mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-02 21:54:18 +00:00
update codes
This commit is contained in:
parent
d4e0baf14d
commit
6772a3cf84
@ -18,7 +18,6 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
@ -141,7 +140,7 @@ class HypothesisList(object):
|
||||
key = hyp.key
|
||||
if key in self:
|
||||
old_hyp = self._data[key]
|
||||
old_hyp.log_prob = np.logaddexp(old_hyp.log_prob, hyp.log_prob)
|
||||
old_hyp.log_prob = torch.logaddexp(old_hyp.log_prob, hyp.log_prob)
|
||||
else:
|
||||
self._data[key] = hyp
|
||||
|
||||
@ -211,6 +210,106 @@ class HypothesisList(object):
|
||||
return ", ".join(s)
|
||||
|
||||
|
||||
def modified_beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
) -> List[int]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
beam:
|
||||
Beam size.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
unk_id = model.decoder.unk_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
T = encoder_out.size(1)
|
||||
|
||||
B = HypothesisList()
|
||||
B.add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
)
|
||||
)
|
||||
|
||||
for t in range(T):
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||
# current_encoder_out is of shape (1, 1, 1, encoder_out_dim)
|
||||
# fmt: on
|
||||
A = list(B)
|
||||
B = HypothesisList()
|
||||
|
||||
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
||||
# ys_log_probs is of shape (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyp in A],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
# decoder_input is of shape (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
# decoder_output is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||
|
||||
current_encoder_out = current_encoder_out.expand(
|
||||
decoder_out.size(0), 1, 1, -1
|
||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
)
|
||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
|
||||
# now logits is of shape (num_hyps, vocab_size)
|
||||
log_probs = logits.log_softmax(dim=-1)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
||||
|
||||
# topk_hyp_indexes are indexes into `A`
|
||||
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
||||
topk_token_indexes = topk_indexes % logits.size(-1)
|
||||
|
||||
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
||||
topk_token_indexes = topk_token_indexes.tolist()
|
||||
|
||||
for i in range(len(topk_hyp_indexes)):
|
||||
hyp = A[topk_hyp_indexes[i]]
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[i]
|
||||
if new_token != blank_id and new_token != unk_id:
|
||||
new_ys.append(new_token)
|
||||
new_log_prob = topk_log_probs[i]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
B.add(new_hyp)
|
||||
|
||||
best_hyp = B.get_most_probable(length_norm=True)
|
||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||
|
||||
return ys
|
||||
|
||||
|
||||
def beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
|
@ -47,7 +47,7 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import TedLiumAsrDataModule
|
||||
from beam_search import beam_search, greedy_search
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
@ -105,6 +105,7 @@ def get_parser():
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
@ -262,6 +263,10 @@ def decode_one_batch(
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
@ -398,6 +403,7 @@ def main():
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user