
hyps = [[token_table[t] for t in tokens] for tokens in hyp_tokens]
|
|
||||||
s = "\n"
|
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
|
||||||
words = " ".join(hyp)
|
|
||||||
s += f"{filename}:\n{words}\n\n"
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
logging.info("Decoding Done")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
1
egs/aishell/ASR/pruned_transducer_stateless7/pretrained.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/pretrained.py
|
49
egs/librispeech/ASR/pruned_transducer_stateless7/export.py
Executable file → Normal file
49
egs/librispeech/ASR/pruned_transducer_stateless7/export.py
Executable file → Normal file
@ -1,6 +1,7 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
#
|
#
|
||||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang
|
||||||
|
# Zengrui Jin)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -26,7 +27,7 @@ Usage:
|
|||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
./pruned_transducer_stateless7/export.py \
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
--tokens data/lang_bpe_500/tokens.txt \
|
||||||
--epoch 30 \
|
--epoch 30 \
|
||||||
--avg 9 \
|
--avg 9 \
|
||||||
--jit 1
|
--jit 1
|
||||||
@ -45,7 +46,7 @@ for how to use the exported models outside of icefall.
|
|||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
./pruned_transducer_stateless7/export.py \
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
--tokens data/lang_bpe_500/tokens.txt \
|
||||||
--epoch 20 \
|
--epoch 20 \
|
||||||
--avg 10
|
--avg 10
|
||||||
|
|
||||||
@ -65,7 +66,7 @@ you can do:
|
|||||||
--avg 1 \
|
--avg 1 \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method greedy_search \
|
--decoding-method greedy_search \
|
||||||
--bpe-model data/lang_bpe_500/bpe.model
|
--tokens data/lang_bpe_500/tokens.txt \
|
||||||
|
|
||||||
Check ./pretrained.py for its usage.
|
Check ./pretrained.py for its usage.
|
||||||
|
|
||||||
@ -85,8 +86,9 @@ with the following commands:
|
|||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import re
|
||||||
|
|
||||||
import sentencepiece as spm
|
import k2
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from scaling_converter import convert_scaled_to_non_scaled
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
@ -101,6 +103,26 @@ from icefall.checkpoint import (
|
|||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def num_tokens(
|
||||||
|
token_table: k2.SymbolTable, disambig_pattern: str = re.compile(r"^#\d+$")
|
||||||
|
) -> int:
|
||||||
|
"""Return the number of tokens excluding those from
|
||||||
|
disambiguation symbols.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
0 is not a token ID so it is excluded from the return value.
|
||||||
|
"""
|
||||||
|
symbols = token_table.symbols
|
||||||
|
ans = []
|
||||||
|
for s in symbols:
|
||||||
|
if not disambig_pattern.match(s):
|
||||||
|
ans.append(token_table[s])
|
||||||
|
num_tokens = len(ans)
|
||||||
|
if 0 in ans:
|
||||||
|
num_tokens -= 1
|
||||||
|
return num_tokens
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
@ -155,10 +177,9 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--bpe-model",
|
"--tokens",
|
||||||
type=str,
|
type=str,
|
||||||
default="data/lang_bpe_500/bpe.model",
|
help="Path to the tokens.txt.",
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -198,12 +219,12 @@ def main():
|
|||||||
|
|
||||||
logging.info(f"device: {device}")
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
# Load tokens.txt here
|
||||||
sp.load(params.bpe_model)
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
|
||||||
# <blk> is defined in local/train_bpe_model.py
|
# Load id of the <blk> token and the vocab size
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
params.blank_id = token_table["<blk>"]
|
||||||
params.vocab_size = sp.get_piece_size()
|
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
@ -292,7 +313,7 @@ def main():
|
|||||||
model.to("cpu")
|
model.to("cpu")
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
if params.jit is True:
|
if params.jit:
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
# We won't use the forward() method of the model in C++, so just ignore
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
# it here.
|
# it here.
|
||||||
|
52
egs/librispeech/ASR/pruned_transducer_stateless7/pretrained.py
Executable file → Normal file
52
egs/librispeech/ASR/pruned_transducer_stateless7/pretrained.py
Executable file → Normal file
@ -1,5 +1,6 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Zengrui Jin)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -29,7 +30,7 @@ Usage of this script:
|
|||||||
(1) greedy search
|
(1) greedy search
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
./pruned_transducer_stateless7/pretrained.py \
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||||
--method greedy_search \
|
--method greedy_search \
|
||||||
/path/to/foo.wav \
|
/path/to/foo.wav \
|
||||||
/path/to/bar.wav
|
/path/to/bar.wav
|
||||||
@ -37,7 +38,7 @@ Usage of this script:
|
|||||||
(2) beam search
|
(2) beam search
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
./pruned_transducer_stateless7/pretrained.py \
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||||
--method beam_search \
|
--method beam_search \
|
||||||
--beam-size 4 \
|
--beam-size 4 \
|
||||||
/path/to/foo.wav \
|
/path/to/foo.wav \
|
||||||
@ -46,7 +47,7 @@ Usage of this script:
|
|||||||
(3) modified beam search
|
(3) modified beam search
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
./pruned_transducer_stateless7/pretrained.py \
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||||
--method modified_beam_search \
|
--method modified_beam_search \
|
||||||
--beam-size 4 \
|
--beam-size 4 \
|
||||||
/path/to/foo.wav \
|
/path/to/foo.wav \
|
||||||
@ -55,7 +56,7 @@ Usage of this script:
|
|||||||
(4) fast beam search
|
(4) fast beam search
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
./pruned_transducer_stateless7/pretrained.py \
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||||
--method fast_beam_search \
|
--method fast_beam_search \
|
||||||
--beam-size 4 \
|
--beam-size 4 \
|
||||||
/path/to/foo.wav \
|
/path/to/foo.wav \
|
||||||
@ -75,7 +76,6 @@ from typing import List
|
|||||||
|
|
||||||
import k2
|
import k2
|
||||||
import kaldifeat
|
import kaldifeat
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from beam_search import (
|
from beam_search import (
|
||||||
@ -87,6 +87,7 @@ from beam_search import (
|
|||||||
)
|
)
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
from export import num_tokens
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
@ -106,9 +107,9 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--bpe-model",
|
"--tokens",
|
||||||
type=str,
|
type=str,
|
||||||
help="""Path to bpe.model.""",
|
help="Path to the tokens.txt.",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -225,13 +226,13 @@ def main():
|
|||||||
|
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
# Load tokens.txt here
|
||||||
sp.load(params.bpe_model)
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
|
||||||
# <blk> is defined in local/train_bpe_model.py
|
# Load id of the <blk> token and the vocab size
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
params.blank_id = token_table["<blk>"]
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
params.unk_id = token_table["<unk>"]
|
||||||
params.vocab_size = sp.get_piece_size()
|
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
|
||||||
|
|
||||||
logging.info(f"{params}")
|
logging.info(f"{params}")
|
||||||
|
|
||||||
@ -286,6 +287,12 @@ def main():
|
|||||||
msg += f" with beam size {params.beam_size}"
|
msg += f" with beam size {params.beam_size}"
|
||||||
logging.info(msg)
|
logging.info(msg)
|
||||||
|
|
||||||
|
def token_ids_to_words(token_ids: List[int]) -> str:
|
||||||
|
text = ""
|
||||||
|
for i in token_ids:
|
||||||
|
text += token_table[i]
|
||||||
|
return text.replace("▁", " ").strip()
|
||||||
|
|
||||||
if params.method == "fast_beam_search":
|
if params.method == "fast_beam_search":
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
@ -297,8 +304,8 @@ def main():
|
|||||||
max_contexts=params.max_contexts,
|
max_contexts=params.max_contexts,
|
||||||
max_states=params.max_states,
|
max_states=params.max_states,
|
||||||
)
|
)
|
||||||
for hyp in sp.decode(hyp_tokens):
|
for hyp in hyp_tokens:
|
||||||
hyps.append(hyp.split())
|
hyps.append(token_ids_to_words(hyp))
|
||||||
elif params.method == "modified_beam_search":
|
elif params.method == "modified_beam_search":
|
||||||
hyp_tokens = modified_beam_search(
|
hyp_tokens = modified_beam_search(
|
||||||
model=model,
|
model=model,
|
||||||
@ -307,16 +314,16 @@ def main():
|
|||||||
beam=params.beam_size,
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
for hyp in hyp_tokens:
|
||||||
hyps.append(hyp.split())
|
hyps.append(token_ids_to_words(hyp))
|
||||||
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
encoder_out_lens=encoder_out_lens,
|
encoder_out_lens=encoder_out_lens,
|
||||||
)
|
)
|
||||||
for hyp in sp.decode(hyp_tokens):
|
for hyp in hyp_tokens:
|
||||||
hyps.append(hyp.split())
|
hyps.append(token_ids_to_words(hyp))
|
||||||
else:
|
else:
|
||||||
for i in range(num_waves):
|
for i in range(num_waves):
|
||||||
# fmt: off
|
# fmt: off
|
||||||
@ -337,12 +344,11 @@ def main():
|
|||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
hyps.append(sp.decode(hyp).split())
|
hyps.append(token_ids_to_words(hyp))
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
words = " ".join(hyp)
|
s += f"{filename}:\n{hyp}\n\n"
|
||||||
s += f"{filename}:\n{words}\n\n"
|
|
||||||
logging.info(s)
|
logging.info(s)
|
||||||
|
|
||||||
logging.info("Decoding Done")
|
logging.info("Decoding Done")
|
||||||
|
@ -1,362 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
|
||||||
# Zengrui Jin)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script loads a checkpoint and uses it to decode waves.
|
|
||||||
You can generate the checkpoint with the following command:
|
|
||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
|
||||||
--epoch 20 \
|
|
||||||
--avg 10
|
|
||||||
|
|
||||||
Usage of this script:
|
|
||||||
|
|
||||||
(1) greedy search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
|
||||||
--method greedy_search \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(2) beam search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
|
||||||
--method beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(3) modified beam search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
|
||||||
--method modified_beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(4) fast beam search
|
|
||||||
./pruned_transducer_stateless7/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
|
|
||||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
|
||||||
--method fast_beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
You can also use `./pruned_transducer_stateless7/exp/epoch-xx.pt`.
|
|
||||||
|
|
||||||
Note: ./pruned_transducer_stateless7/exp/pretrained.pt is generated by
|
|
||||||
./pruned_transducer_stateless7/export.py
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import kaldifeat
|
|
||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
from beam_search import (
|
|
||||||
beam_search,
|
|
||||||
fast_beam_search_one_best,
|
|
||||||
greedy_search,
|
|
||||||
greedy_search_batch,
|
|
||||||
modified_beam_search,
|
|
||||||
)
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
|
||||||
from export_unified import num_tokens
|
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--checkpoint",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to the checkpoint. "
|
|
||||||
"The checkpoint is assumed to be saved by "
|
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--tokens",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/tokens.txt",
|
|
||||||
help="Path to the tokens.txt.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Possible values are:
|
|
||||||
- greedy_search
|
|
||||||
- beam_search
|
|
||||||
- modified_beam_search
|
|
||||||
- fast_beam_search
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"sound_files",
|
|
||||||
type=str,
|
|
||||||
nargs="+",
|
|
||||||
help="The input sound file(s) to transcribe. "
|
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
|
||||||
"For example, wav and flac are supported. "
|
|
||||||
"The sample rate has to be 16kHz.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--sample-rate",
|
|
||||||
type=int,
|
|
||||||
default=16000,
|
|
||||||
help="The sample rate of the input sound file",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam-size",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An integer indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --method is beam_search or
|
|
||||||
modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=4,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=8,
|
|
||||||
help="""Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-sym-per-frame",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
|
||||||
--method is greedy_search.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
|
||||||
filenames: List[str], expected_sample_rate: float
|
|
||||||
) -> List[torch.Tensor]:
|
|
||||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
||||||
Args:
|
|
||||||
filenames:
|
|
||||||
A list of sound filenames.
|
|
||||||
expected_sample_rate:
|
|
||||||
The expected sample rate of the sound files.
|
|
||||||
Returns:
|
|
||||||
Return a list of 1-D float32 torch tensors.
|
|
||||||
"""
|
|
||||||
ans = []
|
|
||||||
for f in filenames:
|
|
||||||
wave, sample_rate = torchaudio.load(f)
|
|
||||||
assert (
|
|
||||||
sample_rate == expected_sample_rate
|
|
||||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
||||||
# We use only the first channel
|
|
||||||
ans.append(wave[0])
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
# Load tokens.txt here
|
|
||||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
|
||||||
|
|
||||||
# Load id of the <blk> token and the vocab size
|
|
||||||
params.blank_id = token_table["<blk>"]
|
|
||||||
params.unk_id = token_table["<unk>"]
|
|
||||||
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
|
|
||||||
|
|
||||||
logging.info(f"{params}")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
logging.info("Creating model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
||||||
model.load_state_dict(checkpoint["model"], strict=False)
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
|
||||||
opts = kaldifeat.FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = params.sample_rate
|
|
||||||
opts.mel_opts.num_bins = params.feature_dim
|
|
||||||
|
|
||||||
fbank = kaldifeat.Fbank(opts)
|
|
||||||
|
|
||||||
logging.info(f"Reading sound files: {params.sound_files}")
|
|
||||||
waves = read_sound_files(
|
|
||||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
||||||
)
|
|
||||||
waves = [w.to(device) for w in waves]
|
|
||||||
|
|
||||||
logging.info("Decoding started")
|
|
||||||
features = fbank(waves)
|
|
||||||
feature_lengths = [f.size(0) for f in features]
|
|
||||||
|
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
|
||||||
hyps = []
|
|
||||||
msg = f"Using {params.method}"
|
|
||||||
if params.method == "beam_search":
|
|
||||||
msg += f" with beam size {params.beam_size}"
|
|
||||||
logging.info(msg)
|
|
||||||
|
|
||||||
def token_ids_to_words(token_ids: List[int]) -> str:
|
|
||||||
text = ""
|
|
||||||
for i in token_ids:
|
|
||||||
text += token_table[i]
|
|
||||||
return text.replace("▁", " ").strip()
|
|
||||||
|
|
||||||
if params.method == "fast_beam_search":
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam,
|
|
||||||
max_contexts=params.max_contexts,
|
|
||||||
max_states=params.max_states,
|
|
||||||
)
|
|
||||||
for hyp in hyp_tokens:
|
|
||||||
hyps.append(token_ids_to_words(hyp))
|
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp_tokens = modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
for hyp in hyp_tokens:
|
|
||||||
hyps.append(token_ids_to_words(hyp))
|
|
||||||
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
|
||||||
hyp_tokens = greedy_search_batch(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
)
|
|
||||||
for hyp in hyp_tokens:
|
|
||||||
hyps.append(token_ids_to_words(hyp))
|
|
||||||
else:
|
|
||||||
for i in range(num_waves):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.method == "greedy_search":
|
|
||||||
hyp = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
|
||||||
|
|
||||||
hyps.append(token_ids_to_words(hyp))
|
|
||||||
|
|
||||||
s = "\n"
|
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
|
||||||
s += f"{filename}:\n{hyp}\n\n"
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
logging.info("Decoding Done")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
Loading…
x
Reference in New Issue
Block a user